Results on exotic hadronic resonances with the ATLAS detector

21st Conference on Flavour Physics and CP Violation (FPCP 2023)

Low-p_T triggers in ATLAS

- 25 fb⁻¹ in Run 1, and 139 fb⁻¹ in Run 2
- B triggers focus mostly on final states with muons
 - typical trigger: di-muons with p_T thresholds at 4, 6 and 11 GeV
- In 2018, a di-electron high-level trigger implemented and being analysed now

- With higher luminosity we have increasing difficulties collecting low-p_T events within the bandwidth budget.
 - ~100 to 200 Hz trigger budget
 - ATLAS has topological triggers to keep lower thresholds and stay within the bandwidth budget.

Observation of an excess of di-charmonium events in the four-muon final state

Run-2 result:

arXiv: 2304.08962

Submitted to Phys. Rev. Lett.

Marcella Bona (QMUL)

- One Motivated by LHCb discovery of resonant-like signal X(6900) in di-J/ ψ spectrum [arXiv: 2006.16957].
 - See also CMS-PAS-BPH-21-003
- Strategy:
 - 139 fb⁻¹ recorded by ATLAS Run 2 at 13TeV
 - 2- or 3-muon triggers with dimuon in mass range in 2.5-4.3 GeV
 - Trigger combinations with various prescaling to increase acceptance
 - X(6900) trigger efficiency is 72% relative to offline selection

- Selection:
 - Events with 2 opposite-charge muon pairs and fit to common vertex
 - Then each vertex of the 2 pairs is refit with a J/ψ or $\psi(2S)$ mass constraint
 - 0.33% m_{4μ} resolution for X(6900)
 - Different muon momenta (trigger-driven)
 - ullet ΔR (between charmonia) and transverse decay lengths used to define signal and control regions

Signal region	Control region	Non-prompt region	
Di-muon or tri-muon triggers, oppositely charged muons from each charmonium,			
loose muons, $p_{\rm T}^{1,2,3,4} > 4,4,3,3$ GeV and $ \eta_{1,2,3,4} < 2.5$ for the four muons,			
$m_{J/\psi} \in [2.94, 3.25] \text{ GeV}, \text{ or } m_{\psi(2S)} \in [3.56, 3.80] \text{ GeV},$			
Loose vertex requirements $\chi^2_{4\mu}/N < 40 \ (N=5)$ and $\chi^2_{\text{di-}\mu}/N < 100 \ (N=2)$,			
Vertex $\chi_{4\mu}^2/N < 3$, $L_{xy}^{4\mu} < 0.2$ mm, $ L_{xy}^{\text{di-}\mu} < 0.3$ mm, $m_{4\mu} < 11$ GeV, Vertex $\chi_{4\mu}^2/N > 6$,			
$\Delta R < 0.25$ between charmonia	$\Delta R \ge 0.25$ between charmonia	or $ L_{xy}^{\text{di-}\mu} > 0.4 \text{ mm}$	

arXiv: 2304.08962, Submitted to PRL

Backgrounds:

- Prompt J/ψ
 - Single parton scattering (SPS)
 - Double parton scattering (DPS)
- Non-prompt J/ψ
 - $b\overline{b} \rightarrow J/\psi J/\psi$
- From MC but kinematic scaling using data control regions
- Single J/ψ background
 - Prompt or non-prompt J/ψ plus fake muons from primary vertex
- Non-peaking background with no real J/ψ
- Single and non-peaking are 'others'
 - Data-driven modelling

arXiv: 2304.08962, Submitted to PRL

Backgrounds:

- Control regions
 - Low & high 4-muon mass sidebands for SPS and DPS studies
 - ΔR>0.25 to study SPS mass spectrum
- Reweighting between data and MC in di-J/ψ p_T, Δφ, Δη between charmonia and lower-p_T muons
- Poor 4µ vertex or very long proper lifetime to select non-prompt control region
- Feed-down from J/ψ+ψ(2S) included in di-J/ψ

