Is The Muon A Third Family Lepton?

Shahram Vatani
with Giacomo Cacciapaglia and Aldo Deandra arXiv:2212.08691

Quick Look On The SM

Quick Look On The SM

Gauge :

$S U(3)_{c} \times S U(2) \times U(1)_{Y}$

Quick Look On The SM

Gauge :

$S U(3)_{c} \times S U(2) \times U(1)_{Y}$
\downarrow
Fermions :
Up, Down, Electron, Neutrino
«Family »

Quick Look On The SM

Gauge :

$S U(3)_{c} \times S U(2) \times U(1)_{Y}$

Fermions :
Up, Down, Electron, Neutrino
«Family »

ElectroWeak Symmetry Breaking :
H

Quick Look On The SM

Gauge :

$S U(3)_{c} \times S U(2) \times U(1)_{Y}$

Fermions :
Up, Down, Electron, Neutrino «Family »

ElectroWeak Symmetry Breaking :
H
\downarrow
Fermi Theory + Mass
-

Quick Look On The SM

Gauge :

$S U(3)_{c} \times S U(2) \times U(1)_{Y}$

Fermions :
Up, Down, Electron, Neutrino «Family »

ElectroWeak Symmetry Breaking :
H

Fermi Theory + Mass

Construction based on Gauge Principle

Quick Look On The SM

Muon

Fermions :

Up, Down, Electron, Neutrino «Family »

Strange
Charm
Tau

Construction based on Gauge Principle

Quick Look On The SM

Fermions :
Up, Down, Electron, Neutrino «Family »

Construction based on Gauge Principle

Quick Look On The SM

Only aspect that does not derive from Gauge Principle

Fermions:
Up, Down, Electron, Neutrino «Family »
$\times 3$
$=$ Flavor

Construction based on Gauge Principle

SM Family Assignment

SM Family Assignment

New Family Assignment?

New Family Assignment?

- Relevant in BSM :

New Family Assignment?

- Relevant in BSM :

Pati-Salam Unification

New Family Assignment?

- Relevant in BSM :

Pati-Salam Unification
$\binom{$ Quark }{ Lepton }\Leftrightarrow New Physics

New Family Assignment?

- Relevant in BSM :

Pati-Salam Unification

(Quark)
\oplus
(Lepton)

New Family Assignment?

- Relevant in BSM :

Pati-Salam Unification

- A new mass structure :

New origin for Yukawa pattern

- 1) Loop Model for Masses
- 2) B Anomalies

New Family Assignment?

New Family Assignment?

- lst ~ MeV

New Family Assignment?

- lst ~ MeV
- 2nd ~ GeV

New Family Assignment?

- lst ~ MeV
- 2nd ~ GeV
- 3rd with specific pattern :

$$
\begin{aligned}
& X_{\mathrm{tb}}=\frac{m_{\mathrm{t}}}{m_{\mathrm{b}}}=41.31_{-0.21}^{+0.31} \\
& X_{\mathrm{b} \mu}=\frac{m_{\mathrm{b}}}{m_{\mu}}=39.56_{-0.19}^{+0.28}
\end{aligned}
$$

New Family Assignment?

- lst ~ MeV
- 2nd ~ GeV
- 3rd with specific pattern :

$$
\begin{aligned}
X_{\mathrm{tb}} & =\frac{m_{\mathrm{t}}}{m_{\mathrm{b}}}=41.31_{-0.21}^{+0.31} \\
X_{\mathrm{b} \mu} & =\frac{m_{\mathrm{b}}}{m_{\mu}}=39.56_{-0.19}^{+0.28} \\
\frac{X_{\mathrm{b} \mu}}{X_{\mathrm{tb}}} & =0.958_{-0.009}^{+0.014}
\end{aligned}
$$

New Family Assignment?

