Implications of A_4 modular symmetry on neutrino mass, mixing and leptogenesis with Linear seesaw

Rukmani Mohanta

University of Hyderabad, Hyderabad-500046, India

May 30, 2023

(Based on: Phys. Dark. Univ. 36, 101027 (2022), with M. Behera et al.)

Neutrino Mass Generation: Quick Review

- Neutrino oscillation experiments provided compelling evidences for $m_
 u
 eq 0$
- Massive neutrinos cannot be implemented in the SM through the Yukawa int, as there are no RH neutrinos.
- However, neutrino mass can arise at higher order: (dim-5 Weinberg operator)

$$\mathcal{O}_5 = \frac{Y_{ij}^{\nu}}{\Lambda} (\bar{L}_{L_i} \tilde{H}) (\tilde{H}^T \bar{L}_{L_i}^C) + h.c. \Longrightarrow (m_{\nu})_{ij} = \frac{Y_{ij}^{\nu}}{2\Lambda} v^2$$

- Shortcoming of Weinberg operator is that it violates L by two units, hence leading to Majorana mass term, but neutrinos could also be Dirac type
- One of the most viable theoretical frameworks used to yield neutrino masses is the see-saw mechanism.

Canonical Seesaw Mechanism

- ullet The SM Lagrangian is extended with the addition of heavy RH Majorana neutrino singlets N_{R_i}
- New Yukawa interaction

$$-\mathcal{L}_{Y} = Y_{ij}\overline{N_{R_{i}}}L_{j}H + \frac{1}{2}M_{R}\overline{N_{R_{i}}^{c}}N_{R_{j}} + \text{h.c.}$$

which gives the mass matrix in the $(\nu_L^c, N_R)^T$ basis

$$\mathbb{M} = \begin{pmatrix} 0 & m_D \\ m_D & M_R \end{pmatrix}$$

• Upon diagonalization yields the light neutrino mass matrix as

$$m_{\nu} = Y^{T} \frac{1}{M_{P}} Y v^{2}.$$

Modified Type-I Seesaw: Linear Seesaw

- The SM is extended by three RH (N_{R_i}) and three sterile (S_{Li}) singlet neutrinos
- The Yukawa interaction becomes

$$-\mathcal{L}_{linear} = Y \bar{N}_R \tilde{H} L + M_{LR} \bar{N}_R S_L + Y_L \bar{L}^C \tilde{H} S_L + h.c.$$

• The mass matrix for linear seesaw in the basis (ν_L, N_R, S_L^c)

$$M_{linear} = \begin{pmatrix} 0 & m_D & M_{LS} \\ m_D^T & 0 & M_{LR} \\ M_{LS}^T & M_{LR}^T & 0 \end{pmatrix}$$

 The mass formula for light neutrinos evolves from the above mass matrix for M_{LR} >> M_D, M_{LS}

$$m_{linear} = m_D M_{LR}^{-1} M_{LS}^T + \text{transpose}$$

Inverse Seesaw

- The SM is extended by three RH (N_{R_i}) and three sterile (S_{Li}) singlet neutrinos
- The Yukawa interaction becomes

$$-\mathcal{L}_{\textit{linear}} = Y \bar{N}_R L H + M_{LR} \bar{N}_R S_L + \mu \bar{S}^c_L S_L + h.c.$$

The mass matrix for linear seesaw is

$$M_{linear} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M_{LR} \\ M_{LS}^T & M_{LR}^T & \mu \end{pmatrix}$$

• The mass formula for light neutrinos for $\mu \ll m_D \ll M_{LR}$

$$\emph{m}_{\emph{inv}} = \emph{m}_{\emph{D}}^{\emph{T}} (\emph{M}_{\emph{LR}}^{\emph{T}})^{-1} \emph{\mu} \emph{M}_{\emph{LR}}^{-1} \emph{m}_{\emph{D}} + \emph{h.c} \sim rac{\emph{v}^2}{\emph{M}_{\emph{LR}}^2} \emph{\mu}$$

