Sum rule techniques for flavour physics

Alexander Khodjamirian

Collaborative Research Center TRR 257 H

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할

 299

Lectures at pre-FPCP School, Lyon, May 26-27, 2023

 \Box A glance at history

• In 1831, the Cauchy formula was derived,

A.-L. Cauchy, "Oeuvres completes, Ser. 1", 4, Paris (1890)

we will use it for a function $\Pi(q^2),$ in a complex plane $q^2 \rightarrow z$,

$$
\Pi(q^2) = \frac{1}{2\pi i} \int\limits_C dz \frac{\Pi(z)}{z - q^2}
$$

here $q^2 = q_0^2 - \vec{q}^2$, q is a four-momentum

- In 1969, the operator product expansion (OPE) in quantum field
theory was formulated, $\frac{K_{\text{C}}}{K_{\text{C}}}$. Wilson, Phys. Rev. 179 (1969), 1499 K. G. Wilson, Phys. Rev. **179** (1969), 1499-1512 we will use it in the momentum representation: at $q^2\to -\infty$, $(x\to 0)$ $i \int d^4x \, e^{iqx} T\{ j_A(x) \, j_B(0) \} = \sum$ *n* $C_{AB}(q^2) \mathcal{O}_n(0),$
- both Cauchy formula and Wilsonian OPE are the underlying elements of the QCD sum rule method

[M. Shifman, A. Va[ins](#page-0-0)h[tei](#page-2-0)[n](#page-0-0)[, V.](#page-1-0) [Z](#page-2-0)[ak](#page-0-0)[har](#page-55-0)[ov](#page-0-0) [\(1](#page-55-0)[979](#page-0-0)[\)\]](#page-55-0) sall

□ Outline of these lectures

• **Part 1: QCD (SVZ) sum rules based on local OPE**

- calculation of the *^B*-meson decay constant
- **Part 2: QCD Light-cone sum rules (LCSRs) for** *^B* **meson semileptonic form factors**

KORKARA KERKER DAGA

- \bullet $B \to \pi \ell \nu_{\ell}$, $B_{s} \to K \ell \nu_{\ell}$
- \bullet $B \to 2\pi \ell \nu_{\ell}$, $B \to K\pi \ell \ell$
- **Part 3: Various applications**
	- nonlocal effects in $b \rightarrow s \ell \ell$ exclusive transitions
	- CP violation in charmed meson decays
	- *^B* meson decays into dark matter

Part 1: QCD (SVZ) sum rules based on the local OPE

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

$B \rightarrow \tau \nu_{\tau}$ decay and the *B*-meson decay constant

the decay amplitude: $\boldsymbol{\nu}$

$$
A(B^-\to\tau^-\bar{\nu}_\tau)=\tfrac{G_F}{\sqrt{2}}\;V_{ub}\,\langle 0|\bar{u}\gamma_\mu\gamma_5 b|B\rangle\,\bar{\tau}\gamma^\mu(1-\gamma_5)\nu_\tau
$$

- hadronic matrix element \Rightarrow decay constant $\langle 0|\bar{u}\gamma^{\mu}\gamma_{5}b|B(p_{B})\rangle = i p_{B}^{\mu}f_{B}, \quad p_{B}^{2} = m_{B}^{2}$
- partial width: (suppressed for $\ell = \mu$, *e*) $BR(B^-\!\rightarrow\!\tau^-\bar\nu_\tau)_{SM} = \frac{G_F^2 |V_{ub}|^2}{8\pi}$ $\frac{|V_{ub}|^2}{8\pi} m_\tau^2 m_B \left(1-\right)$ m_{τ}^2 *m*² *B* $\bigg\}^2 f_B^2 \tau_{B^-}$,

 ${b \rightarrow u}$ flavour-changing transition} ⊗ {QCD }

 V_{ub} determination, BSM search/limits from $B \to \tau \nu$ measurements are impossible without precise knowledge of f_{B} \square Rare leptonic decays: $B_{s,d} \to \ell^+ \ell^-$

- in SM t , W , Z -loops, sensitive to $V_{ts}V_{tb}^*$, potentially also to new physics
- after integrating out heavy loops: (the effective quark-lepton coupling C_{10}), the hadronic matrix element in decay amplitude is reduced to $\langle 0|\bar{s}\gamma^{\mu}\gamma_{5}b|B_{s}(p_{B})\rangle =ip^{\mu}_{B}f_{B_{s}},$ $(s \rightarrow d)$ ● $f_{B_d} \simeq f_{B_u} \equiv f_B$ (isospin symmetry), but $f_{B_s} \neq f_B$, $(SU(3)_f|$ violation)

KORKARA KERKER DAGA

B-meson annihilation from the point of view of in QCD

• $\bar{\Lambda} \sim m_B - m_b \sim 500$ -700 MeV,

the energy scale of quark-gluon interactions binding *b* and \bar{u} inside the *B*

KOD KARD KED KED BE YOUR

- $\alpha_s(\bar{\Lambda})$ too large for a perturbative expansion
- domain of nonperturbative QCD

B-meson annihilation in nonperturbative QCD

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

- ► $|B^{-}\rangle$ = $|b\bar{u}$ ⊕ gluons ⊕ soft quark-antiquark pairs \rangle
- \triangleright $\langle 0 |$, the QCD vacuum,

□ QCD Vacuum

- \blacktriangleright the lowest energy state, no hadrons contains fluctuating quark-antiquark and gluon fields: vacuum condensates
- \blacktriangleright e.g., $\langle 0|\overline{q}q|0\rangle \neq 0$, $q = u, d, s$ -spontaneous breaking of chiral symmetry
- $\triangleright \langle 0|G_{\mu\nu}G^{\mu\nu}|0\rangle \neq 0, \langle 0|\overline{q}\sigma_{\mu\nu}G^{\mu\nu}q|0\rangle \neq 0,...$
- \triangleright universal set of vacuum condensate densities with dimension $d = 3, 4, 5, ...$

