FPCP 2023

21st Conference on Flavor Physics and CP Violation

Lyon, May 29 – June 2 2023

Model-independent extraction of form-factors and $|V_{cb}|$ in $B \rightarrow D\ell v$ with hadronic tagging

Marcello Rotondo

Marcello.rotondo@lnf.infn.it ORCID: 0000-0001-5704-6163 On behalf of BaBar Collaboration

B→Dℓv and |Vcb|

• In the SM the amplitude for $B \rightarrow D\ell\nu$ depends only from the Vector interaction term

$$\langle D|\bar{c}\gamma_{\mu}b|\bar{B}\rangle_{V} = f_{+}(q^{2})\left((p_{B}+p_{D})_{\mu} - \frac{(p_{B}+p_{D})\cdot q}{q^{2}}q_{\mu}\right)$$
$$+ f_{0}(q^{2})\frac{(p_{B}+p_{D})\cdot q}{q^{2}}q_{\mu}$$

For light leptons
$$\frac{\mathrm{d}\Gamma}{\ell=\mathrm{e},\mu} = \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2\mathrm{d}\cos\theta_\ell} = \frac{G_F^2|V_{cb}|^2\eta_{\mathrm{EW}}^2}{32\pi^3}k^3|f_+(q^2)|^2\sin^2\theta_\ell$$

- + Knowledge of BF($B \rightarrow D\ell\nu$) from external inputs
- + Points or parameters for form factor normalization using Lattice QCD
- Form factors parameterization:
 - CLN: model dependent, unaccounted uncertainties
 - BGL: less model assumptions

P. Gambino's talk 29/5

Caprini, Lellouch, Neubert Nucl. Phys. B530,153(1998) Boyd, Grinstein, Lebed, Nucl. Phys. B462,493(1996)

Data sample: the hadronic tagging

- Analysis based on 426 fb⁻¹ at Y(4S)
- Hadronic tagging
 - Suppress continuum e⁺e⁻ → qq and combinatorial background
 - Improve the resolution on the kinematics of the signal decay
 - Boost kinematics in the B_{siq} rest frame
 - Increase the signal/background separation

- Improved B_{tag} algorithm used also in other BaBar semileptonic analysis
 - B→D*ℓv angular analysis PRL 123 (2019) 9, 091801
 - Observation of B→D(*)ππℓν PRL 116 (2016) 041801
 - Measurement of R(D)-R(D*) PRL 109 (2012) 101802
- 2968 modes, different seeds considered (D 0 , D $^+$, D $_s$, J/ ψ) and looser cuts on intermediate states: tagging efficiency 0.2-0.3%

B→Dlv reconstruction

- Full exclusive event topology is reconstructed
- Tracks and photons from B_{tag} are removed from signal reconstruction:
 - B_{tag}⁰ & B⁰ \rightarrow D- ℓ + ν , ℓ =e, μ
 - B_{tag}- & B+ \rightarrow D⁰ ℓ + ν , ℓ =e, μ
 - D⁰ reconstructed in the cleanest modes
 - Positive Particle identification for all particles
 - Discriminating variable

$$U = E_{\mathsf{miss}}^{\phantom{\mathsf{*}}} - |\vec{p}_{\mathsf{miss}}^{\phantom{\mathsf{*}}}| = E_{\nu}^{\phantom{\mathsf{*}}} - |\vec{p}_{\nu}^{\phantom{\mathsf{*}}}|$$

- Signal: one neutrino missing U=0
- Dominant background B→D*ℓν: one missing π or γ, U ~ m_{miss} ~ 140 MeV

ℓ^- D	decay mode	mode	$N_{ m sig}$	$N_{ m bkgd}$
	$K^-\pi^+$	0	539	63
$e^- D^0$	$K^-\pi^+\pi^0$	1	813	196
	$K^-\pi^+\pi^-\pi^+$	2	550	82
$e^- D^+$	$K^-\pi^+\pi^+$	3	721	41
	$K^-\pi^+\pi^+\pi^0$	4	204	120
	$K^-\pi^+$	5	433	64
$\mu^- D^0$	$K^-\pi^+\pi^0$	6	798	221
	$K^-\pi^+\pi^-\pi^+$	7	608	84
$\mu^- D^+$	$K^-\pi^+\pi^+$	8	665	55
	$K^-\pi^+\pi^+\pi^0$	9	233	134
		Total	5563	1061