A₄ Discrete Flavor Symmetry

- Since indication of CP violation in lepton sector has been observed at T2K and NOvA, we are in the era to develop Flavor theory of leptons
- A_4 models are attractive, because A_4 is the minimal group which has a triplet as irreducible reps: (3,1,1',1'').
- It enables us to explain the flavour symmetry: $\mathbf{3}: (L_e, L_\mu, L_\tau), \quad \mathbf{1}: e_R, \quad \mathbf{1}': \mu_R, \quad \mathbf{1}'': \tau_R$
- ullet However, it yields a vanishing reactor mixing angle $heta_{13}$
- Inclusion of simple perturbation by introducing the flavon fields (SM singlet scalars, but transform non-trivially under flavor group) can generate non-zero θ_{13}
- The flavons play a crucial role in determining the flavour structure due to their particular vacuum alignment.

A₄ Modular Symmetry

• Modular group $\bar{\Gamma}$ is the linear fractional transformation, acting on τ , having the form:

$$\tau \longrightarrow \frac{a\tau + b}{c\tau + d}$$
, $\{a, b, c, d \text{ integers}, ad - bc = 1\}$

• The modular group can be generated by S and T:

$$S: \quad au o -rac{1}{ au}, \quad ext{(duality)} \qquad T: \quad au o au + 1, \quad ext{(discrete shift symmetry)}$$
 which satisfy the multiplication rule $S^2 = (ST)^3 = \mathbb{1}$

- The quotient group Γ_N is the inhomogeneous finite modular group : generators satisfy : $S^2 = (ST)^3 = T^N = 1$
- Modular group induces S_3 , A_4 , S_4 or A_5 as finite quotient group; e.g., Γ_1 is the trivial group, $\Gamma_2 \cong S_3$, $\Gamma_3 \cong A_4$, $\Gamma_4 \cong S_4$, and $\Gamma_5 \cong A_5$.
- In this framework, Yukawa couplings are written in terms of modular forms, which are non-trivial representation of flavor symmetry.

Model Framework

- ullet We consider modular A_4 symmetry to study the neutrino phenomenology
- Particle spectrum enriched by six extra heavy fermion fields (N_{R_i} and S_{L_i}) and one weighton (ρ)
- ullet The A_4 and $U(1)_X$ symmetries are considered to be broken at a scale much higher than the scale of EWSB

Fields	e _R ^c	μ_R^c	$ au_R^c$	L _L	N_R	S _L	$H_{u,d}$	ρ
SU(2) _L	1	1	1	2	1	1	2	1
$U(1)_Y$	1	1	1	$-\frac{1}{2}$	0	0	$\frac{1}{2}, -\frac{1}{2}$	0
$U(1)_X$	1	1	1	-1	1	-2	0	1
A_4	1	1'	1"	$1,1^{\prime\prime},1^{\prime}$	3	3	1	1
k _I	1	1	1	-1	-1	-1	0	0

Table: Particle content of the model and their charges under $SU(2)_L \times U(1)_Y \times A_4$ where k_I is the modular weight.

Model Framework

 The importance of A₄ modular symmetry is that less no. of flavon fields are required, as Yukawa couplings have the non-trivial group transformation

Yukawa coupling	A_4	kı
Υ	3	2

• The Yukawa coupling $\mathbf{Y}=(y_1,y_2,y_3)$ with weight 2, which transforms as a triplet of A_4 can be expressed in terms $\eta(\tau)$ and its derivative

