Results on exotic hadronic resonances with the ATLAS detector

Marcella Bona (QMUL)
on behalf of the ATLAS collaboration

21 st Conference on Flavour Physics and CP Violation (FPCP 2023)

Low- p_{T} triggers in ATLAS

- $25 \mathrm{fb}^{-1}$ in Run 1 , and $139 \mathrm{fb}^{-1}$ in Run 2
- B triggers focus mostly on final states with muons
- typical trigger: di-muons with p_{T} thresholds at 4, 6 and 11 GeV
- In 2018, a di-electron high-level trigger implemented and being analysed now

With higher luminosity we have increasing difficulties collecting low- p_{T} events within the bandwidth budget.

- ~100 to 200 Hz trigger budget
- ATLAS has topological triggers to keep lower thresholds and stay within the bandwidth budget.

Observation of an excess of di-charmonium

 events in the four-muon final stateRun-2 result:
arXiv: 2304.08962
Submitted to Phys. Rev. Lett.

di-charmonium events in four muons

- Motivated by LHCb discovery of resonant-like signal X(6900) in di-J/ Ψ spectrum [arXiv: 2006.16957].
- See also CMS-PAS-BPH-21-003
- Strategy:
- $139 \mathrm{fb}^{-1}$ recorded by ATLAS Run 2 at 13TeV
- 2- or 3-muon triggers with dimuon in mass range in 2.5-4.3 GeV
- Trigger combinations with various prescaling to increase acceptance
- X(6900) trigger efficiency is 72% relative to offline selection

di-charmonium events in four muons

arXiv: 2304.08962, Submitted to PRL

- Selection:

- Events with 2 opposite-charge muon pairs and fit to common vertex
- Then each vertex of the 2 pairs is refit with a J / ψ or $\psi(2 S)$ mass constraint
- $0.33 \% \mathrm{~m}_{4 \mu}$ resolution for X (6900)
- Different muon momenta (trigger-driven)
$-\Delta R$ (between charmonia) and transverse decay lengths used to define signal and control regions

Signal region	Control region	Non-prompt region

Di-muon or tri-muon triggers, oppositely charged muons from each charmonium, loose muons, $p_{\mathrm{T}}^{1,2,3,4}>4,4,3,3 \mathrm{GeV}$ and $\left|\eta_{1,2,3,4}\right|<2.5$ for the four muons, $m_{J / \psi} \in[2.94,3.25] \mathrm{GeV}$, or $m_{\psi(2 S)} \in[3.56,3.80] \mathrm{GeV}$,
Loose vertex requirements $\chi_{4 \mu}^{2} / N<40(N=5)$ and $\chi_{\mathrm{di}-\mu}^{2} / N<100(N=2)$,
Vertex $\chi_{4 \mu}^{2} / N<3, L_{x y}^{4 \mu}<0.2 \mathrm{~mm},\left|L_{x y}^{\text {di }-\mu}\right|<0.3 \mathrm{~mm}, m_{4 \mu}<11 \mathrm{GeV}, \mid$ Vertex $\chi_{4 \mu}^{2} / N>6$,

$$
\Delta R<0.25 \text { between charmonia } \mid \quad \Delta R \geq 0.25 \text { between charmonia } \quad \mid \text { or }\left|L_{x y}^{\mathrm{di}-\mu}\right|>0.4 \mathrm{~mm}
$$

di-charmonium events in four muons

Backgrounds:

- Prompt J/ Ψ
- Single parton scattering (SPS)
- Double parton scattering (DPS)
- Non-prompt J/ Ψ
- bb $\rightarrow \mathrm{J} / \psi \mathrm{J} / \psi$
- From MC but kinematic scaling using data control regions
- Single J/ ψ background
- Prompt or non-prompt J/ ψ plus fake muons from primary vertex
- Non-peaking background with no real J/ ψ
> Single and non-peaking are 'others'
- Data-driven modelling

arXiv: 2304.08962, Submitted to PRL

di-charmonium events in four muons

Backgrounds:

- Control regions
- Low \& high 4-muon mass sidebands for SPS and DPS studies
$-\Delta R>0.25$ to study SPS mass spectrum
- Reweighting between data and $M C$ in di- $\mathrm{J} / \psi \mathrm{p}_{\mathrm{T}}, \Delta \varphi, \Delta \eta$ between charmonia and lower- p_{T} muons
ν Poor 4μ vertex or very long proper lifetime to select non-prompt control region
- Feed-down from $\mathrm{J} / \Psi+\Psi(2 \mathrm{~S})$ included in di-J/ Ψ

di-charmonium events in four muons

- Fit models:
di-J/ Ψ : could have two resonances but interference may be important
- Model A has 3 resonances interfering with each other
- Model B has 2 resonances, of which only one interferes with SPS
- Two-res. with interference and three-res. without interferences also tried and excluded >95\%
- J/ $\Psi+\Psi(2 S)$
- Model α has the same resonances as in model A plus an additional standalone one

- Model β has a single resonance

di-charmonium events in four muons

 arXiv: 2304.08962 Submitted to PRL
Systematics:

SPS: PYTHIA uncertainty on suppression of the soft double charmonia production (tuned on data)

Systematic Uncertainties (MeV)	di- J / ψ		$J / \psi+\psi(2 S)$	
	m_{2}	Γ_{2}	m_{3}	Γ_{3}
Muon calibration	± 6	± 7	<1	
SPS model parameter	± 7	± 7	<1	
SPS di-charmonium $p_{\text {T }}$	± 7	± 8	<1	
Background MC sample size	± 7	± 8	± 1	<1
Mass resolution	± 4	-3	-1	
Fit bias	-13			
Shape inconsistency	<1		± 4	± 6
Transfer factor	-		± 5	± 23
Presence of 4th resonance	<1		-	
Feed-down			-	
Interference of 4th resonance	-		-32	-11
P and D-wave BW	+9	+19	<1	± 1
ΔR and muon p_{T} requirements	+3 -2	${ }_{+}^{+6}$	${ }_{+1}^{+1}$	-2

di-charmonium events in four muons

- Observation of the $X(6900)$ structure is confirmed.
Evidence for a broad lower mass structure - In both channels, details of the lower-mass structure cannot be extracted directly from the data.
- More data are required to better characterise the excesses observed in both channels.

di- J / ψ	model A	model B
m_{0}	$6.41 \pm 0.08_{-0.03}^{+0.08}$	$6.65 \pm 0.02_{-0.02}^{+0.03}$
Γ_{0}	$0.59 \pm 0.35_{-0.20}^{+0.12}$	$0.44 \pm 0.05_{-0.05}^{+0.06}$
m_{1}	$6.63 \pm 0.05_{-0.01}^{+0.08}$	-
Γ_{1}	$0.35 \pm 0.11_{-0.04}^{+0.11}$	
m_{2}	$6.86 \pm 0.03_{-0.01}^{+0.02}$	$6.91 \pm 0.01 \pm 0.01$
Γ_{2}	$0.11 \pm 0.05_{-0.01}^{+0.02}$	$0.15 \pm 0.03 \pm 0.01$
$\Delta s / s$	$\pm 5.1 \%_{-8.9 \%}^{+8.1 \%}$	-
$J / \psi+\psi(2 S)$	$\operatorname{model} \alpha$	model β
m_{3} or m	$7.22 \pm 0.03_{-0.03}^{+0.01}$	$6.96 \pm 0.05 \pm 0.03$
Γ_{3} or Γ	$0.09 \pm 0.06_{-0.03}^{+0.06}$	$0.51 \pm 0.17_{-0.10}^{+0.11}$
$\Delta s / s$	$\pm 21 \% \pm 14 \%$	$\pm 20 \% \pm 12 \%$

di-charmonium events in four muons

O Observation of the $X(6900)$ structure is confirmed.
ν Evidence for a broad lower mass structure

Both models A and B describe the data well.

di-charmonium events in four muons

4.7 σ excess with two resonances, one near 6.9 GeV threshold.

Low-mass structure not clear: other interpretations (e.g. multiple non-interfering resonances, reflection effects and threshold enhancements) not excluded

Both models α and β describe the data well.

