New CMS results on heavy flavour production and flavour anomalies

Matthew Jones – Purdue University

FPCP 2023 - Lyon https://indico.cern.ch/event/1166059

May 29-June 2, 2023

Outline

- Bottom quark hadronization fractions at hadron colliders
 - Measurements of hadronization fractions
 - Observations from LHC-b
 - Recent CMS measurements
 - $\circ J/\psi$ final states
 - Hadronic final states
- Flavour anomalies results from CMS
 - $B_s^0 \rightarrow \mu^+ \mu^-$ decay properties

Bottom Quark Hadronization Fractions

 Number of weakly decaying B hadrons reconstructed in an exclusive final state:

$$N_X = \sigma_b \cdot A \cdot f_q \cdot \mathcal{B}(B_q \to X) \cdot \epsilon_X$$

• Measured branching fractions (eg, for B_s^0): $\mathcal{B}(B_s^0 \to X) = \frac{N_X}{\sigma_b \cdot A \cdot f_s \cdot \epsilon_X}$

• Ratio of branching fractions (eg, $B \to \mu^+ \mu^-$): $\frac{\mathcal{B}(B_s^0 \to \mu^+ \mu^-)}{\mathcal{B}(B_d^0 \to \mu^+ \mu^-)} = \frac{N_{B_s \to \mu^+ \mu^-}}{N_{B_d \to \mu^+ \mu^-}} \cdot \frac{f_d}{f_s}$

 Need to know hadronization fractions for precision measurements at hadron colliders

Bottom Quark Hadronization Fractions

- Assumed to be independent of environment, $p_T(B)$... $f_u + f_d + f_s + f_{baryon} = 1$
- Measured at LEP ($\sqrt{s} = M_Z$) and the Tevatron

Quantity		Z decays	Tevatron
B^+ or B^0 fraction	$f_u = f_d$	0.407 ± 0.007	0.344 ± 0.021
B_s^0 fraction	f_s	0.101 ± 0.008	0.115 ± 0.013
b-baryon fraction	$f_{ m baryon}$	0.085 ± 0.011	0.198 ± 0.046
B_s^0/B^0 ratio	f_s/f_d	0.249 ± 0.023	0.334 ± 0.040
			Ŷ
		~	2 σ

- Environmental influence is potentially an important systematic effect
 - Could limit precision *B_s* branching fraction measurements

Environmental Influence on Hadronization Fractions

- LHC-b observed significant $p_T(\Lambda_b)$ dependence
 - Weaker but significant dependence on $p_T(B_s)$

M. Jones - FPCP 2023

Phys. Rev. D 100, 031102(R)

- pp collisions at $\sqrt{s} = 13$ TeV, 61.6 fb⁻¹ collected in 2018
- Di-muon + track trigger:
 - $p_T(\mu^{\pm}) > 4 \text{ GeV}, |\eta| < 2.5, m(\mu^+\mu^-)$ within 2.9 3.3 GeV
 - $p_T(track) > 1.2 \text{ GeV}, |\eta| < 2.4$
 - Displaced vertex requirement
- Offline reconstruction:
 - $B^+ \rightarrow J/\psi K^+$
 - $B^0 \rightarrow J/\psi K^{*0}, K^{*0} \rightarrow K^- \pi^+$ $B^0_s \rightarrow J/\psi \phi, \phi \rightarrow K^+ K^-$

Vertex fit quality cuts $12 < p_T(B) < 70 \text{ GeV}$ |y| < 2.4

• Determined from fit:

- Shape of combinatorial background
- Shape of $B^+ \to J/\psi K^+ X$ component

Constrained from Monte Carlo:

- Cabibbo suppressed decay fraction
- Swapped kaon/pion mass assignments

In principle,

$$\frac{f_s}{f_u} = \frac{N_{B_s}}{N_{B^+}} \cdot \frac{\epsilon_{B^+}}{\epsilon_{B_s}} \cdot \frac{\mathcal{B}(B^+ \to J/\psi K^+)}{\mathcal{B}(B_s \to J/\psi \phi)\mathcal{B}(\phi \to K^+ K^-)}$$

- Most branching fractions are measured precisely
- But $\mathcal{B}(B_s \to J/\psi\phi)$ is dominated by an LHC-b analysis that measures the p_T dependence of f_s/f_d

Phys. Rev. D 104, 032005 (August 2021)

