Recent Belle II results on hadronic B decays

Sebastiano Raiz (University and INFN Trieste)

Hadronic B decays

$\boldsymbol{b} \rightarrow \mathbf{c}, \mathbf{u}$ trees and $\boldsymbol{b} \rightarrow \boldsymbol{d}, \mathbf{s}$ penguins.

Probe SM dynamics in all three CKM angles

- γ with theoretically clean modes $B \rightarrow D K$,
- α with $B \rightarrow \rho \rho, B \rightarrow \rho \pi, B \rightarrow \pi \pi$ isospin analyses,
- β with $B^{0} \rightarrow J / \psi K_{S^{\prime}}^{0} B^{0} \rightarrow \eta^{\prime} K_{S^{\prime}}^{0} B^{0} \rightarrow \phi K_{S}^{0}$

and by testing isospin sum rules, chiral structure, ...

Today:

γ determination using two different methods, $B \rightarrow \rho \rho$ and $B \rightarrow \pi \pi$ towards α,
$K \pi$ isospin sum rule, observation of new $B \rightarrow D^{(*)} K^{-} K_{S}^{0}$ decays.

The Belle II detector

- SuperKEKB: 7-on-4 GeV $e^{-} e^{+}$ collider at 10.58 GeV ;
- Aim at $700 B \bar{B}$ pairs/second in low-bkg environment;
- $424 \mathrm{fb}^{-1}$ (400 $\times 10^{6} B \bar{B}$ pairs) of data collected;
- Record peak luminosity: $4.7 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Unique reach on final states with multiple neutrinos and $\pi^{0} /$ photons.

Analysis workflow

$\sim 1 / 5$ of hadronic events from $e^{+} e^{-}$are $B \bar{B}$.
Typical B hadronic event: 10 tracks/clusters - easy to trigger on unbiasing variables (e.g. number of tracks) isotropically distributed in space.

Main backgrounds: $e^{+} e^{-} \rightarrow q \bar{q}$ (collimated jets, very different event shape), other misidentified B events.

Reconstruction

$q \bar{q}$ events $B \bar{B}$ events

- combine final state particles (K, π, \ldots) in kinematic fits to form the B decay

Selection

- optimize event-shape multivariate classifier (CS) and particle ID criteria

Fit

- extract models from simulation (calibrate on data), fit in to data and evaluate physics quantities

Systematic uncertainties

- with control modes and simulations

Separate signal from $q \bar{q}$ and misidentified B 's.

Separate B-events from $q \bar{q}$.

Measurement of γ

γ from $B \rightarrow D K$ decays

γ : phase between $b \rightarrow u$ and $b \rightarrow c$ transitions. Accessible via tree-level decays: no direct new physics \rightarrow strong constraints on SM.

Current WA dominated by LHCb:

$$
\gamma\left[^{\circ}\right]=65.9_{-3.5}^{+3.3} \quad \underline{\text { HFLAV }}
$$

Various approaches - different D final states:
Interference between two decays to same final state gives access to phase:

- Self-congjugate final states $D \rightarrow K_{S}^{0} h^{+} h^{-}$ Belle + Belle II $\gamma=(78.4 \pm 11.4 \pm 0.5 \pm 1.0)^{\circ}$ https://link.springer.com/article/10.1007/JHEP02(2022)063
- Cabibbo-suppressed decays $D \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$
-CP eigenstates $D \rightarrow K^{+} K^{-}, K_{S}^{0} \pi^{0}$

γ using Cabibbo-suppressed decays

$$
B^{ \pm} \rightarrow D K^{ \pm}, D \pi^{ \pm} \quad\left(D \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}\right)
$$

SS: same-sign, OS: opposite sign.
2D fit ($\Delta E, C S$) of 8 categories:
$(+,-) \times(S S, O S) \times(D K, D \pi)$ in full D phase space and in interference-enhanced $D \rightarrow K^{*} K$ region.