- Family Symmetry on $1^{\text {st }}$ and $2^{\text {nd }}$ Generations, broken by effective Yukawa ($10^{-2} \& 10^{-5}$)
- $3^{\text {rd }}$ generation has tree level yukawa coupling
- Only top-Yukawa is allow (rest by Loop / Froggatt-Nielsen)

Loop Generation

$$
\begin{aligned}
& S=(3,1,-1 / 3) \\
& \phi=(3,2,1 / 6)
\end{aligned}
$$

Loop Generation

$$
\begin{aligned}
& S=(3,1,-1 / 3) \\
& \phi=(3,2,1 / 6)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\text {Yuk }}= & y_{t} \bar{t}_{R} q_{L} H+\lambda_{S} S\left(c_{q q} \bar{q}_{L}^{c} q_{L}+c_{t b} \bar{b}_{R}^{c} t_{R}\right. \\
& \left.+c_{q l} \bar{q}_{L} l_{L}^{c}+c_{t \mu} \bar{t}_{R} \mu_{R}^{c}+c_{b \nu} \bar{b}_{R} \nu_{R}^{c}\right)+ \\
& \lambda_{\phi} \phi\left(c_{q \nu} \bar{q}_{L} \nu_{R}+c_{b l} \bar{b}_{R} l_{L}\right)+\text { h.c. }
\end{aligned}
$$

Loop Generation

$$
\begin{aligned}
& S=(3,1,-1 / 3) \\
& \phi=(3,2,1 / 6)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\text {Yuk }}= & y_{t} \bar{t}_{R} q_{L} H+\lambda_{S} S\left(c_{q q} \bar{q}_{L}^{c} q_{L}+c_{t b} \bar{b}_{R}^{c} t_{R}\right. \\
& \left.+c_{q l} \bar{q}_{L} l_{L}^{c}+c_{t \mu} \bar{t}_{R} \mu_{R}^{c}+c_{b \nu} \bar{b}_{R} \nu_{R}^{c}\right)+ \\
& \lambda_{\phi} \phi\left(c_{q \nu} \bar{q}_{L} \nu_{R}+c_{b l} \bar{b}_{R} l_{L}\right)+\text { h.c. }
\end{aligned}
$$

$$
m_{t}=y_{t}\langle H\rangle
$$

Loop Generation

$$
\begin{aligned}
& S=(3,1,-1 / 3) \\
& \phi=(3,2,1 / 6)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\text {Yuk }}= & y_{t} \bar{t}_{R} q_{L} H+\lambda_{S} S\left(c_{q q} \bar{q}_{L}^{c} q_{L}+c_{t b} \bar{b}_{R}^{c} t_{R}\right. \\
& \left.+c_{q l} \bar{q}_{L} l_{L}^{c}+c_{t \mu} \bar{t}_{R} \mu_{R}^{c}+c_{b \nu} \bar{b}_{R} \nu_{R}^{c}\right)+ \\
& \lambda_{\phi} \phi\left(c_{q \nu} \bar{q}_{L} \nu_{R}+c_{b l} \bar{b}_{R} l_{L}\right)+\text { h.c. }
\end{aligned}
$$

Loop Generation

$$
\begin{aligned}
& S=(3,1,-1 / 3) \\
& \phi=(3,2,1 / 6)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{Yuk}}= & y_{t} \bar{t}_{R} q_{L} H+\lambda_{S} S\left(c_{q q} \bar{q}_{L}^{c} q_{L}+c_{t b} \bar{b}_{R}^{c} t_{R}\right. \\
& \left.+c_{q l} \bar{q}_{L} l_{L}^{c}+c_{t \mu} \bar{t}_{R} \mu_{R}^{c}+c_{b \nu} \bar{b}_{R} \nu_{R}^{c}\right)+ \\
& \lambda_{\phi} \phi\left(c_{q \nu} \bar{q}_{L} \nu_{R}+c_{b l} \bar{b}_{R} l_{L}\right)+\text { h.c. }
\end{aligned}
$$

Loop Generation

$$
\begin{aligned}
& S=(3,1,-1 / 3) \\
& \phi=(3,2,1 / 6)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{Yuk}}= & y_{t} \bar{t}_{R} q_{L} H+\lambda_{S} S\left(c_{q q} \bar{q}_{L}^{c} q_{L}+c_{t b} \bar{b}_{R}^{c} t_{R}\right. \\
& \left.+c_{q l} \bar{q}_{L} l_{L}^{c}+c_{t \mu} \bar{t}_{R} \mu_{R}^{c}+c_{b \nu} \bar{b}_{R} \nu_{R}^{c}\right)+ \\
& \lambda_{\phi} \phi\left(c_{q \nu} \bar{q}_{L} \nu_{R}+c_{b l} \bar{b}_{R} l_{L}\right)+\text { h.c. }
\end{aligned}
$$

$$
\frac{m_{b}}{m_{t}}=\frac{\lambda_{S}{ }^{2} c_{q q} c_{t b}}{8 \pi^{2}} N_{c} \ln \frac{\Lambda}{M_{S}}
$$