Conclusions

- ATLAS is competitive in B physics, b quarks and low- p_{T} studies
- Thanks to accumulated statistical samples
- Thanks to some detector performance (tracking)

Stay tuned for on-going work towards more Run-2 analyses, while taking Run 3 data

back-up slides

Properties of b-quark fragmentation to $\mathbf{B}^{ \pm} \rightarrow \mathbf{J} / \Psi \mathbf{K}^{ \pm}$

Run-2 result:
arXiv:2108.11650, JHEP 12 (2021) 131

Properties of b-quark fragmentation

arXiv:2108.11650
JHEP 12 (2021) 131
$139 \mathrm{fb}^{-1}$ of Run-2 data
\checkmark b-fragmentation functions provide:

- Test of QCD at LHC energy; MC tunes
$-\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}}$ and many other channels with b-jet signatures - dominant
uncertainty
\supset We measure longitudinal (z) and transverse ($\mathrm{p}_{\mathrm{T}}{ }^{\text {rel }}$) of the $B^{ \pm}$momentum to jet axis.

$$
z=\frac{\vec{p}_{J} \cdot \vec{p}_{B}}{\left|\vec{p}_{J}\right|^{2}} ; \quad p_{T}^{\text {rel }}=\frac{\left|\vec{p}_{J} \times \vec{p}_{B}\right|}{\left|\vec{p}_{J}\right|}
$$

$\mathrm{B}^{ \pm}$mesons are associated to jets if they are within $\Delta \mathrm{R}=0.4$ from jet axis.
$\checkmark \mathrm{B}^{ \pm}$invariant mass is used to extract differential cross section in each z or $\mathrm{p}_{\mathrm{T}}{ }^{\text {rel }}$ bins, for jet momentum bins:

- $50 \mathrm{GeV}<\mathrm{p}_{\mathrm{T}}<70 \mathrm{GeV}, 70 \mathrm{GeV}<\mathrm{p}_{\mathrm{T}}<100 \mathrm{GeV}$

Properties of b-quark fragmentation

arXiv:2108.11650
JHEP 12 (2021) 131
\checkmark Results for z distributions for the lowest and highest jet p_{T} bins: $50 \mathrm{GeV}<\mathrm{p}_{\mathrm{T}}<70 \mathrm{GeV}$ and $\mathrm{p}_{\mathrm{T}}>100 \mathrm{GeV}$

J lower tails of z distributions contain larger fraction of data at high p_{T}

- gluon splitting \rightarrow larger probability at higher p_{T} values $\rightarrow \mathrm{b}$ quarks in the same jet and B meson from fragmentation of one $b \rightarrow$ smaller z and higher $p_{T}{ }^{\text {rel }}$

Properties of b-quark fragmentation

\supset Results for $p_{T}{ }^{\text {rel }}$ distributions for the lowest and highest jet p_{T} bins:
$50 \mathrm{GeV}<\mathrm{p}_{\mathrm{T}}<70 \mathrm{GeV}$ and $\mathrm{p}_{\mathrm{T}}>100 \mathrm{GeV}$

\checkmark All Pythia fragmentation models give a decent description.
\checkmark Herwig7 with dipole PS overestimates for $p^{\text {rel }}$ in $[1.5,4.0] \mathrm{GeV}$ at low p_{T}
\supset Sherpa (mainly cluster HM) discrepant for low $\mathrm{p}^{\text {rel }}$, gets worse for higher jet p_{T}.

Properties of b-quark fragmentation

\supset test of scale dependence: average values of the longitudinal profile <z> and of the transverse profile $\left\langle p_{T}{ }^{\text {rel }}\right\rangle$ as a function of the jet p_{T}

〕 Pythia (A14*) predicts slightly larger <z> and slightly lower <prare ${ }^{\text {rel }}>$

- Both Herwig7 discrepant at 15-20\% level in $\left\langle\mathrm{p}_{\mathrm{T}}^{\text {rel }}\right\rangle$ profile
\supset Sherpa (cluster) disagreeing at 10% to 25% for $\left\langle\mathrm{p}_{\mathrm{r}}{ }^{\text {rel }}\right\rangle$

Study of $\mathbf{B}_{\mathrm{c}}{ }^{+} \rightarrow \mathbf{J} / \Psi \mathrm{D}_{\mathrm{s}}{ }^{(*)}$ decays

O Observed earlier by LHCb (PRD 87 (2013) 112012) and ATLAS (EPJC 76 (2016) 1) in Run 1.
) Using entire Run 2 dataset: aiming at more precise measurement of branching fractions and the final state polarisation

- Testing predictions of various theory models, e.g. pQCD calculation, relativistic potential models, sum rules calculations..