Combination of \mathscr{R} and \mathscr{A} constraints γ.

$$
\begin{aligned}
& \mathscr{A}_{S S}^{D K}=-0.089 \pm 0.091 \pm 0.011 \\
& \mathscr{A}_{O S}^{D K}=+0.109 \pm 0.133 \pm 0.013 \\
& \mathscr{A}_{S S}^{D \pi}=+0.018 \pm 0.026 \pm 0.009 \\
& \mathscr{A}_{O S}^{D \pi}=-0.028 \pm 0.031 \pm 0.009 \\
& \mathscr{R}_{S S}^{D K / D \pi}=0.122 \pm 0.012 \pm 0.004 \\
& \mathscr{R}_{O S}^{D K / D \pi}=0.093 \pm 0.013 \pm 0.003 \\
& \mathscr{R}_{S S / O S}^{D \pi}=1.428 \pm 0.057 \pm 0.002
\end{aligned}
$$

Results consistent with LHCb, but not competitive.
Contribute to constrain γ in combination with other measurements.

γ using $C P$ eigenstates

$B^{ \pm} \rightarrow D_{C P^{ \pm}}, D \rightarrow K^{+} K^{-}(C P \mathrm{eve}$
2D fit $\left(\Delta E, C S^{\prime}\right)$ of 6 categories:
$(D K, D \pi) \times\left(K^{+} K^{-}, K_{S}^{0} \pi^{0}, K^{+} \pi^{-}\right)$

Only accessible to Belle/Belle II

Combination of \mathscr{R} and \mathscr{A} gives access to γ.

$$
\begin{aligned}
& \mathscr{R}_{C P^{+}}=1.164 \pm 0.081 \pm 0.036 \\
& \mathscr{R}_{C P^{-}}=1.151 \pm 0.074 \pm 0.019 \\
& \mathscr{A}_{C P^{+}}=+0.125 \pm 0.058 \pm 0.014 \\
& \mathscr{A}_{C P^{-}}=-0.167 \pm 0.057 \pm 0.006
\end{aligned}
$$

Evidence for difference in $\mathscr{A}_{C P^{ \pm}}$.

Results consistent with BaBar and LHCb, but not competitive. Contribute to constrain γ in combination with other measurements.

Towards CKM angle α

Towards CKM angle α

$\alpha=\arg \left[-V_{t d} V_{t b}^{*} / V_{u d} V_{u b}^{*}\right]$ less precisely known angle, may limit the global testing power of CKM fits.

$$
\alpha\left[^{\circ}\right]=85.2_{-4.3}^{+4.8} \begin{array}{r}
\text { HFLAV }
\end{array}
$$

Determined using $B \rightarrow \rho \rho$ and $B \rightarrow \pi \pi$ isospin analyses: combine information from $B F$ and $A_{C P}$ to reduce impact of hadronic uncertainties - non-perturbative QCD.

Unique Belle II capability to study in consistent way all $B \rightarrow \rho \rho$ and $B \rightarrow \pi \pi$ channels.
$B \rightarrow \rho \rho$ measurements require angular analysis:

- Winter $2022 B^{+} \rightarrow \rho^{+} \rho^{0}$ result: arxiv.org/abs/2206.12362;
- result for $B^{0} \rightarrow \rho^{+} \rho^{-}$.

$$
\begin{aligned}
& \mathscr{B}=(26.7 \pm 2.8 \pm 2.8) \times 10^{-6} \\
& f_{L}=0.956 \pm 0.035 \pm 0.033
\end{aligned}
$$

$B \rightarrow \pi \pi$ results

First $B^{0} \rightarrow \pi^{0} \pi^{0}$ measurement at Belle II: - rare, small $B F\left(10^{-6}\right)$, - only photons in the final state dominated by signal-like background, - large theoretical uncertainties.