- Fit models:
 - di-J/ψ: could have two resonances but interference may be important
 - Model A has 3 resonances interfering with each other
 - Model B has 2 resonances, of which only one interferes with SPS
 - Two-res. with interference and three-res. without interferences also tried and excluded >95%
 - J/ψ+ψ(2S)
 - Model α has the same resonances as in model A plus an additional standalone one
 - Model β has a single resonance

arXiv: 2304.08962, Submitted to PRL

Systematics:

- SPS: PYTHIA uncertainty on suppression of the soft double charmonia production (tuned on data)
- Bkg: shape uncertainty for di-charmonium
 p_T mismodelling
- Fit biases in the resonance parameters.
 The DSD ways DW functions for systems.
- The P&D-wave BW functions for systematic on orbital angular momentum assumptions
- Systematic shape variations in the X(6900) and in the second resonance in $J/\psi+\psi(2S)$
- 4th resonance around 7.2 GeV (LHCb hint)
- The feed-down background normalizations varied
- J/ψ+ψ(2S): uncertainties on transfer factor between signal and control regions, and on "Others" shape from the non-prompt region
- J/ψ+ψ(2S): interference between the 4th resonance and the others

$J/\psi+\psi(2S)$	
Γ_3	
±1	
<1	
<1	
<1	
+2 -4	
+50 0 –16	
1 ±6	
5 ±23	
_	
2 –11	
±1	
-2	

- Observation of the X(6900) structure is confirmed.
- Evidence for a broad lower mass structure
 - In both channels, details of the lower-mass structure cannot be extracted directly from the data.
 - More data are required to better characterise the excesses observed in both channels.

	$\mathrm{di} ext{-}J/\psi$	model A	model B
	m_0	$6.41 \pm 0.08^{+0.08}_{-0.03}$	$6.65 \pm 0.02^{+0.03}_{-0.02}$
	Γ_0	$0.59 \pm 0.35^{+0.12}_{-0.20}$	$0.44 \pm 0.05^{+0.06}_{-0.05}$
ıre	m_1	$6.63 \pm 0.05^{+0.08}_{-0.01}$	
	Γ_1	$0.35 \pm 0.11^{+0.11}_{-0.04}$	_
	m_2	$6.86 \pm 0.03^{+0.01}_{-0.02}$	$6.91 \pm 0.01 \pm 0.01$
	Γ_2	$0.11 \pm 0.05^{+0.02}_{-0.01}$	$0.15 \pm 0.03 \pm 0.01$
	$\Delta s/s$	$\pm 5.1\%^{+8.1\%}_{-8.9\%}$	
	$J/\psi + \psi(2S)$	$\bmod el \ \alpha$	model β
	m_3 or m	$7.22 \pm 0.03^{+0.01}_{-0.03}$	$6.96 \pm 0.05 \pm 0.03$
	Γ_3 or Γ	$0.09 \pm 0.06^{+0.06}_{-0.03}$	$0.51 \pm 0.17^{+0.11}_{-0.10}$
	$\Delta s/s$	$\pm 21\% \pm 14\%$	$\pm 20\% \pm 12\%$
_			

- Observation of the X(6900) structure is confirmed.
- Evidence for a broad lower mass structure

- ullet 4.7 σ excess with two resonances, one near 6.9 GeV threshold.
- Low-mass structure not clear: other interpretations (e.g. multiple non-interfering resonances, reflection effects and threshold enhancements) not excluded

Conclusions

■ ATLAS is competitive in B physics, b quarks and low-p_T studies

Thanks to some detector performance (tracking)

Properties of b-quark fragmentation to $B^{\pm} \rightarrow J/\psi K^{\pm}$

Run-2 result:

arXiv:2108.11650, JHEP 12 (2021) 131

Marcella Bona (QMUL)

arXiv:2108.11650 JHEP 12 (2021) 131

Combinatorial

- b-fragmentation functions provide:
 - Test of QCD at LHC energy; MC tunes
 - ullet H \rightarrow bb and many other channels with b-jet signatures dominant uncertainty
- We measure longitudinal (z) and transverse (p_T^{rel}) of the B[±] momentum to jet axis.