KORK ERKER ADAM ADA

□ Correlation function of *ub* currents

 \triangleright formal definition of the vacuum correlation function:

$$
\Pi_{\mu\nu}(q^2)=i\int d^4x\;e^{iqx}\langle 0|T\{j^W_\mu(x)j^{W\dagger}_\nu(0)\}|0\rangle\,,
$$

a quantum amplitude of emission and absorbtion of \overline{u} pair in vacuum by the external current:

 \blacktriangleright the flavour and J^P of the current can vary currents with other meson quantum numbers (B_s , D , D_s , π , ...), (any Lorentz-covariant and colour-invariant local operator)

KORK ERKER ADAM ADA

□ Correlation function far below the *B*-meson threshold

- ► 4-momentum of the $b\bar{u}$ pair: $q = (q_0, \vec{q}), q^2 = q_0^2 \vec{q}^2$, rest frame: $\vec{q} = 0$, $q^2 = q_0^2$, fix the energy $q_0 \ll m_b$
- ^I the *bu*¯-pair is virtual: ∆*E*∆*t* ∼ 1, the energy deficit $\Delta E \sim m_b$, $\Delta t \sim 1/m_b$ m_b \gg Λ_{QCD}: Δ*t* \ll 1/Λ_{QCD}
- \triangleright virtual quarks propagate during short times, are asymptotically free,
- **P** at $q^2 \ll m_b^2, m_B^2$,

 $\Pi_{\mu\nu}(q^2) \simeq$ simple loop diagram \oplus { calculable QCD corrections} \Leftrightarrow to be added
 \square Calculating the correlation function at $q^2 \ll m_B^2$

- \triangleright adding perturbative gluon exchanges to the simple loop, $\alpha_s(m_B) \ll 1$
- \triangleright including nonperturbative effects due to condensates
- \blacktriangleright typical diagams

- technically, using Feynman rules of QCD and considering the vacuum quark-antiquarks and gluons as external static fields.
- **Figuari** The result: analytical expression for $\Pi_5(q^2)$ in terms of m_b , m_u and universal QCD parameters α_s , $\langle \bar{q}q \rangle$,...

KORK ERKER ADAM ADA

\Box Expansion of the operator-product in local operators

 \triangleright interpreting the calculation as an operator-product expansion:

 $T\{j_{\mu}^{W}(x)j_{\nu}^{W\dagger}(0)\} = \sum_{\nu} C_{\mu\nu(d)}(x^2, m_b, m_u, \alpha_s)O_d(0)$ $d=0.3,4$

in local operators with the quantum numbers of vacuum

(Lorentz-scalar, C-,P-,T-invariant, colorless) and growing dimensions:

 $O_0 = 1$, $O_3 = \overline{q}q$, $O_4 = G^{\mu\nu}G_{\mu\nu}$, (no operator of dimension 2 in QCD !)

- \triangleright vacuum average integrating over $\Pi_{\mu\nu}(q^2) = i\int d^4x\, e^{iqx}\langle 0|{\cal T}\{j^{W}_{\mu}(x)j^{W\dagger}_{\nu}(0)\}|0\rangle$ $= \sum \overline{C}_{\mu\nu(d)}(q^2, m_b, m_u, \alpha_s)\langle 0 | O_d | 0 \rangle$ $d=0.3,4...$
- **P** perturbative loops \rightarrow Wilson coefficeints \overline{C}_d as series in α_s , $d \neq 0$, $\langle 0 | Q_d | 0 \rangle \sim (\Lambda_{QCD})^d$ - vacuum condensate densities, ► at $q^2 \ll m_b^2$, high-*d* terms suppressed by $O[(\Lambda_{QCD}/m_b)^d]$ the OPE can safely be truncated

KORKAR KERKER E VOOR

□ Correlation function above *B* threshold

- \blacktriangleright Hypothetical neutrino-electron scattering, varying c.m. energy $\sqrt{s} = \sqrt{q^2}$,
- $\blacktriangleright \ \Pi_{\mu\nu}(q^2)$ is the part of the scattering amplitude

 \Box Hadronic representation of Π $_{\mu\nu}(q^2)$

- $\blacktriangleright \ \ \Pi_{\mu\nu}(q^2) \text{ at } q^2 \geq m_B^2$, : propagation of *B* meson and excited *B* states (infinite sum over resonant and multiparticle states)
- \triangleright the hadronic representation (dispersion relation):

$$
\Pi_{\mu\nu}(q^2)=\frac{\langle 0 | j^W_{\mu}|B\rangle\langle B | j^W_{\nu} |0\rangle}{m_B^2-q^2}+\sum_{B_{\text{exc}}} \frac{\langle 0 | j^W_{\mu}|B_{\text{exc}}\rangle\langle B_{\text{exc}} | j^W_{\nu} |0\rangle}{m_{B_{\text{exc}}}^2-q^2}
$$

 \blacktriangleright rigorous theory derivation is based on analyticity of $\Pi_{\mu\nu}(q^2)$ at $q^2 \to z$ (valid in any local quantum-field theory)

\Box Derivation of dispersion relation

• transforming the Cauchy formula

• unitarity relation for imaginary part:

$$
\text{Im}\Pi_{\mu\nu}(s) = \sum_{h_B=B,B^8\pi,\dots} \langle 0|j_{\mu}^{W}|h_B\rangle \langle h_B|j_{\nu}^{W\dagger}|0\rangle d\tau_{h_B}
$$

□ Quark-hadron duality

(omitting Lorentz indices everywhere)

$$
\Pi(q^2) = \frac{\langle 0 | j^W | B \rangle \langle B | j^{W\dagger} | 0 \rangle}{m_B^2 - q^2} + \sum_{B_{\text{exc}}} \frac{\langle 0 | j^W | B_{\text{exc}} \rangle \langle B_{\text{exc}} | j^{W\dagger} | 0 \rangle}{m_{B_{\text{exc}}}^2 - q^2}
$$

$$
= \frac{1}{\pi} \int_{(m_b + m_u)^2} ds \frac{\text{Im}\Pi(s)}{s - q^2} + \frac{1}{\pi} \int_{s_0}^{\infty} ds \frac{\text{Im}\Pi(s)}{s - q^2}
$$