$$
\begin{aligned}
& \mathscr{B}\left(\pi^{+} \pi^{-}\right)=(5.83 \pm 0.22 \pm 0.17) \times 10^{-6} \\
& \mathscr{B}\left(\pi^{+} \pi^{0}\right)=(5.10 \pm 0.29 \pm 0.32) \times 10^{-6} \\
& \mathscr{A}\left(\pi^{+} \pi^{0}\right)=-0.081 \pm 0.54 \pm 0.008
\end{aligned}
$$

Achieved Belle BF precision using only $1 / 3$ of data.

$$
\begin{aligned}
& \mathscr{B}\left(\pi^{0} \pi^{0}\right)=(1.38 \pm 0.27 \pm 0.22) \times 10^{-6} \\
& \mathscr{A}\left(\pi^{0} \pi^{0}\right)=0.14 \pm 0.46 \pm 0.07
\end{aligned}
$$

Preliminary Belle II results on par with best performance from Belle/Babar.

Isospin sum rule

Isospin sum rule

Stringent null test of SM, sensitive to presence of non-SM dynamics. Inconsistency between current measurements: "K π puzzle" (anomalously enhanced amplitudes or new physics):

$$
I_{K \pi}=\mathscr{A}_{\mathrm{CP}}^{K^{+} \pi^{-}}+\mathscr{A}_{\mathrm{CP}}^{K^{0} \pi^{+}} \frac{\mathscr{B}\left(K^{0} \pi^{+}\right)}{\mathscr{B}\left(K^{+} \pi^{-}\right)} \frac{\tau_{B^{0}}}{\tau_{B^{+}}}-2 \mathscr{A}_{\mathrm{CP}}^{K^{+} \pi^{0}} \frac{\mathscr{B}\left(K^{+} \pi^{0}\right)}{\mathscr{B}\left(K^{+} \pi^{-}\right)} \frac{\tau_{B^{0}}}{\tau_{B^{+}}}-2 \mathscr{A}_{\mathrm{CP}}^{K^{0} \pi^{0}} \frac{\mathscr{B}\left(K^{0} \pi^{0}\right)}{\mathscr{B}\left(K^{+} \pi^{-}\right)} \approx 0
$$

Gronau (Phys. Lett. B 627
(2005) no.1, 82-88)

Belle II: measure all final states, with unique access to $B^{0} \rightarrow K^{0} \pi^{0}$ (major limitation in $I_{K \pi}$).

Similar strategy for all the modes:

- common selection for final-state particles,
- continuum suppression,
- 2D fit ($\Delta E, C S$) for branching fractions and time-integrated $\mathscr{A}_{C P}$.

Isospin sum rule results

Isospin sum rule results

$$
\begin{gathered}
B^{0} \rightarrow K^{+} \pi^{-} \\
\mathscr{B}\left(K^{+} \pi^{-}\right)=(20.67 \pm 0.37 \pm 0.62) \times 10^{-6} \\
\mathscr{A}_{C P}\left(K^{+} \pi^{-}\right)=-0.072 \pm 0.019 \pm 0.007 \\
B^{+} \rightarrow K_{S}^{0} \pi^{+} \\
\mathscr{B}\left(K_{S}^{0} \pi^{+}\right)=(24.40 \pm 0.71 \pm 0.86) \times 10^{-6} \\
\mathscr{A}_{C P}\left(K_{S}^{0} \pi^{+}\right)=+0.046 \pm 0.029 \pm 0.007
\end{gathered}
$$

$$
B^{+} \rightarrow K^{+} \pi^{0}
$$

$$
\begin{aligned}
& \mathscr{B}\left(K^{+} \pi^{0}\right)=(13.93 \pm 0.38 \pm 0.84) \times 10^{-6} \\
& \mathscr{A}_{C P}\left(K^{+} \pi^{0}\right)=+0.013 \pm 0.027 \pm 0.005
\end{aligned}
$$

$$
B^{0} \rightarrow K_{S}^{0} \pi^{0}
$$

$$
\begin{aligned}
& \mathscr{B}\left(K_{S}^{0} \pi^{0}\right)=(10.16 \pm 0.65 \pm 0.67) \times 10^{-6} \\
& \mathscr{A}_{C P}\left(K_{S}^{0} \pi^{0}\right)=-0.006 \pm 0.15 \pm 0.05
\end{aligned}
$$