B→Dly reconstruction

- Minimal selection:
 - $|\mathbf{p}_{e,lab}| > 200 \text{ MeV} + \text{brem. recovery}, |\mathbf{p}_{\mu,lab}| > 300 \text{ MeV}$
 - Event further cleaned requiring $E_{extra} = \Sigma E_{\gamma} > 800 \text{ MeV}$ (depending on the mode)
- Kinematic fit of the full event topology: e⁺e⁻ → Y(4S) → B_{tag} & B→Dℓv
 - Mass constraint: B_{tag}, B_{sig}, D
 - Vertex constraint: beam spot, secondary vertices

Probability of the χ^2 of the kinematic fit used as additional discriminating variable

- Second kinematic fit: v mass constrained
- Significant improvement in resolutions

Signal and background model

- Signal and background lineshapes derived from simulation samples
 - Signal: 4 TP Gaussians, shape of the tails kept fixed to simulation
 - Background: 2 TP Gaussians, all parameters free

Data

Full fit

Signal

····· Bkqd.

0.2

Final signal-background results

• $U=E^*_{miss}$ - p^*_{miss} distributions integrated over all modes and bins of phase space

- Even if q^2 and $\cos \theta_\ell$ factorize in the signal $d\Gamma$, they are correlated for the background
- Efficiency depends on both $(q^2-\theta_\ell)$ and D decay mode \rightarrow better signal-background separation using both $(q^2-\theta_\ell)$ separately for each D decay mode

Unbinned ML global fit

- In this measurement the branching ratio is not extracted
 - Analysis is only sensitive to shapes
- The shape of the form factor and |V_{cb}| are determined from a combined UML fit

 $+\chi^2(\vec{x})|_{\text{FNAL/MILC}}$

- Lattice FNAL/MILC are used to constrain high q² region
- Belle 2016 dΓ/dq² points are included as gaussian constraints

$$\mathbb{L}_{\text{total}}(\vec{x}) = -2 \ln \mathcal{L}(\vec{x})|_{\text{BABAR}} + \chi^2(\vec{x})|_{\text{Belle}}$$

J. A. Bailey et al. (**FNAL/MILC**) PRD 92, 034506 (2015) R. Glattauer et al. (**Belle**), P RD 955

R. Glattauer et al. (**Belle**), P RD 955 93, 032006 (2016)

Systematics included

$\overline{BGL\ N=2}$	value	CLN	value
$ V_{cb} \times 10^3$	41.10 ± 1.17	$ V_{cb} \times 10^3$	40.90 ± 1.14
$a_0^{f_+} \times 10$	0.126 ± 0.001	$\mathcal{G}(1)$	1.056 ± 0.008
$a_1^{f_+}$	-0.096 ± 0.003	$ ho_D^2$	1.155 ± 0.023
$a_2^{f_+}$	0.352 ± 0.053		
$a_1^{f_0}$	-0.059 ± 0.003		
$a_{2}^{f_{0}}$	0.155 ± 0.050		

BGL N=3

variable	value
$a_0^{f_+} \times 10$	0.126 ± 0.001
$a_1^{f_+}$	-0.098 ± 0.004
$a_2^{f_+}$	0.626 ± 0.241
$a_3^{f_+}$	-3.939 ± 3.194
$a_1^{f_0}$	-0.061 ± 0.003
$a_2^{f_0}$	0.435 ± 0.205
$a_3^{\overline{f}_0}$	-3.977 ± 2.840
$ V_{cb} \times 10^3$	40.74 ± 1.18
$\chi^2_{\text{FNAL/MILC}}$	0.001
$\chi^2_{ m Belle}$	23.68

M.Rotondo FPCP23 $\frac{\chi^2_{\text{Belle}}}{\chi^2_{\text{Belle}}}$

Fit results and systematics

Only statistical uncertainties

fit configuration	U	$a_1^{f_+}$	$a_2^{f_+}$	$a_1^{f_0}$	$a_2^{f_0}$	$ V_{cb} \times 10^3$, 021222	
BABAR-1, Belle	0.126 ± 0.001	-0.096 ± 0.003	0.352 ± 0.052	-0.059 ± 0.003	0.155 ± 0.049	41.09 ± 1.16	1.15	24.50
BABAR-2, Belle	0.126 ± 0.001	-0.096 ± 0.003	0.352 ± 0.052	-0.059 ± 0.003	0.155 ± 0.049	41.12 ± 1.16	1.17	24.54
BABAR-3, Belle	0.126 ± 0.001	-0.096 ± 0.003	0.350 ± 0.052	-0.059 ± 0.003	0.153 ± 0.049	41.12 ± 1.16	1.18	24.55
BABAR-4, Belle	0.126 ± 0.001	-0.096 ± 0.003	0.352 ± 0.052	-0.059 ± 0.003	0.156 ± 0.049	41.05 ± 1.17	1.14	24.45
BABAR-1	0.126 ± 0.001	-0.097 ± 0.003	0.334 ± 0.063	-0.059 ± 0.003	0.133 ± 0.062	-	1.55	-