Loop Generation

$$
\begin{aligned}
& S=(3,1,-1 / 3) \\
& \phi=(3,2,1 / 6)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\text {Yuk }}= & y_{t} \bar{t}_{R} q_{L} H+\lambda_{S} S\left(c_{q q} \bar{q}_{L}^{c} q_{L}+c_{t b} \bar{b}_{R}^{c} t_{R}\right. \\
& \left.+c_{q l} \bar{q}_{L} l_{L}^{c}+c_{t \mu} \bar{t}_{R} \mu_{R}^{c}+c_{b \nu} \bar{b}_{R} \nu_{R}^{c}\right)+ \\
& \lambda_{\phi} \phi\left(c_{q \nu} \bar{q}_{L} \nu_{R}+c_{b l} \bar{b}_{R} l_{L}\right)+\text { h.c. }
\end{aligned}
$$

Loop Generation

$$
\begin{aligned}
& S=(3,1,-1 / 3) \\
& \phi=(3,2,1 / 6)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\text {Yuk }}= & y_{t} \bar{t}_{R} q_{L} H+\lambda_{S} S\left(c_{q q} \bar{q}_{L}^{c} q_{L}+c_{t b} \bar{b}_{R}^{c} t_{R}\right. \\
& \left.+c_{q l} \bar{q}_{L} l_{L}^{c}+c_{t \mu} \bar{t}_{R} \mu_{R}^{c}+c_{b \nu} \bar{b}_{R} \nu_{R}^{c}\right)+ \\
& \lambda_{\phi} \phi\left(c_{q \nu} \bar{q}_{L} \nu_{R}+c_{b l} \bar{b}_{R} l_{L}\right)+\text { h.c. }
\end{aligned}
$$

Loop Generation

$$
\begin{aligned}
& S=(3,1,-1 / 3) \\
& \phi=(3,2,1 / 6)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\text {Yuk }}= & y_{t} \bar{t}_{R} q_{L} H+\lambda_{S} S\left(c_{q q} \bar{q}_{L}^{c} q_{L}+c_{t b} \bar{b}_{R}^{c} t_{R}\right. \\
& \left.+c_{q l} \bar{q}_{L} l_{L}^{c}+c_{t \mu} \bar{t}_{R} \mu_{R}^{c}+c_{b \nu} \bar{b}_{R} \nu_{R}^{c}\right)+ \\
& \lambda_{\phi} \phi\left(c_{q \nu} \bar{q}_{L} \nu_{R}+c_{b l} \bar{b}_{R} l_{L}\right)+\text { h.c. }
\end{aligned}
$$

$$
\frac{m_{\mu}}{m_{t}}=\frac{\lambda_{S}{ }^{2} c_{q L} c_{t \mu}}{8 \pi^{2}} N_{C} \ln \frac{\Lambda}{M_{S}}
$$

Loop Generation

$$
\begin{aligned}
& S=(3,1,-1 / 3) \\
& \phi=(3,2,1 / 6)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\text {Yuk }}= & y_{t} \bar{t}_{R} q_{L} H+\lambda_{S} S\left(c_{q q} \bar{q}_{L}^{c} q_{L}+c_{t b} \bar{b}_{R}^{c} t_{R}\right. \\
& \left.+c_{q l} \bar{q}_{L} l_{L}^{c}+c_{t \mu} \bar{t}_{R} \mu_{R}^{c}+c_{b \nu} \bar{b}_{R} \nu_{R}^{c}\right)+ \\
& \lambda_{\phi} \phi\left(c_{q \nu} \bar{q}_{L} \nu_{R}+c_{b l} \bar{b}_{R} l_{L}\right)+\text { h.c. }
\end{aligned}
$$