 \triangleright the sum of B_{exc} -states is approximated by the calculable integral over $Im \Pi_5(s) \Rightarrow s_0$, the effective threshold

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

\Box Deriving the sum rule for f_B^2

 \triangleright isolating the ground-state B -state and introducing the spectral density of excited hadronic states

$$
\Pi(q^2) = \frac{f_B^2 m_B^4}{m_B^2 - q^2} + \int_{s_h}^{\infty} ds \frac{\rho^h(s)}{s - q^2}
$$

 \triangleright expressing the OPE result as a dispersion relation

$$
\Pi(q^2)^{(OPE)} = \frac{1}{\pi} \int_{m_b^2}^{s_0} ds \frac{\text{Im}\Pi^{(OPE)}(s)}{s - q^2} + \frac{1}{\pi} \int_{s_0}^{\infty} ds \frac{\text{Im}\Pi^{(OPE)}(s)}{s - q^2}
$$

equating the two representations at $q^2 \ll m_b^2$

- global quark-hadron duality
- \triangleright at sufficiently large s the local duality is also valid:

$$
\rho^h(\mathbf{s}) \simeq \frac{1}{\pi} \mathrm{Im} \Pi^{(\mathrm{OPE})}(\mathbf{s}),
$$

\Box Deriving the sum rule for f_B^2

 \triangleright semilocal quark-hadron duality is used, the effective threshold s_0

$$
\int_{s_h}^{\infty} ds \frac{\rho^h(s)}{s - q^2} \simeq \frac{1}{\pi} \int_{s_0}^{\infty} ds \frac{\text{Im}\Pi^{(OPE)}(s)}{s - q^2}
$$

 \blacktriangleright this yields approximate analytical relation for decay constant:

$$
\frac{f_B^2 m_B^4}{m_B^2 - q^2} = \frac{1}{\pi} \int_{m_B^2}^{s_0} ds \frac{\text{Im}\Pi^{(OPE)}(s)}{s - q^2}
$$

 \blacktriangleright Borel transformation

$$
\Pi(M^2) \equiv \mathcal{B}_{M^2} \Pi(q^2) = \lim_{\substack{-q^2, n \to \infty \\ -q^2/n = M^2}} \frac{(-q^2)^{(n+1)}}{n!} \left(\frac{d}{dq^2}\right)^n \Pi(q^2) .
$$

suppresses the higher-state contributions to the hadronic sum, the sum rule less sensitive to the duality approximation $\mathcal{B}_{\textsf{M}^2}(\frac{1}{m^2-q^2})=\textsf{exp}(-m^2/M^2)$ KID K@ K R B K R R B K DA C

 \Box The resulting QCD sum rule

$$
\mathit{f}_{B}^{2}m_{B}^{4}e^{-m_{B}^{2}/M^{2}}=\smallint\limits_{m_{B}^{2}}^{s_{0}}dse^{-s/M^{2}}\;Im\Pi^{(\mathit{OPE})}(s,m_{b},m_{u},\alpha_{s},\langle0|\bar{q}q|0\rangle,...)
$$

► current accuracy of $\Pi^{(OPE)}(q^2)$ at $q^2 \ll m_b^2$: vacuum condensates with $d \leq 6$ $\mathsf{loop} \oplus \mathsf{O}(\alpha_{\boldsymbol{s}}) \oplus \mathsf{O}(\alpha_{\boldsymbol{s}}^2)$

[K.Chetyrkin, M.Steinhauser (2001)]

Exercise standard way to fix s_0 **:** calculate the mass of *B*-meson from the same sum rule:

$$
m_B^2 = -\frac{\frac{d}{d(1/M^2)}[SR]}{SR}
$$

KORKARA KERKER DAGA

 \Box Input parameters

 ${\bf Table}$ 1. QCD parameters used in the LCSRs and two-point sum rules.

AK, B. Melic, Y. M. Wang and Y. B. Wei, [\[ar](#page-19-0)[Xiv:](#page-21-0)[2](#page-19-0)[01](#page-20-0)[1.](#page-21-0)[11](#page-0-0)[275](#page-55-0) [\[h](#page-0-0)[ep-](#page-55-0)[ph](#page-0-0)[\]\].](#page-55-0) ´

 \Box *B*_(*s*) and *D*_(*s*) decay constants, sum rules vs lattice QCD

Decay constant	Lattice QCD (FLAG 2019)*	QCD sum rules **
f_B [MeV]	190.0 ± 1.3	207^{+17}_{-9}
f_{B_s} [MeV]	230.3 ± 1.3	242^{+17}_{-12}
f_{B_s}/f_B	1.209 ± 0.005	$1.17^{+0.04}_{-0.03}$
f_D [MeV]	212.0 ± 0.7	201^{+12}_{-13}
f_{D_s} [MeV]	249.9 ± 0.5	238^{+13}_{-23}
f_{D_s}/f_D	1.1783 ± 0.0016	$1.15^{+0.04}_{-0.05}$

 $* N_f = 2 + 1 + 1$

∗∗ P.Gelhausen, AK, A.A.Pivovarov, D.Rosenthal, 1305.54[32](#page-20-0) [hep](#page-22-0)[/](#page-20-0)[ph\]](#page-21-0)

 \Box Universality of the method

• $\bar{q}Q$ currents with various flavour and J^P in the correlation functions \Rightarrow sum rules for decay constants of B_s , D , D_s , $\pi \rho$, K , K^* , also baryonic, gluonic currents

(any Lorentz-covariant and colour-invariant local operator)

the coefficients in the OPE depend on the currents, inputs are universal (quark masses, α*^s* , condensates)

• QCD (SVZ) sum rules address the question: why are the hadrons not alike ?