\mathscr{B} and $\mathscr{A}_{C P}$ agree and are competitive with world's best, \mathscr{B} systematically limited.
$B^{0} \rightarrow K_{S}^{0} \pi^{0}$ result combined with time-dependent analysis (arxiv.org/abs/2206.07453), obtaining world's best:

$$
\left.I_{K \pi}=-0.03 \pm 0.13 \pm 0.05 \text { (world average } 0.13 \pm 0.11\right)
$$

\Rightarrow Competitive precision to world's best already with this data size.

$B \rightarrow D^{(*)} K^{-} K_{S}^{0}$ decays

$B \rightarrow D^{(*)} K^{-} K_{S}^{0}$ decays

$B \rightarrow D^{(*)} K K$ makes up a few \% of hadronic decay, but only a small fraction is known.

Improve simulation and tagging techniques: need to know well BF's and possible intermediate states.

Fit ΔE, subtract background, and look at $m\left(K^{-} K_{S}^{0}\right)$ and Dalitz distributions.

Structures observed in low mass region.

$$
\begin{aligned}
& \mathscr{B}\left(B^{-} \rightarrow D^{0} K^{-} K_{S}^{0}\right)=(1.89 \pm 0.16 \pm 0.10) \times 10^{-4} \\
& \mathscr{B}\left(\bar{B}^{0} \rightarrow D^{+} K^{-} K_{S}^{0}\right)=(0.85 \pm 0.11 \pm 0.05) \times 10^{-4} \\
& \mathscr{B}\left(B^{-} \rightarrow D^{* 0} K^{-} K_{S}^{0}\right)=(1.57 \pm 0.27 \pm 0.12) \times 10^{-4} \\
& \mathscr{B}\left(\bar{B}^{0} \rightarrow D^{*+} K^{-} K_{S}^{0}\right)=(0.96 \pm 0.18 \pm 0.06) \times 10^{-4}
\end{aligned}
$$

First observation of three new decay channels.

Summary

Hadronic decays important element in Belle II B physics program. First analyses using the full data sample ($362 \mathrm{fb}^{-1}$).

- $B \rightarrow D K$ decay measurements, with D decaying in Cabibbo-suppressed or $C P$ eigenstates final states contribute in Belle + Belle II combined γ program.
- Measurements of $B \rightarrow \pi \pi$ and $B \rightarrow \rho \rho$ contribute in Belle II program for angle α.
- $B^{0} \rightarrow K_{S}^{0} \pi^{0}$ asymmetry achieves world's best precision, competitive $I_{K \pi}$ sensitivity.
- Three new decay channels observed in $B \rightarrow D K K$, with structures observed in $m\left(K^{-} K_{S}^{0}\right)$ and Dalitz distributions.

Backup

γ using GLS method

Parameters physics meanings

- $2 \mathscr{A}_{C P}$ for $D K(D \pi)$:

$$
\begin{aligned}
\mathscr{A}_{S S}^{D K} & \equiv \frac{N_{S S}^{-}-N_{S S}^{+}}{N_{\overline{S S}}+N_{S S}^{+}} \\
\mathscr{A}_{O S}^{D K} & \equiv \frac{N_{O S}^{-}-N_{O S}^{+}}{N_{\overline{O S}}^{-}+N_{O S}^{+}}
\end{aligned}
$$

$$
\text { Physics meanings } \quad \begin{aligned}
\mathscr{A}_{S S}^{D K} & =\frac{2 r_{B} r_{D} \kappa \sin \left(\delta_{B}-\delta_{D}\right) \sin \phi_{3}}{1+r_{B}^{2} r_{D}^{2}+2 r_{B} r_{D} \kappa \cos \left(\delta_{B}-\delta_{D}\right) \cos \phi_{3}} \\
\mathscr{A}_{S S}^{D K} & =\frac{2 r_{B} r_{D} \kappa \sin \left(\delta_{B}+\delta_{D}\right) \sin \phi_{3}}{1+r_{B}^{2}+r_{D}^{2}+2 r_{B} r_{D} \kappa \cos \left(\delta_{B}+\delta_{D}\right) \cos \phi_{3}}
\end{aligned}
$$

