

Recent Belle II results on radiative and electroweak penguin decays

21st conference on Flavor Physics and CP Violation - 30/05/2023 Jacopo Cerasoli[†] on behalf of the Belle II collaboration [†]Université de Strasbourg, CNRS, IPHC, UMR 7178, 67037 Strasbourg, France

Search for New Physics in EWP and radiative decays

- Flavor-changing neutral current $b \rightarrow s$ transitions forbidden at tree level in the Standard Model: $\mathcal{B}_{SM} \sim \mathcal{O}(10^{-7} 10^{-4})$ ٠
- **Probes for New Physics** at much higher scales than direct searches: ٠
 - $H_{eff}^{b \to s} = \frac{G_F}{\sqrt{2}} \sum_{\cdot} V_{ib} V_{is}^* C_i(\lambda) Q_i(\lambda)$ FCNC (high energy contributions) treated as point-like, encoded in Wilson coefficients
 - Long-distance physics (low energy contributions) described by effective operators
- New Physics can modify the Wilson coefficients or add new ones, thus affecting branching ratios and angular distributions •

- Today: recent results on radiative and electroweak penguins decays at Belle II ٠
 - 1) Fully inclusive $B \rightarrow X_s \gamma$

2) $B \rightarrow J/\psi (l^+l^-) K$

3) $B \to K^*(892) l^+l^-$

Belle II at SuperKEKB KEK Report 2010-1

- Multi-purpose detector @ SuperKEKB accelerator
- Focus on *B*, charm and τ physics
- Asymmetric $e^+ e^-$ collisions at center-of-mass energy of 10.58 GeV
 - $\cdot \sigma(e^+e^- \to \Upsilon(4S)) \sim 1 \text{ nb}$
 - $\cdot \ \mathcal{B}(\Upsilon(4S) \to B\bar{B}) \sim 100\%$

- **Collected** ~ **428** fb⁻¹ (362 fb⁻¹ at *Y*(4*S*) mass + 66 fb⁻¹ below)
 - Today's results obtained with 189 fb⁻¹
 - Will collect 50 ab⁻¹ at the end of operation
- Instantaneous luminosity world record: 4.7 x 10³⁴ cm⁻² s⁻¹ (June 2022)
 - Target instantaneous luminosity: 6 x 10³⁵ cm⁻² s⁻¹

The Belle II detector KEK Report 2010-1

- While good with charged, suited also for measurements with neutrals, missing energy and inclusive decays
- ~ 4π coverage + knowledge of initial 4-momentum \rightarrow Reconstruction of missing energy <u>Comput Softw Big Sci 3, 6 (2019)</u>
- High photon detection efficiency and good energy resolution (π^0 mass resolution ~ 5 MeV)
- Good and similar electrons and muons identification efficiency

Fully inclusive $B \rightarrow X_s \gamma$ Belle2-CONF-PH-2022-018

- Measurement of inclusive $B \rightarrow X_s \gamma$ branching ratio in bins of photon energy (E_{γ}^{B})
- Hadronic tagging used to reconstruct the partner *B* in the event

- · Hadronic tag B candidate reconstructed and combined with highest energy photon from the rest of the event
- : π^0 , $\eta \rightarrow \gamma \gamma$ and $e^+e^- \rightarrow qq$ background suppressed with MVA techniques
- Simultaneous fit of tag-side M_{bc} in bins of E_{γ}^{B} to extract number of B mesons in the dataset: $M_{bc} = \sqrt{(\sqrt{s}/2)^2 p_{B_{tag}}^*}^2$
- Resulting *B* yield includes $B \rightarrow X_{s+d} \gamma$ events and other correctly tagged *B* decays \rightarrow non-signal *B* subtracted using simulation

Y(4*S*)

B_{tag}

Xs

γ

 B_{sig}

Fully inclusive $B \rightarrow X_s \gamma$ Belle2-CONF-PH-2022-018

- Dominating systematic uncertainties coming from background modeling and fit assumptions:
 - Fit repeated by varying polynomial coefficient by their 1σ uncertainties, shift in signal yield assumed as uncertainty
 - · Background uncertainties due to limited size of the simulation propagated to the final result

• World average = $(3.49 \pm 0.19) \cdot 10^{-4}$ Prog. Theor. Exp. Phys. 2022, 083C01

Measurements of $B \rightarrow J/\psi$ $(l^+l^-) K_{arXiv:2207.11275}$

- Measurement of $B \to J/\psi$ (*l*⁺*l*) *K* branching fraction and isospin asymmetry, and $R_K(J/\psi)$
 - Four channels: $B^+ \rightarrow J/\psi$ (l^+l^-) K^+ and $B^0 \rightarrow J/\psi$ (l^+l^-) $K^{0}{}_{S}$; $l = e, \mu$
- Favored b \rightarrow c transition, control channel for suppressed b \rightarrow s R_K ratio

$$R_K(J/\psi) = \frac{\mathcal{B}(B \to J/\psi(\mu^+\mu^-)K)}{\mathcal{B}(B \to J/\psi(e^+e^-)K)}$$