• *SU*(3)*flavour* and heavy-quark symmetry violations can be estimated (finite quark masses, strange/nonstrange condensates)

YO A GERRITH A SHOP

Summary of part 1

\triangleright QCD sum rule, the three key elements

- \triangleright 2-point correlation functions of quark currents allow to relate QCD with hadronic observables, e.g. f_B or f_D
- \blacktriangleright flexible quantum numbers (flavour and spin-parity)
- \triangleright QCD sum rules: analytical calculation in terms of diagrams, duality approximation for excited states \sim 10% accuracy is probably the limit
- \triangleright future goal: to better assess OPE/input/duality uncertainties

Part 2: QCD Light-cone sum rules

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

\Box *B* $\rightarrow \pi$ transition form factors

• hadronic matrix element is reduced to two form factors:

functions of the momentum transfer squared *q* 2

KORK ERKER ADAM ADA

$$
\begin{array}{ll}\displaystyle \langle \pi^+(\rho) |\bar{u}\gamma_\mu b| B(p+q) \rangle = f_{B\pi}^+(q^2) \Big[2p_\mu + \big(1 - \frac{m_B^2 - m_\pi^2}{q^2} \big) q_\mu \Big] \\[12pt] \displaystyle &\quad + f_{B\pi}^0(q^2) \frac{m_B^2 - m_\pi^2}{q^2} q_\mu,\end{array}
$$

- this decomposition follows from symmetry considerations only,
- observable: differential width

$$
\frac{d\Gamma(\bar{B}^0\to \pi^+\textit{I}^-\nu)}{dq^2}=\frac{G_F^2|V_{ub}|^2}{24\pi^3}p_{\pi}^3|f_{B\pi}^+(q^2)|^2+O(m_I^2)
$$

 $0 < q^2 < (m_B - m_\pi)^2 \sim 26~\text{GeV}^2$, ρ_π -kinematical factor

\Box *B* $\rightarrow \pi\pi$ form factors

• semileptonic $B \to \pi \pi \ell \nu_{\ell}$ decay $B^-(p)$ b \mathcal{S}^u \bar{u} $\bar{\nu}_\ell$ / ℓ \bar{d} d π ⁻ $(k_1$ π ⁻ [−](k2) expansion of $B \to \pi\pi$ matrix element: $i\langle \pi^+(k_1)\pi^0(k_2)|\bar{l}\eta^{\mu}(1-\gamma_5)b|\bar{B}^0(p)\rangle$ $=-F_{\perp}(q^2, k^2, \zeta)\frac{4}{\sqrt{k^2}}$ $\frac{1}{\sqrt{k^2\lambda_B}}$ $i\epsilon^{\mu\alpha\beta\gamma}$ q_α $k_{1\beta}$ $k_{2\gamma}$ $+F_t(q^2, k^2, \zeta) \frac{q^{\mu}}{\sqrt{2}}$ $\frac{q^\mu}{\sqrt{q^2}}+F_0(q^2,k^2,\zeta)\frac{2\sqrt{q^2}}{\sqrt{\lambda_B}}$ √ λ*^B* $\left(k^{\mu} - \frac{k \cdot q}{\sigma^2}\right)$ $\left(\frac{q}{q^2}q^{\mu}\right)$ $+F_{\|}(q^2, k^2, \zeta) \frac{1}{\sqrt{q}}$ $\frac{1}{\sqrt{k^2}}\left(\overline{k}^{\mu}-\frac{4(q\cdot k)(q\cdot k)}{\lambda_B}\right)$ $\frac{k}{\lambda_B}$ k^{μ} + $\frac{4k^2(q \cdot \overline{k})}{\lambda_B}$ $\frac{(q \cdot \kappa)}{\lambda_B} q^{\mu}$, $k(\bar{k}) = k_1 + (-)k_2$

• dipion state with $J^P = 0^+, 1^-, 2^+, ...,$ a rich set of observables (decay width distributions, asymmetries etc.)

• final-state pions interact strongly and form resonances, $\rho(770)$ with $J^P=1^-$, $B\to\rho\ell\nu_\ell$ is a model-dependent part of the $B\to 2\pi\ell\nu_\ell$

\square The $B \to K \ell^+ \ell^-$, $B \to K \pi \ell^+ \ell^-$ FCNC decays

■ the *b* → *s*^{*t*+} *l*⁻ loop diagrams reduced to effective local operators, since *t*, *Z*, *W* are much heavier than *b*

$$
\left|H_{\text{eff}}=-\frac{G_F}{\sqrt{2}}V_{\text{tb}}V_{\text{ts}}^*\sum_{i=1}^{10}C_iO_i\,,\right|
$$

$$
O_{9(10)} = \frac{\alpha_{em}}{2\pi} [\bar{s}\gamma_\mu (1-\gamma_5) b] \ell \gamma^\mu (\gamma_5) \ell,
$$

$$
C_9 \simeq 4.4, C_{10}(m_b) = -4.7,
$$

*O*_{1−8} play a secondary role

• in $B \to K \ell^+ \ell^-$ the hadronic part for *O*⁹,¹⁰ is again reduced to the two $B \to K$ form factors

KORK ERKER ADAM ADA

 \bullet *B* \rightarrow *K* πl ⁺ l </sub>⁻, four form-factors , *K* π state form the *K*^{*}(892) and other $J^P=0^+, 1^-, 2^+$ resonances

□ Hadron form factors in QCD

 \triangleright pion e.m. form factor, QCD asympotitics, a convolution:

$$
F_{\pi}(Q^2)^{asympt}=\frac{8\pi\alpha_s f_{\pi}^2}{9Q^2}\Bigg(\int\limits_0^1\!\!du\frac{\varphi_{\pi}(u,\mu)}{\bar u}\Bigg)^2\Bigg|_{\mu\sim Q},
$$

 \blacktriangleright universal pion distribution amplitude : vacuum-pion matrix element expanded near $x^2 = 0$

$$
\langle \pi(p)|\bar{u}(x)[x,0]\gamma_\mu\gamma_5d(0)|0\rangle_{x^2=0}=-ip_\mu f_\pi\int_0^1 du\,e^{iup\cdot x}\varphi_\pi(u)
$$

