



# Mixing and CPV in charm decays at LHCb

Serena Maccolini
on behalf of the LHCb collaboration

Flavor Physics and *CP* Violation (FPCP) **Lyon -** May 30, 2023

# Why charm is charming?

**CKM** suppression 
$$\sim V_{ub}V_{cb}\left(\frac{m_b}{m_W}\right)^2 \sim 10^{-6}$$



(SM asymmetries ~0.1% or below)

- CP violation (CPV) and mixing are suppressed in charm
  - Room for new physics enhancements
- Predictions are difficult due to low-energy strong interaction effects [Phys.Lett. B222 (1989) 501]



- Experimental measurements are crucial
- *LHCb* is one of the main players:

$$\sigma(pp \to c\overline{c} X)_{\sqrt{s} = 13 \text{ TeV}} \cong 2.4 \text{ mb}$$
[JHEP 03 (2016) 159]

- **2013**, first observation\* of **D**<sup>0</sup> mixing in  $D^0 \rightarrow K^+\pi^-$
- 2019, first observation of **direct CPV** in  $D^0 \rightarrow h^+h^-$

\*from a single measurement

#### Direct CP violation measurements

- Measurement of  $A_{CP}(D^o \rightarrow K K^+)$  [arXiv:2209.03179]
- Search for CPV in  $D_{(s)}$ +  $\rightarrow K$ -K+K+ [arXiv:2303.04062]
- Search for CPV in  $D^o \rightarrow \pi^- \pi^+ \pi^0$  [LHCB-PAPER-2023-005] in preparation



Corresponds to

$$A_{CP} = \frac{|A_f|^2 - |\bar{A}_{\bar{f}}|^2}{|A_f|^2 + |\bar{A}_{\bar{f}}|^2} \neq 0$$

strong phases weak phases

$$|A_f|^2 - |\bar{A}_{\bar{f}}|^2 = -2\sum_{i,j} |A_i||A_j|\sin(\delta_i - \delta_j)\sin(\phi_i - \phi_j)$$

Most promising channels are Cabibbo-suppressed (CS) decays



# How can you measure A<sub>CP</sub>?

- Choose a *flavour-specific* decay such as  $D^{*+} \rightarrow D^{0}\pi^{+}$  (prompt) to determine whether the meson is a  $D^0$  or  $\overline{D}^0$
- The *raw* asymmetry (A) in  $D^0 \rightarrow K^-K^+$  decays

$$A(D \to f) = \frac{N(D \to f) - N(\bar{D} \to \bar{f})}{N(D \to f) + N(\bar{D} \to \bar{f})}$$

includes both physics and detector effects:





#### **NUISANCE ASYMMETRIES:**

**CPV** parameter **Production** asymmetry **Detection** asymmetry of **D**\*+ Of  $\pi^+$ tag

$$\sigma(pp \to D^{*+}X) \neq \sigma(pp \to D^{*-}X)$$
  $\varepsilon(\pi^{+}) \neq \varepsilon(\pi^{-})$ 

$$\epsilon(\pi^+) \neq \epsilon(\pi^-)$$

# Strategy for $A_{CP}(D^0 \rightarrow K^-K^+)$

- Prompt  $D^0 \rightarrow K^-K^+$  collected during Run-2
- Two methods to cancel NUISANCE asymmetries:
  - **D**+ decays, same used in Run-1 analysis (**C**<sub>**D**+</sub>)
  - **D**<sub>s</sub>+ decays, *new!* (**C**<sub>Ds+</sub>)

particles with same color must have identical kinematic distributions!

• Correct raw asymmetry A using samples of Cabibbo-favoured (CF)  $D^0$ ,  $D^+$  and  $D_{(s)}^+$  decays (where CPV can be neglected):

$$C_{D+}: A_{CP}(D^{0} \to K^{-}K^{+}) = +A(D^{*+} \to (D^{0} \to K^{-}K^{+})\pi_{soft}^{+}) - A(D^{*+} \to (D^{0} \to K^{-}\pi^{+})\pi_{soft}^{+}) + A(D^{+} \to K^{-}\pi^{+}\pi^{+}) - \left[A(D^{+} \to \overline{K}^{0}\pi^{+}) - A(\overline{K}^{0})\right]$$

$$C_{Ds+}: A_{CP}(D^{0} \to K^{-}K^{+}) = +A(D^{*+} \to (D^{0} \to K^{-}K^{+}) \pi_{soft}^{+}) - A(D^{*+} \to (D^{0} \to K^{-}\pi^{+}) \pi_{soft}^{+}) + A(D_{s}^{+} \to \phi\pi^{+}) - \left[A(D_{s}^{+} \to \overline{K}^{0} K^{+}) - A(\overline{K}^{0})\right]$$

$$\Delta A_{CP} = A_{CP}(D^O \rightarrow K^-K^+) - A_{CP}(D^O \rightarrow \pi^-\pi^+)$$
  