- 3 ratios:

$$
\begin{array}{lrl}
\mathscr{R}_{S S}^{D K / D \pi} & \equiv \frac{N_{S S}^{-}+N_{S S}^{+}}{N_{S S}^{\prime}+N_{S S}^{\prime+}} \\
\mathscr{R}_{O S}^{D K / D \pi} & \equiv \frac{N_{O S}^{-}+N_{O S}^{+}}{N_{\overline{O S}}^{\prime}+N_{O S}^{\prime+}} & \mathscr{R}_{S S}^{D K / D \pi}=R \frac{1+r_{B}^{2} r_{D}^{2}+2 r_{B} r_{D} \kappa \cos \left(\delta_{B}-\delta_{D}\right) \cos \phi_{3}}{1+r_{B}^{2} r_{D}^{2}+2 r_{B}^{\prime} r_{D} \kappa \cos \left(\delta_{B}^{\prime}-\delta_{D}\right) \cos \phi_{3}} \\
\mathscr{R}_{S S / O S}^{D \pi} & \equiv \frac{N_{S S}^{\prime}+N_{S S}^{\prime+}}{N_{\bar{O}}^{\prime}+N_{O S}^{\prime+}} & \text { Physics meanings }
\end{array} \quad \mathscr{R}_{O S}^{D K / D \pi}=R \frac{r_{B}^{2}+r_{D}^{2}+2 r_{B} r_{D} \kappa \cos \left(\delta_{B}+\delta_{D}\right) \cos \phi_{3}}{r_{B}^{\prime 2}+r_{D}^{2}+2 r_{B}^{\prime} r_{D} \kappa \cos \left(\delta_{B}^{\prime}+\delta_{D}\right) \cos \phi_{3}}
$$

γ using GLS method

Full D phase space
Full D phase space

$$
\begin{aligned}
& \mathscr{A}_{S S}^{D K}=-0.089 \pm 0.091 \pm 0.011 \\
& \mathscr{A}_{O S}^{D K}=+0.109 \pm 0.133 \pm 0.013 \\
& \mathscr{A}_{S S}^{D \pi}=+0.018 \pm 0.026 \pm 0.009 \\
& \mathscr{A}_{O S}^{D \pi}=-0.028 \pm 0.031 \pm 0.009 \\
& \mathscr{R}_{S S}^{D K / D \pi}=0.122 \pm 0.012 \pm 0.004 \\
& \mathscr{R}_{O S}^{D K / D \pi}=0.093 \pm 0.013 \pm 0.003 \\
& \mathscr{R}_{S S / O S}^{D \pi}=1.428 \pm 0.057 \pm 0.002
\end{aligned}
$$

K^{*} region

$$
\begin{aligned}
& \mathscr{A}_{S S}^{D K}=+0.055 \pm 0.119 \pm 0.020 \\
& \mathscr{A}_{O S}^{D K}=+0.231 \pm 0.184 \pm 0.014 \\
& \mathscr{A}_{S S}^{D \pi}=+0.046 \pm 0.029 \pm 0.016 \\
& \mathscr{A}_{O S}^{D \pi}=+0.009 \pm 0.046 \pm 0.009 \\
& \mathscr{R}_{S S}^{D K / D \pi}=0.093 \pm 0.012 \pm 0.005 \\
& \mathscr{R}_{O S}^{D K / D \pi}=0.103 \pm 0.020 \pm 0.006 \\
& \mathscr{R}_{S S / O S}^{D \pi}=2.412 \pm 0.132 \pm 0.019
\end{aligned}
$$

γ using GLS method

Systematic uncertainties (absolute)

