Measurements of $b \rightarrow s \mu^{+} \mu^{-}$transitions at LHCb

Jake Reich
On behalf of the LHCb collaboration

30 May 2023
FPCP - Lyon, France

$b \rightarrow s \mu^{+} \mu^{-}$decays as a probe for New Physics

SM:

Possible NP contributions:

Leptoquarks (tree-level)
\rightarrow cannot occur at tree level in SM

- New particles:
\diamond enhance/suppress decay rates
\diamond modify angular distribution of final state particles
\diamond introduce new sources of CP violation

Heavy Quark Effective Field Theory (HQEFT) for

 $b \rightarrow s \mu^{+} \mu^{-}$decays- Search for BSM physics in a model independent way
- Integrate out interesting heavy physics (at m_{W}):

Full Theory

Effective Theory

Effective Hamiltonian

$$
\mathcal{H}_{e f f}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i} \mathcal{C}_{i}^{(\prime)} \mathcal{O}_{i}^{\left({ }^{\prime}\right)}
$$

- Wilson Coefficients (Effective Coupling)
- Local operators

b-hadron physics at LHCb

Optimised for b-hadron physics
Forward spectrometer (where most $b \bar{b}$ is produced)

- Vertex Locator
\diamond Separate b and c hadron production and decay vertices at high precision
- Ring Imaging Cherenkov (RICH) Detectors
\diamond PID of K, p, π
\diamond High K PID efficiency: $\sim 95 \%$
\diamond Low hadron mis-ID: $5 \%(\pi \rightarrow K)$
- Muon System
\diamond High μ PID efficiency: $\sim 97 \%$
\diamond Low hadron mis-ID: $1-3 \%(\pi \rightarrow \mu)$

Deviations from SM in $b \rightarrow s \mu^{+} \mu^{-}$decays at LHCb (Branching Fraction Measurements)

JHEP 04 (2017) 142

JHEP 06 (2014) 133
JHEP 06 (2014) 133

JHEP 09 (2018) 145

Phys. Lett. B 753 (2016) 424

- Measurements below SM by $1-3 \sigma$ levels
- Sizeable hadronic uncertainties ($\sim 20-30 \%$) in SM calculations \rightarrow need for improved theory predictions

Deviations from SM in $b \rightarrow s \mu^{+} \mu^{-}$decays at LHCb (Angular Analyses)

LHCb Coll. JHEP 09 (2015) 179

- Measurements in tension with SM predictions ($1-3 \sigma$ levels)
- Sizeable hadronic uncertainties ($\sim 20-30 \%$) in SM calculations \rightarrow need for improved theory predictions

Improved Theory Predictions at Low q^{2} (Branching Fraction Measurements)

JHEP 09 (2022) 133

Use of novel parameterisation of non-local QCD form factors

Use of form factors from $N_{f}=2+1+1$ lattice QCD

- Tensions between SM and experiment are still observed in most cases (agreement in $B \rightarrow K^{*} \mu \mu$)

Theory Explanations for the $B \rightarrow K^{*} \mu \mu$ anomaly

- Hadronic contributions could be severely underestimated (e.g. $B^{0} \rightarrow D^{*} D_{s} \rightarrow K^{* 0} \mu \mu$: Phys.Rev.Lett. 125(2020) 1,011802)
- Results can be explained by an apparent shift in C_{9} (charm loop)

Current Strategy

- Extraction of a limited set of observables in bins of $\boldsymbol{q}^{\mathbf{2}}$

Example: Angular analysis $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$
(Phys. Rev. Lett. 126, 161802 (2021), JHEP 1308 (2013) 131, JHEP 06 (2015) 084)

Explore Additional Strategies

Increase in data and theory developments allow:

- New approach to determine $B \rightarrow K^{*} \mu \mu$ amplitudes as continuous distributions in $\boldsymbol{q}^{\mathbf{2}}$
\diamond Able to exploit relations between observables that are inaccessible in binned fits to observables
\diamond Able to exploit q^{2} shape information via unbinned fits
\diamond Eliminates the need to correct theory predictions for q^{2} averaging effects

Increases sensitivity to NP!