Loop Generation

$$
\mathcal{L}_{\text {Yuk }}=y_{t} \bar{t}_{R} q_{L} H+\lambda_{S} S\left(c_{q q} \bar{q}_{L}^{c} q_{L}+c_{t b} \bar{b}_{R}^{c} t_{R}\right.
$$

$$
\begin{aligned}
& S=(3,1,-1 / 3) \\
& \phi=(3,2,1 / 6)
\end{aligned}
$$

$$
\left.+c_{q l} \bar{q}_{L} l_{L}^{c}+c_{t \mu} \bar{t}_{R} \mu_{R}^{c}+c_{b \nu} \bar{b}_{R} \nu_{R}^{c}\right)+
$$

$$
\lambda_{\phi} \phi\left(c_{q \nu} \bar{q}_{L} \nu_{R}+c_{b l} \bar{b}_{R} l_{L}\right)+\text { h.c. }
$$

$$
c_{q l}(\Lambda)=0
$$

Loop Generation

$$
\mathcal{L}_{\text {Yuk }}=y_{t} \bar{t}_{R} q_{L} H+\lambda_{S} S\left(c_{q q} \bar{q}_{L}^{c} q_{L}+c_{t b} \bar{b}_{R}^{c} t_{R}\right.
$$

$$
\begin{aligned}
& S=(3,1,-1 / 3) \\
& \phi=(3,2,1 / 6)
\end{aligned}
$$

$$
\left.+c_{q l} \bar{q}_{L} l_{L}^{c}+c_{t \mu} \bar{t}_{R} \mu_{R}^{c}+c_{b \nu} \bar{b}_{R} \nu_{R}^{c}\right)+
$$

$$
\lambda_{\phi} \phi\left(c_{q \nu} \bar{q}_{L} \nu_{R}+c_{b l} \bar{b}_{R} l_{L}\right)+\text { h.c. }
$$

$$
c_{q l}(\Lambda)=0
$$

Loop Generation

$$
\begin{aligned}
\mathcal{L}_{\text {Yuk }}= & y_{t} \bar{t}_{R} q_{L} H+\lambda_{S} S\left(c_{q q} \bar{q}_{L}^{c} q_{L}+c_{t b} \bar{b}_{R}^{c} t_{R}\right. \\
& \left.+c_{q l} \bar{q}_{L} l_{L}^{c}+c_{t \mu} \bar{t}_{R} \mu_{R}^{c}+c_{b \nu} \bar{b}_{R} \nu_{R}^{c}\right)+ \\
& \lambda_{\phi} \phi\left(c_{q \nu} \bar{q}_{L} \nu_{R}+c_{b l} \bar{b}_{R} l_{L}\right)+\text { h.c. }
\end{aligned}
$$

$$
\begin{gathered}
c_{q l}(\Lambda)=0 \\
c_{q l}=\frac{\lambda_{\phi}^{2} c_{q \nu} c_{b l^{*}} c_{b \nu}}{8 \pi^{2}} N_{R} \ln \frac{\Lambda}{M_{\phi}}
\end{gathered}
$$

Loop Generation

$$
\begin{aligned}
& S=(3,1,-1 / 3) \\
& \phi=(3,2,1 / 6)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\text {Yuk }}= & y_{t} \bar{t}_{R} q_{L} H+\lambda_{S} S\left(c_{q q} \bar{q}_{L}^{c} q_{L}+c_{t b} \bar{b}_{R}^{c} t_{R}\right. \\
& \left.+c_{q l} \bar{q}_{L} l_{L}^{c}+c_{t \mu} \bar{t}_{R} \mu_{R}^{c}+c_{b \nu} \bar{b}_{R} \nu_{R}^{c}\right)+ \\
& \lambda_{\phi} \phi\left(c_{q \nu} \bar{q}_{L} \nu_{R}+c_{b l} \bar{b}_{R} l_{L}\right)+\text { h.c. }
\end{aligned}
$$

$$
c_{q l}=\frac{\lambda_{\phi}{ }^{2} c_{q \nu} c_{b l^{*}} c_{b \nu}}{8 \pi^{2}} N_{R} \ln \frac{\Lambda}{M_{\phi}}
$$