	$A_{\mathrm{SS}}^{D K}$	$A_{\mathrm{OS}}^{D K}$	$A_{\mathrm{SS}}^{D \pi}$	$A_{\mathrm{OS}}^{D \pi}$	$R_{\mathrm{SS}}^{D K / D \pi}$	$R_{\mathrm{OS}}^{D K / D \pi}$	$R_{\mathrm{SS} / \mathrm{OS}}^{D \pi}$	
Full D phase space								
$\epsilon_{K^{ \pm}}, \epsilon_{\pi^{ \pm}}$	0.38	0.56	0.19	0.14	0.05	0.06	0.09	
δ	-	0.03	-	-	0.04	0.03	0.02	
Model	0.62	0.78	0.02	0.02	0.30	0.22	0.07	
$\epsilon_{K_{\mathrm{S}}^{0} K^{-} \pi^{+}} / \epsilon_{K_{\mathrm{S}}^{0} K^{+} \pi^{-}}$	0.82	0.83	0.82	0.83	0.01	0.01	0.02	
Total syst. unc.	1.1	1.3	0.9	0.9	0.4	0.3	0.2	
Stat. unc.	9.1	13.3	2.6	3.1	1.2	1.3	5.7	
$\epsilon_{K^{ \pm}}, \epsilon_{\pi^{ \pm}}$	0.37	0.61	0.17	0.15	0.03	0.08	0.13	
δ	0.02	0.02	0.01	0.01	0.03	0.04	0.04	
Model	1.04	0.97	0.20	0.03	0.46	0.49	0.61	
$\epsilon_{K_{S}^{0} K^{-} \pi^{+}} / \epsilon_{K_{\mathrm{S}}^{0} K^{+} \pi^{-}}$	1.6	0.8	1.6	0.8	0.1	0.1	1.7	
Total syst. unc.	2.0	1.4	1.6	0.9	0.5	0.6	1.9	
Stat. unc.	11.9	18.4	2.9	4.6	1.2	2.0	13.2	

γ using GLW method

Physics meanings

$$
\begin{aligned}
& \mathscr{A}_{C P \pm}=\frac{\Gamma\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)-\Gamma\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}= \pm \frac{r_{B} \sin \delta_{B} \sin \phi_{2}}{1+r_{B}^{2} \pm 2 r_{B} \cos \operatorname{delta}_{B} \cos \phi_{3}}, \\
& \mathscr{R}_{C P \pm}=\frac{\mathscr{B}\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\mathscr{B}\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\mathscr{B}\left(B^{-} \rightarrow D_{f l a v} K^{-}\right)+\mathscr{B}\left(B^{+} \rightarrow D_{f l a v} K^{+}\right)} \approx \frac{R_{C P \pm}}{R_{f l a v}}, \text { with } \\
& R_{X} \equiv \frac{\left.\mathscr{B}\left(B^{-} \rightarrow D_{X} K^{-}\right)+\mathscr{B}^{+} \rightarrow D_{X} K^{+}\right)}{\left.\mathscr{B}\left(B^{-} \rightarrow D_{X} \pi^{-}\right)+\mathscr{B}^{+} \rightarrow D_{X} \pi^{+}\right)} . \\
& \Rightarrow\left\{\begin{array}{l}
\mathscr{R}_{C P \pm}=1+r_{B}^{2} \pm 2 \cos \delta_{B} \cos \phi_{3}, \text { assuming } C P \text { conservation in } B^{ \pm} \rightarrow D \pi^{ \pm} \\
\mathscr{A}_{C P \pm}= \pm 2 r_{B} \sin \phi_{3} / \mathscr{R}_{C P \pm}
\end{array},\right.
\end{aligned}
$$

- Channels:
- Signal: $B \rightarrow D\left(\rightarrow K K, K_{S}^{0} \pi^{0}\right) K$
- $R_{\text {flav }}$ control channel: $B \rightarrow D(\rightarrow K \pi) K$
- R_{X} control channel: $B \rightarrow D \pi$