$$z = rac{ec{p}_J \cdot ec{p}_B}{\left|ec{p}_J
ight|^2}; \qquad p_T^{
m rel} = rac{\left|ec{p}_J imes ec{p}_B
ight|}{\left|ec{p}_J
ight|}$$

- ullet B[±] mesons are associated to jets if they are within $\Delta R = 0.4$ from jet axis.
- B[±] invariant mass is used to extract differential cross section in each z or p_T^{rel} bins, for jet momentum bins:
 - 50 GeV < p_T < 70 GeV, 70 GeV < p_T < 100 GeV and p_T > 100 GeV.

ATLAS $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 50 GeV < $p_{_{T}}^{\text{jet}}$ < 70 GeV

0.37 < z < 0.44

arXiv:2108.11650 JHEP 12 (2021) 131

 \bigcirc Results for z distributions for the lowest and highest jet p_T bins:

50 GeV < p_T < 70 GeV and p_T > 100 GeV

- ightarrow lower tails of z distributions contain larger fraction of data at high $p_{\scriptscriptstyle T}$
- gluon splitting \rightarrow larger probability at higher p_T values \rightarrow b quarks in the same jet and B meson from fragmentation of one b \rightarrow smaller z and higher p_T^{rel}

arXiv:2108.11650 JHEP 12 (2021) 131

○ Results for p_T^{rel} distributions for the lowest and highest jet p_T bins: 50 GeV < p_T < 70 GeV and p_T > 100 GeV

- All Pythia fragmentation models give a decent description.
- ullet Herwig7 with dipole PS overestimates for p_T^{rel} in [1.5, 4.0] GeV at low p_T
- ullet Sherpa (mainly cluster HM) discrepant for low p_T^{rel} , gets worse for higher jet p_T .

arXiv:2108.11650

test of scale dependence: average values of the longitudinal profile <z> and of the transverse profile $\langle p_T^{rel} \rangle$ as a function of the jet p_T

- ightharpoonup Pythia (A14*) predicts slightly larger <z> and slightly lower <p $_{T}^{rel}$ >
- Both Herwig7 discrepant at 15-20% level in <p_Trel> profile
- Sherpa (cluster) disagreeing at 10% to 25% for rel>

Run-2 result:

arXiv:2203.01808, CERN-EP-2022-025

Marcella Bona (QMUL)

arXiv:2203.01808 CERN-EP-2022-025

- Observed earlier by LHCb (PRD 87 (2013) 112012) and ATLAS (EPJC 76 (2016) 1) in Run 1.
- Using entire Run 2 dataset: aiming at more precise measurement of branching fractions and the final state polarisation
 - Testing predictions of various theory models, e.g. pQCD calculation, relativistic potential models, sum rules calculations...

- O B_c⁺ → J/ΨD_s^{*+} decay → pseudoscalar into two vector states, hence described in terms of three helicity amplitudes: A₊₊, A₀₀ and A₋₋,
 - ullet the indices correspond to the helicities of the J/ ψ and D_s*+ mesons

 - The fraction, $\Gamma_{\pm\pm}$ / Γ is also measured.

arXiv:2203.01808 CERN-EP-2022-025

- \circ D_s⁺ and D_s*+ are reconstructed from their decays:

 - $D_s^{*+} \rightarrow D_s^+ \pi^0/\gamma$ (soft, not reco)
- Use B_c^+ → $J/ψπ^+$ reference channel for BR measurement
- Fiducial range: p_T (B_c^+) > 15 GeV, $|η(B_c^+)|$ < 2.0 Reference channel with signal statistics $N(B^+ \rightarrow J/\psi \pi^+) = 8440^{+550}$ ₋₄₇₀
- 2D fit to extract the signal parameters
 - $m(J/\psi D_s^+)$ and the J/ψ helicity angle
- Both sensitive to polarisation of the final state particles J/ψ and D_s^+ in $B_c^+ \rightarrow J/\psi D_s^{*+}$ decay.