CMS chooses to report measurements of

$$\begin{aligned} \mathcal{R}_{d} &= \frac{f_{d}}{f_{u}} \cdot \frac{\mathcal{B}(B^{0} \to J/\psi \, K^{*0}) \mathcal{B}(K^{*0} \to K^{-}\pi^{+})}{\mathcal{B}(B^{+} \to J/\psi \, K^{+})} \\ \mathcal{R}_{s} &= \frac{f_{s}}{f_{u}} \cdot \frac{\mathcal{B}(B_{s}^{0} \to J/\psi \, \phi) \mathcal{B}(\phi \to K^{+}K^{-})}{\mathcal{B}(B^{+} \to J/\psi \, K^{+})} \end{aligned}$$

- Matches LHC-b result at low p_T
- No significant dependence on rapidity

- Branching fractions for B⁰ and B⁺ are known precisely
- Compatible with unity $f_d/f_u = 1.015 \pm 0.051$

• $\mathcal{R}_{s} = 0.1102 \pm 0.0027$ for $p_{T} > 18 \text{ GeV}$

Alternative CMS Analysis of f_s/f_u

- The ratio f_s/f_u could be determined if branching fractions were known precisely
- Reliable theoretical prediction for the ratio $\frac{\mathcal{B}(B_s^0 \to D_s^+ \pi^-)}{\mathcal{B}(B^0 \to D^- h^+)} \sim \frac{\tau_{B_s}}{\tau_{B_d}} \left| \frac{V_{ud}}{V_{us}} \right|^2 \left(\frac{f_{\pi}}{f_K} \right)^2 \left[\frac{F_0^{(s)}(m_{\pi}^2)}{F_0^{(d)}(m_K^2)} \right]^2 \left| \frac{a_1(D_s \pi)}{a_1(D_d K)} \right|^2$

Phys. Rev. D 82, 034038 (2010)

- Motivates reconstructing these decays in pp collisions
- The challenge is collecting these using a suitable trigger

B Parking at CMS

Single muon trigger:

- Minimum p_T requirement
- Minimum signed impact parameter significance
- Thresholds and pre-scales adjusted based on instantaneous luminosity to level the trigger rate
- High level trigger rate < 5 kHz</p>
- 10 billion events saved to tape and reconstructed when computing resources become available
- Opposite side jets provide an unbiased sample of bdecays
 - 60-90% purity estimated by reconstructing $B \rightarrow D^{*+} \mu^- \bar{\nu}_{\mu}$
- Now possible to reconstruct fully hadronic B decays

Flavour Anomalies at CMS

- 2020 Combination of ATLAS, LHCb, and CMS measurements of $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$
 - Di-muon mass spectra from each experiment
 - Correlated uncertainty in f_d/f_s from LHCb

• Deviation from standard model is 2.1 σ (2.4 σ for just B_s^0)

- New measurement of $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$ and B_s^0 lifetime (arXiv:2212.10311 to be published in PLB)
 - 140 fb⁻¹ of pp collision data collected 2016-2018

$$\mathcal{B}(B_{S}^{0} \to \mu^{+}\mu^{-}) = \mathcal{B}(B^{+} \to J/\psi K^{+}) \frac{N_{B_{S}^{0} \to \mu^{+} + \mu^{-}}}{N_{B^{+} \to J/\psi K^{+}}} \frac{\epsilon_{B^{+} \to J/\psi K^{+}}}{\epsilon_{B_{S}^{0} \to \mu^{+} \mu^{-}}} \frac{f_{u}}{f_{s}}$$

• Normalization to $B_s^0 \rightarrow J/\psi \phi(1020)$ considered as a cross-check

Event selection:

- Di-muon trigger, $|\eta| < 1.5$, secondary vertex requirement, mass restrictions: 4.5-6.0 GeV and 2.9-3.3 GeV
- Offline selection: tight muon ID, matched to high-quality inner track with $p_T > 4$ GeV, $|\eta| < 1.4$
- Track requirements: $p_T > 1 \text{ GeV}$, $|\eta| < 2.5$

Backgrounds:

- Semi-leptonic decays of two heavy quarks
- Partially reconstructed semi-leptonic decays of B hadrons
- Charmless two-body hadronic B decays $(B^0 \rightarrow K^+ \pi^-, B_s^0 \rightarrow K^+ K^-)$

MVA discriminant:

- Displaced secondary vertex geometry, pointing to primary vertex
- Isolation requirements
- Efficiency depends on B⁰_s lifetime