γ using GLW method

Results

	$68.3 \% \mathrm{CL}$	$95.4 \% \mathrm{CL}$
$\phi_{3}\left(^{\circ}\right)$	$[8.5,16.5]$	$[54.0,22.0]$
	$[163.3,171.5]$	$[157.5,175.0]$
	$[0.321,0.465]$	$[0.241,0.522]$

Yields

D_{X} mode		$N\left(B \rightarrow D_{X} K\right)$	$N\left(B \rightarrow D_{X} \pi\right)$
$D \rightarrow K^{ \pm} \pi^{\mp}$	Belle	$4238(94)$	$59481(267)$
	Belle II	$1084(44)$	$14229(126)$
$D \rightarrow K^{+} K^{-}$	Belle	$476(36)$	$5559(85)$
	Belle II	$107(15)$	$1336(40)$
$D \rightarrow K_{S}^{0} \pi^{0}$	Belle	$541(42)$	$6484(95)$
	Belle II	$145(16)$	$1763(46)$

γ using GLW method

γ estimation

	$68.3 \% \mathrm{CL}$	$95.4 \% \mathrm{CL}$
$\phi_{3}\left({ }^{\circ}\right)$	$[8.5,16.5]$	$[54.0,22.0]$
	$[84.5,95.5]$	$[80.0,100.0]$
	$[163.3,171.5]$	$[157.5,175.0]$
r_{B}	$[0.321,0.465]$	$[0.241,0.522]$

γ using GLW method

Systematic uncertainties (absolute)

	$\mathcal{R}_{C P+}$	$\mathcal{R}_{C P-}$	$\mathcal{A}_{C P+}$	$\mathcal{A}_{C P_{-}}$
PDF parameters	0.012	0.014	0.002	0.002
PID parameters	0.009	0.010	0.003	0.005
peaking background yields	0.033	0.002	0.013	-
Efficiency ratio	0.001	0.001	<0.001	<0.001
commonality of ΔE modes	-0.005	-0.006	<0.001	<0.001
Total systematic uncertainty	0.036	0.019	0.014	0.006
Statistical uncertainty	0.081	0.074	0.058	0.057

Isospin sum rule

$$
\mathscr{B}=(20.67 \pm 0.37 \pm 0.62) \times 10^{-6}
$$

$$
\mathscr{A}_{C P}=-0.072 \pm 0.019 \pm 0.007
$$

$$
\begin{aligned}
& \mathscr{B}\left(K_{S}^{0} \pi^{+}\right)=(24.40 \pm 0.71 \pm 0.86) \times 10^{-6} \\
& \mathscr{A}_{C P}\left(K_{S}^{0} \pi^{+}\right)=+0.046 \pm 0.029 \pm 0.007
\end{aligned}
$$

 $\mathscr{B}\left(K^{+} \pi^{0}\right)=(14.21 \pm 0.38 \pm 0.85) \times 10^{-6}$ $\mathscr{A}_{C P}\left(K^{+} \pi^{0}\right)=+0.013 \pm 0.027 \pm 0.005$

$$
\begin{aligned}
& \mathscr{B}\left(K_{S}^{0} \pi^{0}\right)=(10.16 \pm 0.65 \pm 0.67) \times 10^{-6} \\
& \mathscr{A}_{C P}\left(K_{S}^{0} \pi^{0}\right)=-0.006 \pm 0.15 \pm 0.05
\end{aligned}
$$

Isospin sum rule

Systematic uncertainties

TABLE II. Summary of the relative systematic uncertainties (\%) on the branching ratios.