$$\begin{array}{lcl} y_{1}(\tau) & = & \frac{i}{2\pi} \left(\frac{\eta'(\tau/3)}{\eta(\tau/3)} + \frac{\eta'((\tau+1)/3)}{\eta((\tau+1)/3)} + \frac{\eta'((\tau+2)/3)}{\eta((\tau+2)/3)} - \frac{27\eta'(3\tau)}{\eta(3\tau)} \right), \\ y_{2}(\tau) & = & \frac{-i}{\pi} \left(\frac{\eta'(\tau/3)}{\eta(\tau/3)} + \omega^{2} \frac{\eta'((\tau+1)/3)}{\eta((\tau+1)/3)} + \omega \frac{\eta'((\tau+2)/3)}{\eta((\tau+2)/3)} \right), \\ y_{3}(\tau) & = & \frac{-i}{\pi} \left(\frac{\eta'(\tau/3)}{\eta(\tau/3)} + \omega \frac{\eta'((\tau+1)/3)}{\eta((\tau+1)/3)} + \omega^{2} \frac{\eta'((\tau+2)/3)}{\eta((\tau+2)/3)} \right). \end{array}$$

Masses for the Charged leptons

- The LH doublets $(L_{e_L}, L_{\mu_L}, L_{\tau_L})$ transform as 1, 1'', 1' under A_4 symmetry and are assigned $U(1)_X$ charge of -1, $k_I = -1$
- ullet The RH charged leptons are 1,1',1'' under A_4 with $U(1)_X$ charge +1 and $k_I=-1$
- The relevant superpotential term for charged leptons is given by

$$\mathcal{W}_{M_\ell} = y_\ell^{ee} L_{e_L} H_d \ e_R^c + y_\ell^{\mu\mu} L_{\mu_L} H_d \ \mu_R^c + y_\ell^{\tau\tau} L_{\tau_L} H_d \ \tau_R^c \ .$$

• The charged lepton mass matrix takes the form:

$$M_{\ell} = \begin{pmatrix} y_{\ell}^{\text{ge}} v_d / \sqrt{2} & 0 & 0 \\ 0 & y_{\ell}^{\mu\mu} v_d / \sqrt{2} & 0 \\ 0 & 0 & y_{\ell}^{\tau\tau} v_d / \sqrt{2} \end{pmatrix} = \begin{pmatrix} m_e & 0 & 0 \\ 0 & m_{\mu} & 0 \\ 0 & 0 & m_{\tau} \end{pmatrix}.$$

Dirac mass term for Neutral fermions

- The RH N_{R_i} 's transform as triplets under A_4 modular group with $U(1)_X$ charge of 1 and modular weight -1.
- The Yukawa couplings to transform as triplets under the A₄ with modular weight 2, so one can write invariant Dirac superpotential as

$$\mathcal{W}_D = \alpha_D L_{e_L} H_u (YN_R)_1 + \beta_D L_{\mu_L} H_u (YN_R)_{1'} + \gamma_D L_{\tau_L} H_u (YN_R)_{1''}.$$

• The resulting Dirac neutrino mass matrix is found to be

$$M_D = \frac{v_u}{\sqrt{2}} \begin{bmatrix} \alpha_D & 0 & 0 \\ 0 & \beta_D & 0 \\ 0 & 0 & \gamma_D \end{bmatrix} \begin{bmatrix} y_1 & y_3 & y_2 \\ y_2 & y_1 & y_3 \\ y_3 & y_2 & y_1 \end{bmatrix}_{IR}.$$

Pseudo-Dirac mass term for Neutral fermions

• As we also have the extra sterile fermions S_{Li} , the pseudo-Dirac term is allowed, and the corresponding superpotential is given as

$$\mathcal{W}_{LS} = \left[\alpha_D^\prime L_{e_L} H_u \; (YS_L^c)_1 + \beta_D^\prime L_{\mu_L} H_u \; (YS_L^c)_{1^\prime} + \gamma_D^\prime L_{\tau_L} H_u \; (YS_L^c)_{1^\prime} \right] \frac{\rho^3}{\Lambda^3} \; , \label{eq:WLS}$$

 The flavor structure for the pseudo-Dirac neutrino mass matrix takes the form,

$$M_{LS} = \frac{v_u}{\sqrt{2}} \left(\frac{v_\rho}{\sqrt{2}\Lambda}\right)^3 \begin{bmatrix} \alpha_D' & 0 & 0 \\ 0 & \beta_D' & 0 \\ 0 & 0 & \gamma_D' \end{bmatrix} \begin{bmatrix} y_1 & y_3 & y_2 \\ y_2 & y_1 & y_3 \\ y_3 & y_2 & y_1 \end{bmatrix}_{IR}.$$