- MVA performance measured using $B^+ \rightarrow J/\psi K^+$
 - Control sample selected using $p_T(K^+) < 1.5 \text{ GeV}$
 - Scale factor accounts for smaller $\mu^+\mu^-$ opening angle
 - Ratio of data/MC in $B^+ \rightarrow J/\psi K^+$ applied to $B_s^0 \rightarrow \mu^+ \mu^-$
 - Weight factors for MC derived from XGBOOST classifier

Un-binned maximum likelihood fit:

- B⁰_s and B⁰ signal: crystal ball functions
- Semi-leptonic decay background shape: simulations
- Peaking $B \rightarrow h^+h^-$ background: simulation and measured BF's
- Performed separately in 16 distinct categories (data taking period, MVA discriminant output, $|\eta|$ of forward muon)

M. Jones - FPCP 2023

May 8-10, 2023

External inputs:

- $\mathcal{B}(B^+ \to J/\psi K^+) = (1.020 \pm 0.019) \times 10^{-3}$
- $\mathcal{B}(J/\psi \to \mu^+\mu^-) = (5.961 \pm 0.033) \times 10^{-2}$
- $f_s/f_u = 0.231 \pm 0.008$ (from LHCb)

Results:

- Normalized using $B^+ \to J/\psi K^+$ $\mathcal{B}(B_S^0 \to \mu^+ \mu^-)$ = $[3.83^{+0.38}_{-0.36} (\text{stat})^{+0.19}_{-0.16} (\text{syst})^{+0.14}_{-0.13} (f_s/f_u)] \times 10^{-9}$ ■ Normalized using $B_S^0 \to J/\psi \phi(1020)$ $\mathcal{B}(B_S^0 \to \mu^+ \mu^-)$
- $= \left[4.02^{+0.40}_{-0.38} \text{ (stat)}^{+0.28}_{-0.23} \text{ (syst)}^{+0.18}_{-0.15} (\mathcal{B}) \right] \times 10^{-9}$
- $B^0 \rightarrow \mu^+ \mu^-$ branching fraction: $\mathcal{B}(B^0 \rightarrow \mu^+ \mu^-) < 1.9 \times 10^{-10}$ at 95% CL

 Lifetime extracted from simultaneous fit to mass, decay time, decay time uncertainty

Summary

- Bottom quark hadronization fractions
 - CMS observes p_T dependence in f_s/f_u in agreement with LHCb
 - No variation with rapidity observed
 - Measures f_d/f_u compatible with unity as is typically assumed
 - Reduced dependence on unknown branching fractions may be possible with fully hadronic B decays
- $B_s^0 \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^-$ branching fractions:
 - Consistent with standard model
- Lifetime of $B_{s,H}^0$ eigenstate: $\tau = 1.83^{+0.23}_{-0.20}(\text{stat})^{+0.04}_{-0.04}(\text{syst}) \text{ ps}$

Backup Material

MVA performance scale factors:

Method	$d_{\rm MVA} > 0.9$ selection			$d_{\rm MVA} > 0.99$ selection		
	2016	2017	2018	2016	2017	2018
Ratio	1.011 ± 0.013	0.939 ± 0.007	0.903 ± 0.008	1.058 ± 0.019	0.891 ± 0.008	0.885 ± 0.010
XGBOOST	0.991 ± 0.008	0.949 ± 0.003	0.917 ± 0.002	1.008 ± 0.011	0.905 ± 0.004	0.908 ± 0.002

$B_s^0 \rightarrow \mu^+ \mu^-$ Systematic Uncertainties

Branching fractions:

Effect	${ m B}_{ m s}^0 ightarrow \mu^+ \mu^-$	${ m B}^0 ightarrow \mu^+ \mu^-$	
$f_{\rm s}/f_{\rm u}$ ratio of the B meson production fractions	3.5%		
$d_{\rm MVA}$ correction	2-	3%	
Tracking efficiency (per kaon)	2.3	3%	
Trigger efficiency	2-	4%	
Fit bias	2.2%	4.5%	
Pileup	1	%	
Vertex quality requirement	1	%	
${ m B}^+ ightarrow { m J}/\psi { m K}^+$ shape uncertainty	1%		
$B^+ \rightarrow J/\psi K^+$ branching fraction	1	%	
_ifetimes:			

Effect	2016a	2016b	2017	2018
Lifetime fit bias	0.04	0.04	0.05	0.04
Decay time distribution mismodeling	0.10	0.06	0.02	0.02
Efficiency modeling	0.01			
Lifetime dependence	0.01			
Total	0.11	0.07	0.05	0.04

Acknowledgements

Support provided by DOE project award DE-SC0007884