=  $(-15.4 \pm 2.9) \times 10^{-4}$   
[Phys. Rev. Lett. 122, 211803]

# Results

• The combination of the two approaches yields:

$$\mathcal{A}_{CP}(K^-K^+) = [6.8 \pm 5.4 \,(\text{stat}) \pm 1.6 \,(\text{syst})] \times 10^{-4},$$

• Run1+Run2 measurements are combined and CP violation in  $D^0 \rightarrow \pi^-\pi^+$  is extracted considering the observed CPV in  $\Delta A_{CP}$ 





• First evidence for CPV in  $D^0 \rightarrow \pi^- \pi^+ !$  [3.8 $\sigma$ ] [arXiv:2209.03179]

# Search for local CP violation

 3-body decays have unique features for CPV searches: due to the *variation* of the **strong-phase** a different size of CPV can be found across the Dalitz plane



"local CPV estimator"

$$S_{CP}^{i} = \frac{N^{i}(D_{(s)}^{+}) - \alpha N^{i}(D_{(s)}^{-})}{\sqrt{\alpha(\delta_{N^{i}(D_{(s)}^{+})}^{2} + \delta_{N^{i}(D_{(s)}^{-})}^{2})}}$$

 $\alpha = \frac{\sum_{i} N^{i}(D_{(s)}^{+})}{\sum_{i} N^{i}(D_{(s)}^{-})}$ 

$$S_{CP}^{i} = \frac{N^{i}(D_{(s)}^{+}) - \alpha N^{i}(D_{(s)}^{-})}{\sqrt{\alpha(\delta_{N^{i}(D_{(s)}^{+})}^{+} + \delta_{N^{i}(D_{(s)}^{-})}^{2})}} \qquad \alpha = \frac{\sum_{i} N^{i}(D_{(s)}^{+})}{\sum_{i} N^{i}(D_{(s)}^{-})}$$

# Search for CPV in $D_{(s)}^+ \rightarrow K^-K^+K^+$

• Study *local* CPV in CS ( $D^+$ ) and doubly-CS ( $D_{s^+}$ ) decays using Run2 data, for the *first time* physically motivated binning scheme

• Strategy:  $\chi^2$  test of  $S_{CP}$ 

$$\chi^2(\mathcal{S}_{\mathcal{CP}}) = \sum (\mathcal{S}_{CP}^i)^2 \quad \begin{array}{c} \mathcal{S}_{\mathcal{CP}}^i \sim G(0,1) \\ \text{d.o.f.} = \text{\# bins -1} \end{array}$$

validated with CF  $D_{s^+} \rightarrow K^-K^+\pi^+$  decays

• Results:  $p\text{-value}(D_s^+) = 13.3\%$  $p\text{-value}(D^+) = 31.6\%$ 

No evidence of local CPV





[arXiv:2303.04062]

# Search for CPV in $D^0 \rightarrow \pi^-\pi^+\pi^0$

Underlying physics similar to the "CP-violating"
 D<sup>0</sup>→π-π+ but enriched with resonances



- Strategy: Energy test (unbinned)
  - use a test statistic 'T' sensitive both to *local* and *global* asymmetries
  - p-value by comparing the T value observed in data to a distribution of T values obtained from permutation samples (flavour randomly assigned)

    CPV with 1° strong-phase
- Run-1 analysis returned a p-value of 2.6%
- New results using prompt decays collected in Run 2





[PhysLettB 2014 11 043]

# **Energy test and results**

• T is used to compare average *distances*  $d_{ij}$  in phase space, based on a metric function,  $\psi_{ij}$ , of pairs of events ij belonging to two samples of opposite flavour

$$\psi_{ij} = e^{-d_{ij}^2/2\sigma^2}$$

$$d_{ij} = |(m_{12}^{2,j} - m_{12}^{2,i}, m_{23}^{2,j} - m_{23}^{2,i}, m_{13}^{2,j} - m_{13}^{2,i})|$$

$$T = \sum_{i,j>i}^{n} \frac{\psi_{ij}}{n(n-1)} + \sum_{i,j>i}^{\overline{n}} \frac{\psi_{ij}}{\overline{n}(\overline{n}-1)} \left(\sum_{i,j}^{n,\overline{n}} \frac{\psi_{ij}}{n\overline{n}},\right)$$

average distance of events with the **same** flavour (n or  $\overline{n}$ )

average distance of events with the **opposite** flavour



- Method applied to the **2.7M** collected signal candidates and validated with CF  $D^0 \rightarrow K^-\pi^+\pi^0$  decays
- Results: p-value = 62% no evidence for CPV in this decay mode