- more work is still required to fully account for $B \rightarrow D^{*} D_{s} \rightarrow K^{(*)} \mu \mu$ rescattering amplitudes

Direct measurements of Wilson Coefficients

- Unbinned fits allow for direct extraction of Wilson Coefficients

An example: $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$

Short distance contributions
 (Sensitive to NP)

Long distance contributions
(Resonances and $D D$ rescattering contributions)

- Able to simultaneously extract C_{9} and C_{10}

Direct measurements of Wilson Coefficients (Form Factors)

An example: $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$

Short distance contributions (Sensitive to NP)

Long distance contributions (Resonances and DD rescattering contributions)

- q^{2} spectrum has theory uncertainties both local and non-local contributions:

Local:
\diamond Form-factors well described by:
Lattice QCD (Phys. Rev. D 107 (2023) 014510, Phys. Rev. D 93, 025026 (2016))
Light Cone Sum rules (JHEP 01 (2019) 150)
Non-Local:
\diamond Far from resonances: estimations are made using perturbative bounds (Nucl.Phys.B612:25-58,2001, JHEP 1009 (2010) 089)

$B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$decay rate as a function of q^{2}

Obtain a model of the decay rate as a function of q^{2} :

$$
\begin{aligned}
\frac{d \Gamma}{d q^{2}}=\frac{\alpha_{\text {em }}^{2} G_{F}^{2}\left|V_{t b} V_{t s}^{*}\right|^{2}}{128 \pi^{5}} & \kappa\left(q^{2}\right) \beta\left(q^{2}\right)\left\{\frac{2}{3} \kappa^{2}\left(q^{2}\right) \beta^{2}\left(q^{2}\right)\left|\mathcal{C}_{10}^{\mu} f_{+}\left(q^{2}\right)\right|^{2}+\frac{m_{\mu}^{2}\left(m_{B}^{2}-m_{K}^{2}\right)^{2}}{q^{2} m_{B}^{2}}\left|\mathcal{C}_{10}^{\mu} f_{0}\left(q^{2}\right)\right|^{2}\right. \\
& \left.+\kappa^{2}\left(q^{2}\right)\left[1-\frac{1}{3} \beta^{2}\left(q^{2}\right)\right]\left|\mathcal{C}_{9}^{\mu, \text { eff }} f_{+}\left(q^{2}\right)+2 \mathcal{C}_{7} \frac{m_{b}+m_{s}}{m_{B}+m_{K}} f_{T}\left(q^{2}\right)\right|^{2}\right\} \otimes \mathcal{R}\left(q^{2}\right)
\end{aligned}
$$

- Form Factors
- Wilson Coefficients

Structure of $C_{9}^{\mu \text {,eff }}$ in $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$decay rate as a function of q^{2}

e.g. Cornella et al., EPJC 80 (2020) 12. 1095

- Rely on once-subtracted dispersion relation that includes $D \bar{D} \rightarrow \mu \mu$ and $\tau \tau \rightarrow \mu \mu$ amplitudes
- $Y_{c \bar{c}}^{(0)}$ subtraction term to ensure convergence at large q^{2}

$$
B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}
$$

(Example of earlier isobar naive approach which ignores 2 particle states)

- Degeneracy of J / ψ and $\psi_{2 S}$ phases lead to 4 equivalent solutions
- Run 2 analysis (following the dispersion relation) currently in WG review

Extension to $B \rightarrow K^{*} \mu \mu$

$$
\left.\mathcal{A}_{\lambda}^{L, R}=N_{\lambda}\left\{\left(C_{9} \mp C_{10}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\frac{2 m_{b} M_{B}}{q^{2}}\left[C_{7} \mathcal{F}_{\lambda}^{T}\left(q^{2}\right)-16 \pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}\left(q^{2}\right)\right]\right\} \right\rvert\,
$$

- Form Factors
- Wilson Coefficients
- Non-local hadronic matrix elements

Two approaches pursued at LHCb (currently ongoing):

1. Expand $\mathcal{H}_{\lambda}\left(q^{2}\right)$ as a polynomial in $z\left(q^{2}\right)^{1}$ and fitting simultaneously (Chrzaszcz et al., JHEP 10 (2019) 236) with:

- External inputs coming from J / ψ and $\psi_{2 S}$ measurements
- Theory points in negative q^{2} region

2. Include all known contributions to C_{9} (combine approaches of Egede et al., EPJC 78 (2018) 6, 453 and Cornella et al., EPJC 80 (2020) 12, 1095) \rightarrow fit to full q^{2} spectrum
[^0]
Extension to $B \rightarrow K^{*} \mu \mu$

(based off EPJC (2018) 78: 453)

- Sensitivity studies with pseudo-experiments

Left: Fits to z-expansion of $\mathcal{H}_{\lambda}\left(q^{2}\right)$ with negative q^{2} theory inputs.
Right: 2D sensitivity scans for Wilson Coefficients.
(approach 1)

Angular observables as a function of q^{2} (approach 2)

Future Prospects

- Tensions between SM theory and experiment persist, independent of recent status of LFU violation
- Model of the strong phase with q^{2} allows for extra sensitivity of the imaginary parts of the Wilson Coefficients
\rightarrow work ongoing
- Continue with the robust approach of binned measurements
\rightarrow However, in order to take advantage of:
- the increase in datasets
- sensitivity to the tau loop (motivated by $R\left(D^{0(*)}\right)$) we employ the new unbinned approach

[^0]: ${ }^{1}$ Conformal mapping of q^{2} to the unit circle