$$
\frac{m_{\mu}}{m_{b}} \cong \frac{m_{b}}{m_{t}}
$$

Loop Generation

$$
\begin{aligned}
& S=(3,1,-1 / 3) \\
& \phi=(3,2,1 / 6)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\text {Yuk }}= & y_{t} \bar{t}_{R} q_{L} H+\lambda_{S} S\left(c_{q q} \bar{q}_{L}^{c} q_{L}+c_{t b} \bar{b}_{R}^{c} t_{R}\right. \\
& \left.+c_{q l} \bar{q}_{L} l_{L}^{c}+c_{t \mu} \bar{t}_{R} \mu_{R}^{c}+c_{b \nu} \bar{b}_{R} \nu_{R}^{c}\right)+ \\
& \lambda_{\phi} \phi\left(c_{q \nu} \bar{q}_{L} \nu_{R}+c_{b l} \bar{b}_{R} l_{L}\right)+\text { h.c. }
\end{aligned}
$$

$$
m_{\nu}=\frac{m_{\nu, D}^{2}}{M_{R}}
$$

$$
M_{R}<M_{S / \phi}
$$

Loop Generation

$$
\begin{aligned}
& S=(3,1,-1 / 3) \\
& \phi=(3,2,1 / 6)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\text {Yuk }}= & y_{t} \bar{t}_{R} q_{L} H+\lambda_{S} S\left(c_{q q} \bar{q}_{L}^{c} q_{L}+c_{t b} \bar{b}_{R}^{c} t_{R}\right. \\
& \left.+c_{q l} \bar{q}_{L} l_{L}^{c}+c_{t \mu} \bar{t}_{R} \mu_{R}^{c}+c_{b \nu} \bar{b}_{R} \nu_{R}^{c}\right)+ \\
& \lambda_{\phi} \phi\left(c_{q \nu} \bar{q}_{L} \nu_{R}+c_{b l} \bar{b}_{R} l_{L}\right)+\text { h.c. }
\end{aligned}
$$

$$
m_{\nu}=\frac{m_{\nu, D^{2}}^{M_{R}} \quad m_{\nu} \cong 1 e V \quad, \quad N_{R}=3, \quad \lambda_{\phi / S}=0.3 \quad, \quad c_{i j}=1}{}
$$

$$
M_{R}<M_{S / \phi}
$$

Loop Generation

$$
\begin{aligned}
& S=(3,1,-1 / 3) \\
& \phi=(3,2,1 / 6)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\text {Yuk }}= & y_{t} \bar{t}_{R} q_{L} H+\lambda_{S} S\left(c_{q q} \bar{q}_{L}^{c} q_{L}+c_{t b} \bar{b}_{R}^{c} t_{R}\right. \\
& \left.+c_{q l} \bar{q}_{L} l_{L}^{c}+c_{t \mu} \bar{t}_{R} \mu_{R}^{c}+c_{b \nu} \bar{b}_{R} \nu_{R}^{c}\right)+ \\
& \lambda_{\phi} \phi\left(c_{q \nu} \bar{q}_{L} \nu_{R}+c_{b l} \bar{b}_{R} l_{L}\right)+\text { h.c. }
\end{aligned}
$$

$$
m_{\nu}=\frac{m_{\nu, D^{2}}}{M_{R}} m_{\nu} \cong 1 e V, \quad N_{R}=3, \quad \lambda_{\phi / S}=0.3, \quad c_{i j}=1
$$

$$
M_{R}<M_{S / \phi}
$$

$$
M_{R}=1.310^{7} G e V, \quad \frac{M_{S}}{M_{\phi}}=1150, \quad \frac{\Lambda}{M_{S}}=490
$$

New Physics (NP)

- NP coupling dominantly to the μ has been hinted (B meson decays, g-2)

New Physics (NP)

- NP coupling dominantly to the μ has been hinted (B meson decays, g-2)
- If NP couple dominantly to $3^{\text {rd }}$ generation, a sizeable mixing between μ and τ would be required to generate large effects involving $\mu \Rightarrow \mathrm{LFV}$

New Physics (NP)