arXiv:2203.01808 CERN-EP-2022-025

- Total yields

 - O N (B_c⁺ → J/ψD_s*+) = 424 ± 46 (stat)

Left: fit to inv. mass m(J/ ψ D_s⁺). Right: fit to |cos θ '(μ ⁺)|, where θ '(μ ⁺) is the helicity angle between μ ⁺ and D_s⁺ momenta, in J/ ψ rest frame.

arXiv:2203.01808 CERN-EP-2022-025

■ Results on the ratios of branching fractions and on the fraction of transverse polarization of the $B_c^+ \rightarrow J/\psi D_s^*$ decay:

Uncertainties: (Stat) (syst) (BF)

$$R_{D_s^{+}/\pi^{+}} \equiv \mathcal{B}(B_c^{+} \to J/\psi D_s^{+})/\mathcal{B}(B_c^{+} \to J/\psi \pi^{+}) = 2.76 \pm 0.33 \pm 0.30 \pm 0.16$$

$$R_{D_s^{*+}/\pi^{+}} \equiv \mathcal{B}(B_c^{+} \to J/\psi D_s^{*+})/\mathcal{B}(B_c^{+} \to J/\psi \pi^{+}) = 5.33 \pm 0.61 \pm 0.67 \pm 0.32$$

$$R_{D_s^{*+}/D_s^+} \equiv \mathcal{B}(B_c^+ \to J/\psi D_s^{*+})/\mathcal{B}(B_c^+ \to J/\psi D_s^+) = 1.93 \pm 0.24 \pm 0.10$$

$$\Gamma_{\pm\pm}/\Gamma(B_c^+ \to J/\psi D_s^{*+}) = 0.70 \pm 0.10 \pm 0.04$$

arXiv:2203.01808 CERN-EP-2022-025

- New results consistent with earlier measurements
- ightharpoonup R(D_s*+/ π +) described well by the predictions

- \bigcirc R(D_s⁺/ π ⁺) and R(D_s*⁺/D_s⁺) predictions consistently deviate from data
 - except QCD PM (PRD 61 (2000) 034012)
- \bigcirc $\Gamma_{\pm\pm}/\Gamma$ agrees with a naive spin-counting estimate of 2/3 and larger than predictions
- \bigcirc Hatched areas \rightarrow stat uncertainties; yellow bands \rightarrow total uncertainties.

Four-muon final states in ATLAS

arXiv:2203.01808 CERN-EP-2022-025

QCD PM: QCD relativistic potential model [arXiv:hep-ph/9909423, Phys. Rev. D 61, 034012 (2000)]

QCD SR: QCD sum rules [arXiv:hep-ph/0211021]

CCQM: covariant confined quark mode [arXiv:1708.09607 [hep-ph], Phys. Rev. D 96, 076017 (2017)]

BSW: Bauer-Stech-Wirbel relativistic quark model [arXiv:0810.4284 [hep-ph], Phys. Rev. D 79, 034004 (2009)]

LFQM: light-front quark mode [arXiv:1307.5925 [hep-ph], Phys. Rev. D 89, 017501 (2014)]

pQCD: perturbative QCD [arXiv:1407.5550 [hep-ph], Phys. Rev. D 90, 114030 (2014)]

RIQM: relativistic independent quark model [Phys. Rev. D 88, 094014 (2013) / arXiv:2202.01167 [hep-ph]]

FNCM: calculations in the QCD factorization approach [Int. J. Mod. Phys. A 33, 1850044 (2018), erratum 1892003]

 8440^{+550}_{-470}

Parameter

 $N_{B_c^+ \to J/\psi D_s^{*+}}^{\mathrm{DS1}}$

 $N_{B_c^+ \to J/\psi D_s^+}^{\mathrm{DS1\&2}}$

 $B_c^+ \rightarrow J/\psi D_S^{*+}$

$$N_{B_c^+ o J/\psi \pi^+}$$

arXiv:2203.01808

CERN-EP-2022-025

Four-muon final states in ATLAS

Value

 338 ± 32

 241 ± 28

 424 ± 46