Mixing between heavy Neutral fermions N_R and S_L^c

 One can have the interactions leading to the mixing between these additional fermion field as

$$\mathcal{W}_{M_{RS}} = [\alpha_{NS} Y (S_L^c N_R)_{\text{sym}} + \beta_{NS} Y (S_L^c N_R)_{\text{Anti-sym}}] \rho$$

• Using $\langle \rho \rangle = v_{\rho}/\sqrt{2}$, the resulting mass matrix is

$$M_{RS} = \frac{v_{\rho}}{\sqrt{2}} \begin{pmatrix} \frac{\alpha_{NS}}{3} \begin{bmatrix} 2y_1 & -y_3 & -y_2 \\ -y_3 & 2y_2 & -y_1 \\ -y_2 & -y_1 & 2y_3 \end{bmatrix} + \beta_{NS} \begin{bmatrix} 0 & y_3 & -y_2 \\ -y_3 & 0 & y_1 \\ y_2 & -y_1 & 0 \end{bmatrix} \end{pmatrix}.$$

- $\alpha_{NS}/3 \neq \beta_{NS}$, otherwise M_{RS} becomes singular
- The masses for the heavy fermions in the basis $(N_R, S_L^c)^T$, can be written as

$$M_{Hf} = \begin{pmatrix} 0 & M_{RS} \\ M_{RS}^T & 0 \end{pmatrix}.$$

• Therefore, one can have six doubly degenerate mass eigenstates for the heavy superfields upon diagonalization.

Linear Seesaw mechanism for light neutrino Masses

• Within the present model invoked with A_4 modular symmetry, the complete 9×9 mass matrix in the flavor basis of $(\nu_L, N_R, S_L^c)^T$ is

$$\mathbb{M} = \begin{pmatrix} & \nu_L & N_R & S_L^c \\ \hline \nu_L & 0 & M_D & M_{LS} \\ N_R & M_D^T & 0 & M_{RS} \\ S_L^c & M_{LS}^T & M_{RS}^T & 0 \end{pmatrix}.$$

• The linear seesaw mass formula for light neutrinos is given with the assumption $M_{RS}\gg M_D, M_{LS}$ as,

$$m_{\nu} = M_D M_{RS}^{-1} M_{LS}^T + \text{transpose.}$$

• We numerically diagonalize the neutrino mass matrix through the relation $U^{\dagger}\mathcal{M}U=\mathrm{diag}(m_1^2,m_2^2,m_3^2)$, where $\mathcal{M}=m_{\nu}m_{\nu}^{\dagger}$ and U is an unitary matrix

$$\sin^2 \theta_{13} = |U_{13}|^2, \quad \sin^2 \theta_{12} = \frac{|U_{12}|^2}{1 - |U_{13}|^2}, \quad \sin^2 \theta_{23} = \frac{|U_{23}|^2}{1 - |U_{13}|^2}.$$

Numerical Analysis

 To fit to the current neutrino oscillation data, we chose the following ranges for the model parameters:

```
\begin{aligned} & \operatorname{Re}[\tau] \in [-0.5, 0.5], & \operatorname{Im}[\tau] \in [1, 2], & \{\alpha_D, \beta_D, \gamma_D\} \in 10^{-5} & [0.1, 1], \\ & \{\alpha_D', \beta_D', \gamma_D'\} \in 10^{-2} & [0.1, 1], & \alpha_{NS} \in [0, 0.5], & \beta_{NS} \in [0, 0.0001], \\ & \nu_\rho \in [10, 100] & \operatorname{TeV}, & \Lambda \in [100, 1000] & \operatorname{TeV}. \end{aligned}
```

- The input parameters are randomly scanned over to obtain the allowed parameter space satisfying the neutrino oscillation data and $\sum m_i < 0.12$ eV
- The typical range of τ is found to be:

$$-0.5 \lesssim Re[\tau] \lesssim 0.5$$
 and $1 \lesssim Im[\tau] \lesssim 2$ for NO.