Dominant systematic is due to background subtraction model

$$|V_{cb}| = \sqrt{\frac{\mathcal{B}}{\Gamma' au_B}}$$

Measurement	$\mathcal{B}(\overline{B} \to D\ell^-\overline{\nu}_\ell) \times 10^2$	$ V_{cb} \times 10^3$
BABAR-10 [14]	$\mathcal{B}_{B^0} = (2.15 \pm 0.11 \pm 0.14)$	40.02 ± 1.76
BABAR-10 [14]	$\mathcal{B}_{B^+} = (2.16 \pm 0.08 \pm 0.13)$	38.67 ± 1.41
Belle-16 [15]	$\mathcal{B}_{B^0} = (2.33 \pm 0.04 \pm 0.11)$	41.66 ± 1.22
Belle-16 [15]	$\mathcal{B}_{B^+} = (2.46 \pm 0.04 \pm 0.12)$	41.27 ± 1.23

• Values of $|V_{cb}|$ are slightly higher than $B \rightarrow D^* \ell \nu$, and consistent with inclusive determination

From inclusive B \rightarrow X $_{\rm c}\ell _{
m V}$ $|V_{cb}| imes 10^3 = (42.19 \pm 0.78)$

HFLAV, PRD 107, 052008 (2023)

1D Projections

- Good agreement between background subtracted data and simulation events reweighted by BGL fit results
- Angular distribution follows the expected $\sin^2\theta_\ell$ distribution

• Angular distribution would allow modelindependent NP search through departure from pure $sin^2\theta_{\ell}$

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\ell}} = \frac{3}{4} (1 - \mathbf{F}_{H}) \sin^{2}\theta_{\ell} + \frac{1}{2} \mathbf{F}_{H} + \mathbf{A}_{FB} \cos\theta_{\ell}$$

Not in this analysis!

Comparison with $B_s \rightarrow D_s$ Form Factors and R(D)

- Comparison of form factors with **HPQCD** calculation for $B_s \rightarrow D_s$ over the entire q^2 range
 - Assuming SU(3)_F symmetry, the form factors are expected to be equivalent

E.McLean et al., (**HPQCD**) PRD 101, 074513 (2020

Fit result (BaBar + Belle + MILC/FNAL) consistent with HPQCD ⇒ role of the spectator cannot be very large

M.Bordone et al. EPJC 80 (2020) 4, 347 for a recent HQET analysis

• Prediction on R(D)
$$\mathcal{R}(D) = \frac{\int_{m_{\tau}^2}^{(m_B - m_D)^2} \Gamma(q^2, m_{\tau}) \mathrm{d}q^2}{\int_{m_{\ell}^2}^{(m_B - m_D)^2} \Gamma(q^2, m_{\ell}) \mathrm{d}q^2 \Big|_{\ell = e/\mu}} \Big|_{\mathrm{SM \ theory}}^{\mathrm{BABAR}} = 0.300 \pm 0.004$$

M.Rotondo FPCP23 11

Summary

Novel tagged analysis of B→Dℓv

- Signal extracted with an unbinned approach in a reduced model dependence
- Unbinned ML fit using external inputs from FNAL/MILC at high q² and BF from Belle
 - |V_{cb}| results are obtained with BGL (and CLN)
- Results consistent with other measurements
 - $|V_{cb}|$ consistent with inclusive, and slightly higher than HFLAV $|V_{cb}|$ from $B \rightarrow D^* \ell V$
- Form factors shape consistent with Lattice calculations

Paper with detailed information will be released soon

- Data on which the analysis is based on, will also be released in later stage
 - Because the default fit is unbinned, discussion is ongoing about the format of the data to release
- A combined joint fit with the BaBar 2019 B→D*ℓv analysis will be released in a separate paper

Backup

Data sample: the hadronic tagging

- Analysis based on 426 fb⁻¹ at Y(4S)
- Hadronic tagging
 - Suppress continuum e⁺e⁻ → qq and combinatorial background
 - Improve the resolution on the kinematics of the signal decay
 - Boost kinematics in the B_{siq} rest frame
 - Increase the signal/background separation

 Most precise previous measurements using hadronic B tagging are from BaBar and Belle

Phys.Rev.Lett.104 011902(2010)

Phys.Rev.D193 032006(2016)

 Untagged measurement at BaBar, Belle II and LHCb (using the B_s)

Phys.Rev.D79 012002 (2009)

ArXiv:2210.13143

Phys.Rev.D101 072004 (2020) Combining $B_s \rightarrow D_s \mu \nu$ and $B_s \rightarrow D_s^* \mu \nu$