KORK ERKER ADAM ADA

[Chernyak, Zhitnisky; Efremov,Radyushkin; Brodsky-Lepage (1977-1980)]

how large is the "soft" part ? $\sim 1/Q^4$

 \Box Heavy-to-light form factors in QCD

- use of effective theories obtained from QCD in a certain limit: heavy-quark limit \rightarrow HQET, large recoil limit \rightarrow SCET
- factorization theorems in $m_b \to \infty$, (originally for $B \to \pi\pi$)

[M. Beneke, G. Buchalla, M. Neubert and C. T. Sachraida (1999)]

• for *^B* [→] ^π form factor at large recoil: (*E*^π [∼] *^mB*/2, *^q* ² [→] 0)

[M. Beneke, Th. Feldmann (2001)]

$$
f_{B\pi}(q^2) \sim \alpha_s(\mu) \int d\omega du \, \phi_B^+(\omega,\mu) T_h(q^2,\omega,u,\mu) \varphi_\pi(u,\mu) + f_{B\pi}^{soft}(q^2)
$$

$$
\mu = \sqrt{m_b \Lambda}
$$

• the main challenge: calculate the soft (overlap[\) p](#page-28-0)[art](#page-30-0) [o](#page-28-0)[f t](#page-29-0)[h](#page-30-0)[e](#page-0-0) [for](#page-55-0)[m](#page-0-0) [fa](#page-55-0)[cto](#page-0-0)[r](#page-55-0)
 $\begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet\n\end{array}$

The method of QCD light-cone sum rules (LCSRs)

[I.I.Balitsky, V.M.Braun, A.V. Kolesnichenko (1986); V.L.Chernyak, I.Zhitnisky (1990)]

KORKARA KERKER DAGA

- a hybrid of asymptotic formulas a'la ERBL and SVZ sum rules: factorization predetermined
- outline of the method:

vacuum-to-hadron correlator of currents

- the method is valid at $q^2 \ll (m_B m_h)^2$ (large recoil of *h*)
- two different versions of LCSRs for $B \to h$ are used:
	- with vacuum $\rightarrow h$ correlator
	- with $B \rightarrow$ vacuum correlator (HQET)

\Box The correlation function used for $B \to \pi$ form factor

 q^2 , $(p+q)^2 \ll m_b^2$, *^b*-quark highly virtual ⇒ *^x* ² [∼] ⁰

 $\mathcal{F}_\lambda(q,p) = i\int d^4x\; e^{iqx}\langle\pi(p)\mid \mathcal{T}\{\bar{u}(x)\gamma_\lambda b(x),\bar{b}(0)i\gamma_5 d(0)\}\mid 0\rangle$ $= F((p+q)^2, q^2)p_{\lambda} + \widetilde{F}((p+q)^2, q^2)q_{\lambda}$

KOD KARD KED KED BE YOUR

□ Diagrams

• leading order in α_s (LO) including soft, i.e. low-virtuality gluon

• NLO, *^O*(α*s*) contributions

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

□ Operator Product Expansion near the light-cone

• the correlation function expressed in a factorized form:

$$
F((p+q)^2, q^2) = i \int d^4x \, e^{iqx} \Bigg\{ \left[S_0(x^2, m_b^2, \mu) + \alpha_s S_1(x^2, m_b^2, \mu) \right] \Bigg\}
$$

$$
\otimes \langle \pi(p) | \bar{u}(x) \Gamma d(0) | 0 \rangle |_{\mu}
$$

$$
+ \int_0^1 d\mathbf{v} \, \tilde{S}(x^2, m_b^2, \mu, \mathbf{v}) \otimes \langle \pi(p) | \bar{u}(x) G(\mathbf{v} x) \tilde{\Gamma} d(0) \} | 0 \rangle |_{\mu} \Bigg\} + ...
$$

- $S_{0,1}$, \tilde{S} perturbative amplitudes, (*b*-quark propagators)
- vacuum-pion matrix elements expanded near $x^2 = 0$ \Rightarrow universal pion light-cone distribution amplitudes (DAs) :

$$
\langle \pi(p)|\bar{u}(x)[x,0]\gamma_\mu\gamma_5d(0)|0\rangle_{x^2=0}=-ip_\mu f_\pi\int_0^1 du\,e^{i\mu p\cdot x}\varphi_\pi(u)+O(x^2)\;.
$$

- the expansion near $x^2 = 0$ goes over twists $(t \ge 2)$ of DAs
- terms [∼] *^S*˜ suppressed by powers of 1/ √ *mb*Λ;

□ The OPE result

$$
F((p+q)^2, q^2) = \sum_{t=2,3,4,...} \int du \; T^{(t)}(q^2, (p+q)^2, m_b^2, \alpha_s, u, \mu) \, \varphi_{\pi}^{(t)}(u, \mu)
$$

hard scattering amplitudes ⊗ pion light-cone DA

KORKARA KERKER DAGA

 $-$ LO twist 2,3,4 $q\bar{q}$ and $\bar{q}qG$ terms:

[V.Belyaev, A.K., R.Rückl (1993); V.Braun, V.Belyaev, A.K., R.Rückl (1996)]

- LO twist 5.6 $q\bar{q}DG$ terms in factorizable approximation: [A.Rusov (2017)]
- $-$ NLO $O(\alpha_s)$ twist 2, (collinear factorization) [A.K., R.Rückl, S.Weinzierl, O. Yakovlev (1997); E.Bagan, P.Ball, V.Braun (1997);] -NLO $O(\alpha_s)$ twist 3 (coll.factorization for asympt. DA) [P. Ball, R. Zwicky (2001); G.Duplancic, A.K., B.Melic, Th.Mannel, N.Offen (2007)] $-NNLO$ $O(\alpha_s^2 \beta_0)$ correction [A.Bharucha, (2012)]

 \square Basics of the pion DA's

• twist 2 DA: normalized with *^f*π, expansion in Gegenbauer polynomials

$$
\varphi_{\pi}(u,\mu)=6u(1-u)\left[1+\sum_{n=2,4,...}a_{n}^{\pi}(\mu)C_{n}^{3/2}(2u-1)\right],
$$