- Selection and fit strategy:
 - K^{0}_{S} and J/ψ candidates formed with oppositely charged tracks
 - J/ψ and K combined to form B candidates with $M_{bc} \in [5.20, 5.29]$ and $\Delta E = E_B^* \sqrt{s}/2 \in [-0.1, 0.2]$
 - Fit to M_{bc} and ΔE : signal + background and $B^+ \rightarrow J/\psi \pi^+$ component for misidentified π (~90% K efficiency at ~5% π mis-ID)

7

Measurements of $B \rightarrow J/\psi$ $(l^+l^-) K_{arXiv:2207.11275}$

- Main systematic uncertainty coming from Y(4S) branching fraction to charged and neutral *B* pairs (2.6 %)
- Additional systematic uncertainty for K_{s}^{0} modes due to data-MC differences in K_{s}^{0} reconstruction efficiency (3 %)

 $\begin{aligned} \mathcal{B} \left(B^+ \to J/\psi(e^+e^-)K^+ \right) &= (6.00 \pm 0.10 \pm 0.19) \times 10^{-5} \\ \mathcal{B} \left(B^+ \to J/\psi(\mu^+\mu^-)K^+ \right) &= (6.06 \pm 0.09 \pm 0.19) \times 10^{-5} \\ \mathcal{B} \left(B^0 \to J/\psi(e^+e^-)K_S^0 \right) &= (2.67 \pm 0.08 \pm 0.12) \times 10^{-5} \\ \mathcal{B} \left(B^0 \to J/\psi(\mu^+\mu^-)K_S^0 \right) &= (2.78 \pm 0.08 \pm 0.12) \times 10^{-5} \\ A_I \left(B \to J/\psi(e^+e^-)K \right) &= -0.022 \pm 0.016 \pm 0.030 \\ A_I \left(B \to J/\psi(\mu^+\mu^-)K \right) &= -0.006 \pm 0.015 \pm 0.030 \\ R_{K^+} \left(J/\psi \right) &= 1.009 \pm 0.022 \pm 0.008 \\ R_{K^0} \left(J/\psi \right) &= 1.042 \pm 0.042 \pm 0.008 \end{aligned}$

• World averages:

 $\mathcal{B}(B^+ \to J/\psi K^+)_{\rm WA} = (10.20 \pm 0.19) \cdot 10^{-4}$ $\mathcal{B}(B^0 \to J/\psi K^0)_{\rm WA} = (8.91 \pm 0.21) \cdot 10^{-4}$ $\mathcal{B}(J/\psi \to e^+ e^-)_{\rm WA} = (5.971 \pm 0.032)\%$ $\mathcal{B}(J/\psi \to \mu^+ \mu^-)_{\rm WA} = (5.961 \pm 0.033)\%$ Prog. Theor. Exp. Phys. 2022, 083C01

• Similar efficiencies for electron and muon modes: uncertainty on R_K equally contributed by the two flavor modes

Branching fraction of $B \rightarrow K^* l^+ l^-$ Belle2-CONF-PH-2022-009

- Measurement of $B \rightarrow K^* l^+ l$ branching fraction $(l = e, \mu)$ ٠
 - $B^+ \to K^{*+}(892) \ l^+ l^- \text{ with } K^{*+} \to K^0_S \ \pi^+, \ K^+ \ \pi^0$
 - $B^0 \to K^{*0}(892) \ l^+l^-$ with $K^{*0} \to K^+ \pi^-$
- Selection and fit strategy: ٠
 - K_{S}^{0} and π^{0} candidates formed with pairs of oppositely charged tracks or photons
 - Veto di-lepton mass ranges corresponding to J/ψ and $\psi(2S)$ (and γ for electron channel only)
 - Remaining background suppressed with BDT
 - Fit to M_{bc} and ΔE , $B \to K^* J/\psi (l^+ l^-)$ used as control channel to fix signal PDF parameters

Branching fraction of $B \rightarrow K^* l^+ l^-$ Belle2-CONF-PH-2022-009

• Main systematic uncertainties from total number of *BB* (2.9 %) and data-MC differences in π^0 reconstruction efficiency (3.4 %)

$$\mathcal{B}(B \to K^* \mu^+ \mu^-) = (1.19 \pm 0.31^{+0.08}_{-0.07}) \cdot 10^{-6}$$
$$\mathcal{B}(B \to K^* e^+ e^-) = (1.42 \pm 0.48 \pm 0.09) \cdot 10^{-6}$$

Prog. Theor. Exp. Phys. 2022, 083C01

• World averages:

$$\mathcal{B}(B \to K^* \mu^+ \mu^-)_{\rm WA} = (1.06 \pm 0.09) \cdot 10^{-6}$$
$$\mathcal{B}(B \to K^* e^+ e^-)_{\rm WA} = (1.19 \pm 0.20) \cdot 10^{-6}$$

- Similar performances between electron and muons
- Results precision limited by sample size
 - First result towards determination of R_{K^*}

Conclusions

- Recent results in the EWP and radiative sector at Belle II with 189 fb⁻¹:
 - Branching ratio of inclusive $B \rightarrow X_S \gamma$ decays
 - Branching ratio and isospin asymmetry of $B \rightarrow J/\psi$ (l^+l^-) K, and $R_K(J/\psi)$ measurement
 - Branching ratio of $B \to K^*(892) l^+l^-$ decays

- Many more results shown during this conference (see e.g. <u>Gaetano</u>'s talk)
- Twice the dataset already available, data-taking will restart by early 2024
- Much more to come, stay tuned!