Source	$B^{0} \rightarrow K^{+} \pi^{-}$	$B^{0} \rightarrow \pi^{+} \pi^{-}$	$B^{+} \rightarrow K^{+} \pi^{0}$	$B^{+} \rightarrow \pi^{+} \pi^{0}$	$B^{+} \rightarrow K_{S}^{0} \pi^{+}$	$B^{0} \rightarrow K_{S}^{0} \pi^{0}$
Tracking	0.5	0.5	0.2	0.2	0.7	0.5
$N_{B \bar{B}}$	1.5	1.5	1.5	1.5	1.5	1.5
$f^{+-} / 00$	2.5	2.5	2.4	2.4	2.4	2.5
π^{0} efficiency	-	-	5.0	5.0	-	5.0
K_{S}^{0} efficiency	-	-	-	-	2.0	2.0
CS efficiency	0.2	0.2	0.7	0.7	0.5	1.7
PID correction	0.1	0.1	0.1	0.2	-	-
ΔE shift and scale	0.1	0.2	1.2	2.0	0.3	1.7
$K \pi$ signal model	0.1	0.2	0.1	<0.1	<0.1	0.1
$\pi \pi$ signal model	<0.1	0.1	<0.1	<0.1	-	-
$K \pi$ CF model	<0.1	0.1	<0.1	0.1	-	-
$\pi \pi$ CF model	0.1	0.2	<0.1	0.1	-	-
$K_{S}^{0} K^{+}$model	-	-	-	-	0.1	-
$B \bar{B}$ model	-	-	0.3	0.5	<0.1	0.3
Multiple candidates	<0.1	<0.1	1.0	0.3	0.1	0.3
Total	3.0	3.0	6.0	6.2	3.6	6.6

TABLE III. Summary of the absolute systematic uncertainties on the $C P$ asymmetries.

Source	$B^{+} \rightarrow K^{+} \pi^{-}$	$B^{+} \rightarrow K^{+} \pi^{0}$	$B^{+} \rightarrow \pi^{+} \pi^{0}$	$B^{+} \rightarrow K_{S}^{0} \pi^{+}$	$B^{0} \rightarrow K_{S}^{0} \pi^{0}$
ΔE shift and scale	<0.001	0.001	0.002	0.001	0.003
$K_{S}^{0} K^{+}$model	-	-	-	0.001	-
$B \bar{B}$ background asymmetry	-	-	-	-	0.046
$q \bar{q}$ background asymmetry	-	-	-	-	0.024
Fitting bias	-	-	0.007	0.006	-
Instrumental asymmetry	0.007	0.005	0.004	0.004	-
Total	0.007	0.005	0.008	0.007	0.052

$B \rightarrow D^{(*)} K^{-} K_{S}^{0}$ decays

ΔE fit and $m\left(K^{-} K_{S}^{0}\right)$ distributions

$B \rightarrow D^{(*)} K^{-} K_{S}^{0}$ decays

Dalitz distributions

$B \rightarrow D^{(*)} K^{-} K_{S}^{0}$ decays

Systematic uncertainties (relative)

Source	$B^{-} \rightarrow D^{0} K^{-} K_{S}^{0}$	$\overline{B^{0}} \rightarrow D^{+} K^{-} K_{S}^{0}$	$B^{-} \rightarrow D^{* 0} K^{-} K_{S}^{0}$	$\overline{B^{0}} \rightarrow D^{*+} K^{-} K_{S}^{0}$
Eff. - MC sample size	0.6	0.9	1.0	0.8
Eff. - tracking	0.7	1.0	0.7	1.0
Eff. - π^{+}from D^{*+}	-	-	-	2.7
Eff. - K_{S}^{0}	$\overline{3.4}$	$\overline{3.4}$	3.4	3.3
Eff. - PID	1.3	1.4	0.5	0.6
Eff. - π^{0}	-	-	-1	-
Signal model	1.9	3.3	2.7	3.1
Bkg model	1.1	0.8	0.1	0.1
Self-cross-feed	-	-	2.7	-
$D^{* 0}$ peaking bkg	-	-	0.9	-
$N_{B \bar{B}}, f_{+-, 00}$	2.7	2.8	2.7	2.8
Intermediate $\mathcal{B} s$	0.7	1.7	1.6	1.1
Total systematic	5.2	6.1	7.6	6.2
Statistical	8.3	13.5	17.1	19.0