 $a^{\pi}_{2n}(\mu) \sim [Log(\mu/\Lambda_{QCD})]^{-\gamma_{2n}} \rightarrow 0 \text{ at } \mu \rightarrow \infty$

[Efremov-Radyushkin-Brodsky-Lepage evolution]

- essential parameters: $a_{2,4}^{\pi}(\mu_0)$, determined from:
	- matching measured pion form factors to LCSRs,
	- two-point QCD sum rules,
	- lattice QCD
- recent determination vs older results $\overline{S_{\text{S.Cheng. AK. A. Rusov (2020)}}$
- remaining minor input parameters: normalization constants and moments of twist 3,4 DAs, determined mainly from two-point sum rules $\mathcal{L} = [P.$ $\mathcal{L} = [P.$ [B](#page-34-0)[all,](#page-35-0) [V.B](#page-36-0)[rau](#page-0-0)[n, A](#page-55-0)[.Len](#page-0-0)[z \(2](#page-55-0)[006](#page-0-0)[\) \]](#page-55-0) $\mathcal{L} \cap \mathbb{R}$

TABLE V. Comparison of the second and fourth Gegenbauer moments obtained with various methods.

 \Box Hadronic dispersion relation

• Analytical continuation of the correlation function in the complex variable $(p+q)^2$ at fixed $q^2 \Rightarrow$ Cauchy theorem,

$$
F((p+q)^2,q^2)=\int_{s_{min}}^{\infty}ds\frac{\text{Im}F(s,q^2)}{s-(p+q)^2-i\epsilon}
$$

• replacing the Im part by the sum over all possible hadronic states with *B*-meson quantum numbers, located at $s_{min} = m_B^2$ and above

 $f_Bf_{B_{\pi}}^+(q^2)$

 \sum_{B_n} \sum_{B_h} - $\rightarrow duality(s_0^B)$ **KORKAR KERKER E VOOR**

Derivation of LCSR

• matching OPE with disp. relation at q^2 , $(p+q)^2 \ll m_b^2$

$$
[F((p+q)^2, q^2)]_{OPE} = \frac{m_B^2 f_B f_{B\pi}^+(q^2)}{m_B^2 - (p+q)^2} + \int_{(m_{B^*}+m_{\pi})^2}^{\infty} ds \, \frac{\text{Im} F(s, q^2)}{s - (p+q)^2}
$$

• quark-hadron duality approximation

(based on the $s \to \infty$ limit: $F(s) \to F_{OPE}(s)$)

$$
\int_{(m_{B^*}+m_{\pi})^2}^{\infty} ds \frac{\text{Im }F(s,q^2)}{s-(p+q)^2} = \int_{s_0^B}^{\infty} ds \frac{[\text{Im }F(s,q^2)]_{OPE}}{s-(p+q)^2}
$$

• subtraction and Borel transform, \Rightarrow LCSR

$$
m_B^2 f_B f_{B\pi}^+(q^2) e^{-m_B^2/M^2} = \int\limits_{m_b^2}^{s_0^B} ds \, e^{-s/M^2} [\text{Im} F(s, q^2)]_{OPE}
$$

• fixing s_0^B : acting with $-d/d(1/M^2)$ over both parts and dividing by the same LCSR \Rightarrow the ratio equals to $m_{\!B}^2$ \Box Obtaining the $B \to \pi$ form factors from LCSRs

- the second form factor $f_0(q^2)$ is obtained using the LCSR from the second invariant amplitude F
- universal inputs: \overline{m}_b , α_s , $\varphi_{\pi}^{(t)}(u)$, t=2,3,4; *f_B* from two-point (SVZ) sum rule;
- specific inputs: optimal interval of M^2 , μ
- **uncertainties due to:**
	- variation of input parameters,
	- quark-hadron duality

(suppressed with Borel transformation, controlled by the m_B calculation)

• LCSRs predict *both* "soft-overlap" (dominant !) and "hard-scattering" contributions to the form factors

KORKAR KERKER E VOOR

- the method uses finite m_b , yields $1/m_b$ expansion
- $B_{(s)} \rightarrow K$ form factors, including $m_s \neq 0$.

\square Results for $B_{(s)} \to \pi, K$ form factors

[AK, A.Rusov, 1703.04765]

Figure 1. The vector (tensor) form factors of $B_s \to K$, $B \to K$ and $B \to \pi$ transitions calculated from LCSRs including estimated parametrical uncertainties are shown on the upper, middle and lower left (right) panels, respectively, with the dark-shaded (green) bands. Extrapolations of the lattice QCD results for $B_s \to K$ [Fermilab-MILC (2014)], $B \to K$ [HPQCD] and $B \to \pi$ [Fermilah=MILC (2015)] form factors are shown with the light-shaded (orange) bands.

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$ 2990

LCSR results on *^D* [→] ^π form factor

- simply replacing *^b* quark to *^c* quark in the correlation function
- $c \rightarrow d$ flavour-changing transitions

FIG. 6: The $D \to \pi$ form factor $f_+^{D \to \pi}(0)$ from this work an comparisons with other determinations $\boxed{12}$, $\boxed{13}$, $\boxed{23}$ - $\boxed{25}$.

 f_{F} [fro](#page-40-0)[m](#page-41-0) [H](#page-0-0)[PQ](#page-55-0)[CD](#page-0-0) [\(2](#page-55-0)[01](#page-0-0)[1\)](#page-55-0)

 000

 \Box LCSRs with *B*-meson distribution amplitudes (DAs)

B-meson DAs

• definition of two-particle DA in HQET:

$$
\langle 0|\bar{q}_{2\alpha}(x)[x,0]h_{\nu\beta}(0)|\bar{B}_{\nu}\rangle
$$

= $-\frac{i\hbar_{B}m_{B}}{4}\int_{0}^{\infty}d\omega e^{-i\omega\nu\cdot x}\left[(1+\rlap/v)\left\{\phi_{+}^{B}(\omega)-\frac{\phi_{+}^{B}(\omega)-\phi_{-}^{B}(\omega)}{2\nu\cdot x}\right\}\right]\gamma_{5}\right]_{\beta\alpha}$