• Yukawa couplings as function of τ are found to vary in the region:

$$0.99 \lesssim y_1(\tau) \lesssim 1$$
, $0.1 \lesssim y_2(\tau) \lesssim 0.8$ and $0.01 \lesssim y_3(\tau) \lesssim 0.3$.

Some Results

Baryon Asymmetry of the Universe

- Understanding the origin of neutrino mass and BAU are two major challenges in Particle Physics
- Leptogenesis plays a vital role in relating these two issues
- The BAU is parametrized in terms of the following quantity:

$$\eta \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} = (6.12 \pm 0.04) \times 10^{-10}$$

 An alternative way to express matter-antimatter asymmetry is to use the ratio

$$Y_B = \frac{n_B - n_{\bar{B}}}{s}$$

• The two formulations in terms of Y_B and η , at the present time, are easily related:

$$Y_B = \frac{n_\gamma^0}{s^0} \eta = 0.142 \eta = (8.77 \pm 0.24) \times 10^{-11}.$$

Resonant Leptogenesis

• For quasi-degenerate heavy Majorana neutrinos, i.e., $M_{N_i} - M_{N_j} \ll M_{N_i}$, the self energy (ε) contribution to the CP asymmetry becomes dominant

- Resonant leptogenesis occurs when $M_{N_i} M_{N_j} \sim \Gamma_{N_i}$, in this case CP asymmetry can become very large (even order 1)
- The ε -type CP asymmetry,

$$\varepsilon_{N_{i}} = \frac{\mathrm{Im}(h^{\nu\dagger}h^{\nu})_{ij}^{2}}{(h^{\nu\dagger}h^{\nu})_{ii}(h^{\nu\dagger}h^{\nu})_{jj}} \frac{(m_{N_{i}}^{2} - m_{N_{j}}^{2})m_{N_{i}}\Gamma_{N_{j}}^{(0)}}{(m_{N_{i}}^{2} - m_{N_{i}}^{2})^{2} + m_{N_{i}}^{2}\Gamma_{N_{i}}^{(0)}}^{2}$$

 \circ $\mathcal{O}(1)$ CP asymmetries are possible when,

$$m_{N_2} - m_{N_1} \sim \frac{1}{2} \Gamma^{(0)}_{N_{1,2}}, \qquad \frac{\operatorname{Im}(h^{\nu\dagger}h^{\nu})_{ij}^2}{(h^{\nu\dagger}h^{\nu})_{ii}(h^{\nu\dagger}h^{\nu})_{jj}} \sim 1$$

Resonant Leptogenesis in the present framework

 Six heavy states with doubly degenerate masses for each pair, obtained by diagonalization of the heavy fermion mass matrix

$$M_{Hf} = \begin{pmatrix} 0 & M_{RS} \\ M_{RS}^T & 0 \end{pmatrix}$$

 But one can introduce a higher dimensional mass term for the heavy RH neutrinos (N_R) as

$$L_M = -\alpha_R Y N_R^c N_R^c \frac{\rho^2}{\Lambda}$$

• Thus, one can construct the right-handed Majorana mass matrix as

$$M_R = rac{lpha_R v_{
ho}^2}{6\Lambda} egin{pmatrix} 2y_1 & -y_3 & -y_2 \\ -y_3 & 2y_2 & -y_1 \\ -y_2 & -y_1 & 2y_3 \end{pmatrix}.$$

• α_R is extremely small to retain the linear seesaw structure of the mass matrix i.e., $M_D, M_{LS} \gg M_R$

Leptogenesis cont.