- NP coupling dominantly to the μ has been hinted (B meson decays, g-2)
- If NP couple dominantly to $3^{\text {rd }}$ generation, a sizeable mixing between μ and τ would be required to generate large effects involving $\mu \Rightarrow \mathbf{L F V}$
- LFV is strongly constrained by experiments at levels well beyond the constraints on LFUV

New Physics (NP)

- NP coupling dominantly to the μ has been hinted (B meson decays, g-2)
- If NP couple dominantly to $3^{\text {rd }}$ generation, a sizeable mixing between μ and τ would be required to generate large effects involving $\mu \Rightarrow \mathbf{L F V}$
- LFV is strongly constrained by experiments at levels well beyond the constraints on LFUV
- If the μ is assigned to $3^{\text {rd }}$ generation, anomalies involving μ could be explained without LFV signatures

B Anomalies

- The LEFT highlight a specific set of 4-Fermion interactions

$$
\mathcal{O}_{9(10)}=\frac{\alpha}{4 \pi}\left[\bar{s} \gamma_{\mu} P_{L} b\right]\left[\bar{\mu} \gamma^{\mu}\left(\gamma_{5}\right) \mu\right]
$$

How to generate them?

- New Physics (LeptoQuark)

B Anomalies

3 SM-like unified families «à la Pati-Salam »

B Anomalies

3 SM-like unified families «à la Pati-Salam »

$$
\begin{array}{c|c|c}
\text { A } & \text { B } & \text { C } \\
\binom{\text { Quark }}{\text { Lepton }} & \left.\begin{array}{c}
\text { Quark } \\
\text { Lepton }
\end{array}\right) & \left.\begin{array}{c}
\text { Quark } \\
\text { Lepton }
\end{array}\right)
\end{array}
$$

B Anomalies

3 SM-like unified families «à la Pati-Salam »

$$
\begin{array}{c|c|cc}
\text { A } & \text { B } & \text { C } \\
\binom{\text { Quark }}{\text { Lepton }} & \left.\begin{array}{c}
\text { Quark } \\
\text { Lepton }
\end{array}\right) & \left.\begin{array}{c}
\text { Quark } \\
\text { Lepton }
\end{array}\right) & \Lambda_{U V}
\end{array}
$$

B Anomalies

3 SM-like unified families «à la Pati-Salam »

$\Lambda_{I R}$

B Anomalies

3 SM-like unified families «à la Pati-Salam »

B Anomalies

3 SM-like unified families «à la Pati-Salam »

B Anomalies

3 SM-like unified families «à la Pati-Salam »

B Anomalies

3 SM-like unified families «à la Pati-Salam »

B Anomalies

3 SM-like unified families « à la Pati-Salam »

B Anomalies

3 SM-like unified families «à la Pati-Salam »

B Anomalies

3 SM-like unified families « à la Pati-Salam »

B Anomalies

B Anomalies

B Anomalies

B Anomalies

3rd

B Anomalies

3rd

B Anomalies

$$
\begin{aligned}
\mathcal{O}_{9(10)} & =\frac{\alpha}{4 \pi}\left[\bar{s} \gamma_{\mu} P_{L} b\right]\left[\bar{\mu} \gamma^{\mu}\left(\gamma_{5}\right) \mu\right]=\epsilon_{3}^{3} \\
Y & \sim\left(\begin{array}{ccc}
\epsilon_{1} & \\
& \epsilon_{2} & \epsilon_{3} \\
& & 1
\end{array}\right)
\end{aligned}
$$

B Anomalies

$$
\begin{gathered}
\mathcal{O}_{9(10)}=\frac{\alpha}{4 \pi}\left[\bar{s} \gamma_{\mu} P_{L} b\right]\left[\bar{\mu} \gamma^{\mu}\left(\gamma_{5}\right) \mu\right]=\epsilon_{3}^{3} \\
Y \sim\left(\begin{array}{ccc}
\epsilon_{1} & \\
& \epsilon_{2} & \epsilon_{3} \\
& & 1
\end{array}\right) \Longrightarrow\left(\begin{array}{lll}
\epsilon_{1} & \\
& \epsilon_{2} & 1 \\
& & \epsilon_{3}
\end{array}\right)
\end{gathered}
$$

Results

Results

Results

Results

Thank You !