⊕ higher twists

• key input parameter: the inverse moment

$$
\frac{1}{\lambda_{\mathcal{B}}(\mu)}=\int_{0}^{\infty}d\omega\frac{\phi_{+}^{\mathcal{B}}(\omega,\mu)}{\omega}
$$

- possible to extract λ_B from $B \to \gamma \ell \nu_\ell$ using QCDF⊕LCSR [Y.-M. Wang (2016) , M.Beneke, V.M. Braun, Y.Ji, Y.-B. Wei (2018)],
- QCD sum rules in HQET: $\lambda_B(1 \text{ GeV}) = 380 \pm 150 \text{ MeV}$

[V.Braun, D.Ivanov, G.Korchemsky (2004); AK, R.Mandal, Th.Mannel (2021)]

higher twists DAs [V. Braun, Y. Ji, A. Manashov (2017)]

□ Uses of LCSRs with *B* meson DA's

• adjusting the interpolating current to the *^h* state

- **e** $B \to \pi, K, K^*, \rho$ [A.K., T.Mannel, N.Offen (2006)]
- $B \rightarrow D, D^*$ [S.Faller, A.K., C.Klein, T.Mannel (2009)]
- NLO corrections to $B \to \pi$ FFs [Y.-M. Wang, Y.-L.Shen (2015)]
- NLO corrections to $B \to D$ FFs [C.-D.Lü, Y-.L. Shen,.Y-M. Wang, Y.-B. Wei (2017)]
- higher twists in OPE, $B \to \pi, K$ [C.-D.Lü, Y-.L. Shen, Y-M. Wang, Y.-B. Wei (2018)]
- all $B \to \pi$, K , D , ρ , K^* , D^* form factors in LO
(bigher twists: uncertainties Bayesian analysis) IN Guhernal (higher twists; uncertainties - Bayesian analysis) [N.Gubernari, A.Kokulu, D. van Dyk, (2018)]

KORKARA KERKER DAGA

● *B* → *D*^{**}(1⁺) form factors [N.Gubernari, AK, R.Mandal, Th.Mannel (2022)]

\Box Results and comparison ($B \rightarrow \pi, K, D$)

from [N.Gubernari, A.Kokulu, D. van Dyk, (2018)]

\Box Semileptonic transitions to di-mesons

- a practical problem: to assess "nonresonant" background in $B \to \pi \pi \ell \nu_{\ell}$ or $B \to K \pi \ell \ell$
- in the theory language:
	- use general $B \to \pi\pi$ form factors:

$$
\langle \pi^+(k_1)\pi^0(k_2)|\bar{u}\gamma^\mu(1-\gamma_5)b|\bar{B}^0(p)\rangle = -F_\perp(q^2,k^2,\zeta)\frac{4}{\sqrt{k^2\lambda_B}}\,i\epsilon^{\mu\alpha\beta\gamma}\,q_\alpha\,k_{1\beta}\,k_{2\gamma}+...
$$

KORKARA KERKER DAGA

$$
(2\zeta - 1) = (1 - 4m_{\pi}^2/k^2)^{1/2} \cos \theta_{\pi}
$$
, in dipion c.m.

- expand in partial waves, isolate dipion *^P*-wave $F_{\perp}(q^2, k^2, \zeta) \Rightarrow F_{\perp}^{(\ell=1)}(q^2, k^2)$
- hadronic dispersion relation in dipion invariant mass

 \square Dispersion relation for the $B \to \pi\pi$ vector FF

• three-resonance ansatz:

$$
\frac{\sqrt{3}F_{\perp}^{(\ell=1)}(q^2, k^2)}{\sqrt{k^2}\sqrt{\lambda_B}} = \frac{g_{\rho\pi\pi}}{m_{\rho}^2 - k^2 - im_{\rho}\Gamma_{\rho}(k^2)} \frac{V^{B\to\rho}(q^2)}{m_B + m_{\rho}}
$$

$$
+ \frac{g_{\rho'\pi\pi}}{m_{\rho'}^2 - k^2 - im_{\rho'}\Gamma_{\rho'}(k^2)} \frac{V^{B\to\rho'}(q^2)}{m_B + m_{\rho'}} + \frac{g_{\rho'\pi\pi}}{m_{\rho'}^2 - k^2 - im_{\rho''}\Gamma_{\rho''}(k^2)} \frac{V^{B\to\rho''}(q^2)}{m_B + m_{\rho''}} + ...
$$

- inspired by the timelike pion e.m. form factor in $e^+e^- \to \pi^+\pi^-$ or in $\tau \to \pi^-\pi^0\nu_{\tau}$: modelled at $\sqrt{k^2} \le 1.5$ GeV to a sum of ρ, ρ' (1450), ρ'' (1750)
- calculate $B \to \pi\pi$ or $B \to K\pi$ form factors with QCD methods ρ, ρ', \dots or K^* ,... have to be "embedded" in this calculation
- model-dependence of the input is unavoidable

 \Box Use of LCSRs with dipion distribution amplitudes

[Ch. Hambrock, AK, (2015)

 Ω

- consider $\bar{B}^0 \to \pi^+ \pi^0 \ell^- \nu_\ell$, isospin 1, *L* = 1, 3, , ...
- vacuum \rightarrow dipion correlation function

- nonperturbative input: dipion distribution amplitudes (DAs)
- introduced and developed for $\gamma^* \gamma \to 2\pi$ processes [M. Diehl, T. Gousset, B. Pire and O. Tervaev, (1998). D. Müller, D. Robaschik, B. Geyer, F.-M. Dittes and J. Horejsi, (1994), M. V. Polyakov, (1999)]
- only LO, twist-2 approximation for dipion DAs available
- DAs model available only at small *^k* ² [∼] ⁴*m*² π
- problems addressed:
	- how important are $L > 1$ partial waves of 2π state in $B \to \pi \pi \ell \nu_\ell$?
	- **comparison w[ith](#page-46-0)** *B* \rightarrow \rightarrow \rightarrow \rightarrow *[ρ](#page-48-0)* FF[s](#page-55-0) calculated from LCSRs with narrow *ρ* [DA](#page-0-0)s