#### **Conclusions**

- Millions of "rare" (CS) decays have been reconstructed by LHCb in Run-2 allowing high-precision CPV searches
- A precision of  $6x10^{-4}$  has been obtained in  $A_{CP}(D^0 \rightarrow K^-K^+)$  combining  $D^+$  and  $D_{s^+}$  decays to cancel nuisance asymmetries
- From combination with  $\Delta A_{CP}$ , **first evidence** for *direct CP* violation in  $D^0 \rightarrow \pi^-\pi^+$  decays
- Statistics tests are powerful tools to localise CPV in 3-body decays
- No evidence for CPV found with statistic tests in  $D_{(s)}^+ \to K^- K^+ K^+$  and  $D^0 \to \pi^- \pi^+ \pi^0$
- Run-3 data-taking has started, early results will come soon



# $\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$

# Mixing of neutral mesons

 $|\langle P^0(0)|\bar{P}^0(t)\rangle|^2 \propto e^{-\Gamma t}[\cosh(y\Gamma t) - \cos(x\Gamma t)]$ 

Serena Maccolini

Mass eigenstates are not flavour eigenstates:

$$|D_{1,2}\rangle = p |D^0\rangle \pm q |\bar{D}^0\rangle$$

• This causes  $D^0 \leftrightarrow \bar{D}^0$  transitions described by





**Charm: CPV and mixing** 

30 May 2023

## **CP** violation

• CPV in the **decay** occurs if  $|A_f|^2 \neq |\bar{A}_{\bar{f}}|^2$ 





• CPV in **mixing** occurs if  $|q/p| \neq 1$ 

15

• Indirect CPV in **interference** between *mixing* and *decay* occurs if  $\phi_f \equiv arg(q\bar{A}_{\bar{f}}/pA_f) \neq 0$ 



### **Conclusions**

#### • Run 1:

- observation of Do mixing

#### Run 2:

- observation of x > 0
- observation of CP violation

#### • Run 3: ?

| Sample $(\mathcal{L})$          | Tag    | $\sigma(\Delta A_{CP})$ | $\sigma(A_{C\!P}(hh))$ |
|---------------------------------|--------|-------------------------|------------------------|
|                                 |        | [%]                     | [%]                    |
| Run $1-2 (9 \text{ fb}^{-1})$   | Prompt | 0.03                    | 0.07                   |
| Run 1–3 $(23 \text{ fb}^{-1})$  | Prompt | 0.013                   | (0.03)                 |
| Run 1–4 (50 fb <sup>-1</sup> )  | Prompt | 0.007                   | 0.015                  |
| Run 1–5 (300 fb <sup>-1</sup> ) | Prompt | 0.003                   | 0.007                  |

| Sample (lumi $\mathcal{L}$ )    | Tag                 | Yield | $\sigma(x)$ | $\sigma(y)$          | $\sigma( q/p )$ | $\sigma(\phi)$ |
|---------------------------------|---------------------|-------|-------------|----------------------|-----------------|----------------|
| Run 1–2 (9 fb <sup>-1</sup> )   | SL                  | 10M   | 0.07%       | 0.05%                | 0.07            | $4.6^{\circ}$  |
|                                 | Prompt              | δM    | 0.05%       | 0.05%                | 0.04            | $1.8^{\circ}$  |
| Run 1–3 (23 fb $^{-1}$ )        | $\operatorname{SL}$ | 33M   | 0.000%      | 0.030%               | 0.036           | $2.5^{\circ}$  |
|                                 | Promp               | 200M  | 0.020%      | 0.020%               | 0.017           | $0.77^{\circ}$ |
| Run 1–4 (50 fb $^{-1}$ )        | $\operatorname{SL}$ | (ONI  | 33104       | - 0.100 <sup>7</sup> | 0.021           | 1.7            |
|                                 | Prompt              | 520M  | 0.012%      | 0.013%               | 0.011           | $0.48^{\circ}$ |
| Run 1–5 (300 fb <sup>-1</sup> ) | $\operatorname{SL}$ | 490M  | 0.009%      | 0.008%               | 0.009           | $0.69^{\circ}$ |
|                                 | Prompt              | 3500M | 0.005%      | 0.005%               | 0.004           | $0.18^{\circ}$ |

Era of increasing precisions in charm measurements.

are we ready?



lots of work to keep under control sources of systematic uncertainties...