$\nu \mathrm{B}_{\mathrm{c}}{ }^{+} \rightarrow \mathrm{J} / \Psi \mathrm{D}_{\mathrm{s}}{ }^{*+}$ decay \rightarrow pseudoscalar into two vector states, hence described in terms of three helicity amplitudes: A_{++}, A_{00} and $A \ldots$,
- the indices correspond to the helicities of the J / ψ and $D_{s}{ }^{*+}$ mesons
- A_{++}and $\mathrm{A} \ldots$ amplitudes are the $\mathrm{A}_{ \pm \pm}$component and correspond to the J / Ψ and $D_{s}{ }^{*+}$ transverse polarization.
- The fraction, $\Gamma_{ \pm \pm} / \Gamma$ is also measured.

Study of $\mathrm{B}_{\mathrm{c}}{ }^{+} \rightarrow \mathbf{J} / \Psi \mathrm{D}_{\mathrm{s}}{ }^{(*)}$ decays

$-D_{s}{ }^{+}$and $D_{s}{ }^{\star+}$ are reconstructed from their decays:
$-\mathrm{D}_{s}{ }^{+} \rightarrow \varphi\left(\mathrm{K}^{+} \mathrm{K}^{-}\right) \pi^{+}$
$-\mathrm{D}_{\mathrm{s}}{ }^{++} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{+} \pi^{0} / \mathrm{y}$ (soft, not reco)
${ }^{\circ}$ Use $\mathrm{B}_{\mathrm{c}}{ }^{+} \rightarrow \mathrm{J} / \Psi \pi^{+}$reference channel for BR measurement
\supset Fiducial range: $\mathrm{p}_{\mathrm{T}}\left(\mathrm{B}_{\mathrm{c}}{ }^{+}\right)>15 \mathrm{GeV}$, $\left|n\left(B_{c}{ }^{+}\right)\right|<2.0$

2D fit to extract the signal parameters $\mathrm{m}\left(\mathrm{J} / \psi \mathrm{D}_{\mathrm{s}}{ }^{+}\right)$and the J / ψ helicity angle

Both sensitive to polarisation of the final state particles J / ψ and $\mathrm{D}_{\mathrm{s}}{ }^{+}$in $\mathrm{B}_{\mathrm{c}}{ }^{+} \rightarrow \mathrm{J} / \psi \mathrm{D}_{\mathrm{s}}{ }^{\star+}$ decay.

Study of $\mathrm{B}_{\mathrm{c}}{ }^{+} \rightarrow \mathrm{J} / \Psi \mathrm{D}_{\mathrm{s}}{ }^{(*)}$ decays

- Total yields
$\mathrm{N}\left(\mathrm{B}_{\mathrm{c}}{ }^{+} \rightarrow \mathrm{J} / \psi \mathrm{D}_{\mathrm{s}}{ }^{+}\right)=241 \pm 28$ (stat)
) $\mathrm{N}\left(\mathrm{B}_{\mathrm{c}}{ }^{+} \rightarrow \mathrm{J} / \psi \mathrm{D}_{\mathrm{s}}{ }^{*+}\right)=424 \pm 46$ (stat)

Left: fit to inv. mass $\mathrm{m}\left(\mathrm{J} / \psi \mathrm{D}_{\mathrm{s}}{ }^{+}\right)$. Right: fit to $\left|\cos \theta^{\prime}\left(\mu^{+}\right)\right|$, where $\theta^{\prime}\left(\mu^{+}\right)$is the helicity angle between μ^{+}and $D_{s^{+}}$momenta, in J / ψ rest frame.

Study of $\mathrm{B}_{\mathrm{c}}{ }^{+} \rightarrow \mathrm{J} / \psi \mathrm{D}_{\mathrm{s}}{ }^{(*)}$ decays