□ Applying LCSRs with *B*-meson distribution amplitudes

[S.Cheng, AK, J.Virto, (2017)]

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

■ LCSRs with *B*-meson DA and $\bar{u}\gamma_\mu d$ interpolating current

• The correlation function:

$$
F_{\mu\nu}(k,q) = i \int d^4x e^{ik\cdot x} \langle 0|T\{\vec{d}(x)\gamma_\mu u(x), \vec{u}(0)\gamma_\nu(1-\gamma_5)b(0)\}\vert \vec{B}^0(q+k)\rangle,
$$

= $\varepsilon_{\mu\nu\rho\sigma} q^\rho k^\sigma F_{(\varepsilon)}(k^2,q^2) + i g_{\mu\nu} F_{(g)}(k^2,q^2) + i q_\mu k_\nu F_{(qk)}(k^2,q^2) + ...$

\Box Accessing $B \to \pi\pi$ form factors

• OPE diagrams [⇒] invariant amplitudes [⇒] dispersion form in *^k* 2 :

$$
F_{(\varepsilon)}^{\text{OPE}}(k^2, q^2) = f_B m_B \int_0^\infty d\sigma \, \frac{\phi_+^B(\sigma m_B)}{\bar{\sigma}(s - k^2)} + \{3 - \text{particle DAs}\}
$$

 $s = s(\sigma, q^2) = \sigma m_B^2 - \sigma q^2/\bar{\sigma}$, $\bar{\sigma} \equiv 1 - \sigma$ • hadronic dispersion.relation and unitarity:

$$
F_{(\varepsilon)}(k^2, q^2) = \frac{1}{\pi} \int_{4m_{\pi}^2}^{\infty} ds \, \frac{\text{Im} F_{(\varepsilon)}(s, q^2)}{s - k^2}.
$$

$$
2 \operatorname{Im} F_{\mu\nu}(k,q) = \int d\tau_{2\pi} \underbrace{\langle 0|\bar{d}\gamma_{\mu}u\,|\pi^+\pi^0\rangle}_{F_{\pi}(s)} \underbrace{\langle \pi^+\pi^0|\bar{u}\gamma_{\nu}(1-\gamma_5)b|\bar{B}^0(q+k)\rangle}_{B\to 2\pi \ (\ell=1) \text{ form factors}} + \cdots,
$$

KOD KARD KED KED BE YOUR

\Box Resulting sum rules

• e,g,. for the form factor $F_{\perp}^{(\ell=1)}$ of the vector current

$$
\int_{4m_{\pi}^2}^{s_0^{2\pi}} ds \, e^{-s/M^2} \frac{\sqrt{s} \left[\beta_\pi(s)\right]^3}{4\sqrt{6}\pi^2 \sqrt{\lambda}} \, F_\pi^*(s) \, F_\perp^{(\ell=1)}(s, q^2) \n= f_B m_B \left[\int_0^{\sigma_0^{2\pi}} d\sigma \, e^{-s(\sigma, q^2)/M^2} \, \frac{\phi_+^B(\sigma m_B)}{\bar{\sigma}} + m_B \, \Delta V^{BV}(q^2, \sigma_0^{2\pi}, M^2) \right],
$$

 $\sigma_0^{2\pi}$ - the solution of $\sigma m_B^2 - \sigma q^2/\bar{\sigma} = s_0^{2\pi}$, three-particle DA contribution Δ*V*^{BV}

- similar sum rules for all other *P*-wave $B \to 2\pi$ form factors
- not a direct calculation, given the shape of the $B \to 2\pi$ form factors, these sum rules can provide normalization
- probing two different ρ -resonance models for the $B \to \pi\pi$ FF \Rightarrow an appreciable contribution of ρ' (up to 20% of ρ in residue) is consistent with the LCSRs

\Box *B* \rightarrow 2 π (ℓ = 1) FFs: dipion mass dependence

 $2Q$ **≮ロト ⊀伊ト ⊀ ヨト** B Þ

\Box *B* \rightarrow 2 π (ℓ = 1) FFs: q^2 -dependence at small k^2

• extension of the method to $B \to K \pi (J^P = 1^- , 0^+)$ form factors

[S.Descotes-Genon, AK, J.Virto, (2019)], [S.Descotes-Genon, AK, J.Virto, K.Vos, (2023)]

K ロ > K 個 > K ミ > K ミ > 「ミ → の Q Q →

□ Summary

- two main versions of LCSRs for *^B* [→] *^h* form factors: with light-hadron DAs and with *B*-meson DAs. complement each other and results mutually agree within uncertainties
- LCSRs provide a variety of $B \to h$ form factors at large recoil of h, support lattice QCD extrapolation with independent estimates
- LCSRs provide probes of resonance models for the full $B \to \pi \pi$, $K \pi$ form factors,
- **•** future perspectives:
	- the accuracy of lattice QCD calculation already in the nearest future cannot be achieved by QCD sum rules and LCSRs
	- but: there are hadronic matrix elements where even a 30-40% accuracy would be sufficient, and they are not yet accessible on the lattice

More details in these reviews:

 \blacktriangleright M. A. Shifman.

Snapshots of hadrons or the story of how the vacuum medium determines the properties of the classical mesons which are produced, live and die in the QCD vacuum, arXiv:hep-ph/9802214 [hep-ph].

 \triangleright V. M. Braun. QCD sum rules for heavy flavors, arXiv:hep-ph/9911206

 \blacktriangleright P. Colangelo and A. Khodjamirian, QCD sum rules, a modern perspective, arXiv:hep-ph/0010175

 \blacktriangleright A. Khodjamirian, Quantum chromodynamics and hadrons: An Elementary introduction, (lectures at European School on High Energy Physics (2003)) arXiv:hep-ph/0403145.

 \square even more details in this book:

Hadron **Form Factors**

From Basic Phenomenology to QCD Sum Rules

Alexander Khodjamirian

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*