Block diagonalization of the mass matrix yields:

$$M' = \begin{pmatrix} M_{RS} + \frac{M_R}{2} & -\frac{M_R}{2} \\ -\frac{M_R}{2} & -M_{RS} + \frac{M_R}{2} \end{pmatrix} \approx \begin{pmatrix} M_{RS} + \frac{M_R}{2} & 0 \\ 0 & -M_{RS} + \frac{M_R}{2} \end{pmatrix}.$$

ullet And the mass eigenstates (N^\pm) are related to N_R and S_L^c through

$$\begin{pmatrix} S_{Li}^c \\ N_{Ri} \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} N_i^+ \\ N_i^- \end{pmatrix}.$$

ullet The mass eigenvalues for the new states N^+ and N^- can be expressed as

$$M_{RS} \pm \frac{M_R}{2} = \left(\frac{\alpha_{NS} v_{\rho}}{\sqrt{2}} \pm \frac{\alpha_R v_{\rho}^2}{4\Lambda}\right) \begin{pmatrix} 2y_1 & -y_3 & -y_2 \\ -y_3 & 2y_2 & -y_1 \\ -y_2 & -y_1 & 2y_3 \end{pmatrix}.$$

 The lightest pair, assumed to be in the TeV scale, dominantly contribute to the CP asymmetry, i.e., the contribution from one loop self energy dominates over the vertex diagram.

One Flavor Approximation

- The evolution of lepton asymmetry can be deduced from the Boltzmann equations.
- Sakharov criteria demand the decay of parent fermion to be out of equilibrium to generate the lepton asymmetry.
- To impose this condition, one has to compare the Hubble rate with the decay rate

$$K = \frac{\Gamma_{N_1^-}}{H(T = M_1^-)} \ .$$

 The Boltzmann equations for the evolution of the number densities of RH fermions, in terms of yield parameter

$$\begin{split} \frac{dY_{N^-}}{dz} &= -\frac{z}{sH(M_1^-)} \left[\left(\frac{Y_{N^-}}{Y_{N^-}^{\text{eq}}} - 1 \right) \gamma_D + \left(\left(\frac{Y_{N^-}}{Y_{N^-}^{\text{eq}}} \right)^2 - 1 \right) \gamma_S \right], \\ \frac{dY_{B-L}}{dz} &= -\frac{z}{sH(M_1^-)} \left[\epsilon_{N^-} \left(\frac{Y_{N^-}}{Y_{N^-}^{\text{eq}}} - 1 \right) \gamma_D - \frac{Y_{B-L}}{Y_{\ell}^{\text{eq}}} \frac{\gamma_D}{2} \right] \end{split}$$

One Flavor Approximation

- Decay (Γ_D) in Purple solid line and inverse decay $\left(\Gamma_D \frac{\gamma_{N-}^{\rm eq}}{\gamma_{\ell}^{\rm eq}}\right)$ dotted purple line with the coupling strength $\sim 10^{-6}$.
- The scattering rate $\left(\frac{\gamma_S}{sY_{N^-}^{\rm eq}}\right)$ for $N_1^-N_1^- \to \rho\rho$ is projected for various set of values for coupling, consistent with neutrino oscillation study.

One Flavor Approximation

Figure: Evolution of Y_{B-L} (dashed) as a function of $z = M_1^-/T$.

 The obtained lepton asymmetry gets converted to the observed baryon asymmetry through sphaleron transition

$$Y_B = \left(\frac{8N_f + 4N_H}{22N_f + 13N_H}\right)Y_{B-L} \sim \mathcal{O}(10^{-10}).$$

Conclusion

- The modular A₄ flavor symmetry is quite successful in accommodating the observed neutrino oscillation data.
- The important aspect of modular symmetry is that the Yukawa couplings to transform non-trivially under modular A₄ group, which replaces the role of conventional flavon fields.
- Leptogenesis can be explained through the decay of lightest heavy fermion eigenstate
- It is found that the evolution of lepton asymmetry at TeV scale comes out to be of the order $\approx 10^{-10}$, which is sufficient to explain the present baryon asymmetry of the Universe.

Thank you for your attention!