Results on the ratios of branching fractions and on the fraction of transverse polarization of the $\mathrm{B}_{\mathrm{c}}{ }^{+} \rightarrow \mathrm{J} / \psi \mathrm{D}_{\mathrm{s}}{ }^{*}$ decay:

$$
\begin{aligned}
R_{D_{s}^{+} / \pi^{+}} & \equiv \mathcal{B}\left(B_{c}^{+} \rightarrow J / \psi D_{s}^{+}\right) / \mathcal{B}\left(B_{c}^{+} \rightarrow J / \psi \pi^{+}\right)=2.76 \pm 0.33 \pm 0.30 \pm 0.16 \\
R_{D_{s}^{*+} / \pi^{+}} & \equiv \mathcal{B}\left(B_{c}^{+} \rightarrow J / \psi D_{s}^{*+}\right) / \mathcal{B}\left(B_{c}^{+} \rightarrow J / \psi \pi^{+}\right)=5.33 \pm 0.61 \pm 0.67 \pm 0.32
\end{aligned}
$$

$$
R_{D_{s}^{*+} / D_{s}^{+}} \equiv \mathcal{B}\left(B_{c}^{+} \rightarrow J / \psi D_{s}^{*+}\right) / \mathcal{B}\left(B_{c}^{+} \rightarrow J / \psi D_{s}^{+}\right)=1.93 \pm 0.24 \pm 0.10
$$

$$
\Gamma_{ \pm \pm} / \Gamma\left(B_{c}^{+} \rightarrow J / \psi D_{s}^{*+}\right)=0.70 \pm 0.10 \pm 0.04
$$

Study of $\mathrm{B}_{\mathrm{c}}{ }^{+} \rightarrow \mathbf{J} / \Psi \mathrm{D}_{\mathrm{s}}{ }^{(*)}$ decays

New results consistent with earlier measurements
) $\mathrm{R}\left(\mathrm{D}_{\mathrm{s}}{ }^{*+} / \pi^{+}\right)$described well by the predictions

$\supset R\left(D_{s}^{+} / \pi^{+}\right)$and $R\left(D_{s}^{*+} / D_{s}^{+}\right)$predictions consistently deviate from data

- except QCD PM (PRD 61 (2000) 034012)
$\checkmark \Gamma_{ \pm \pm} / \Gamma$ agrees with a naive spin-counting estimate of $2 / 3$ and larger than predictions
- Hatched areas \rightarrow stat uncertainties; yellow bands \rightarrow total uncertainties.

Four-muon final states in ATLAS

arXiv:2203.01808
CERN-EP-2022-025

QCD PM: QCD relativistic potential model [arXiv:hep-ph/9909423, Phys. Rev. D 61, 034012 (2000)]
QCD SR: QCD sum rules [arXiv:hep-ph/0211021]
CCQM: covariant confined quark mode [arXiv:1708.09607 [hep-ph], Phys. Rev. D 96, 076017 (2017)]
BSW: Bauer-Stech-Wirbel relativistic quark model [arXiv:0810.4284 [hep-ph], Phys. Rev. D 79, 034004 (2009)]
LFQM: light-front quark mode [arXiv:1307.5925 [hep-ph], Phys. Rev. D 89, 017501 (2014)]
pQCD: perturbative QCD [arXiv:1407.5550 [hep-ph], Phys. Rev. D 90, 114030 (2014)]
RIQM: relativistic independent quark model [Phys. Rev. D 88, 094014 (2013) / arXiv:2202.01167 [hep-ph]]
FNCM: calculations in the QCD factorization approach [Int. J. Mod. Phys. A 33, 1850044 (2018), erratum 1892003]

Four-muon final states in ATLAS
arXiv:2203.01808
CERN-EP-2022-025

Parameter	Value
$m_{B_{c}^{+}}[\mathrm{MeV}]$	6274.8 ± 1.4
$\sigma_{B_{c}^{+}}[\mathrm{MeV}]$	11.5 ± 1.5
$r_{D_{s}^{*+} / D_{s}^{+}}$	1.76 ± 0.22
$f_{ \pm \pm}$	0.70 ± 0.10
$N_{B_{c}^{+} \rightarrow J / \psi D_{s}^{+}}^{\mathrm{DS} 1}$	193 ± 20
$N_{B_{c}^{+} \rightarrow J / \psi D_{s}^{+}}^{\mathrm{DS} 2}$	49 ± 10
$N_{B_{c}^{+} \rightarrow J / \psi D_{s}^{*+}}^{\mathrm{DS} 1}$	338 ± 32
$N_{B_{c}^{+} \rightarrow J / \psi D_{s}^{+}}^{\mathrm{DS} 1 \& 2}$	241 ± 28
$N_{B_{c}^{+} \rightarrow J / \psi D_{s}^{*+}}^{\mathrm{D} 1 \& 2}$	424 ± 46

Four-muon final states in ATLAS
arXiv:2108.11650
JHEP 12 (2021) 131

