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J A glance at history

® In 1831, the Cauchy formula was derived,
A.-L. Cauchy, "Oeuvres completes, Ser. 1", 4, Paris (1890)

we will use it for a function M(g?),
in a complex plane ¢ — z, c

ifey | o
C

here q2 = qg — (72 , q is a four-momentum

® [n 1969, the operator product expansion (OPE) in quantum field
theory was formulated, K. G. Wilson, Phys. Rev. 179 (1969), 1499-1512

we will use it in the momentum representation' at q2 — —00, (x = 0)
i / d*x €% T{ja(x)js(0)} = Z Cas(G?)0n(0),

® both Cauchy formula and Wilsonian OPE are the underlying
elements of the QCD sum rule method
[M. Shifman, A. Vainshtein,V. Zakharov=(1979)]



[0 Outline of these lectures

® Part 1: QCD (SVZ) sum rules based on local OPE
calculation of the B-meson decay constant

® Part 2: QCD Light-cone sum rules (LCSRs) for B meson
semileptonic form factors

B — wlvy, Bs — Kty
B — 2nlvy, B— Knll
® Part 3: Various applications
nonlocal effects in b — s¢¢ exclusive transitions
CP violation in charmed meson decays

B meson decays into dark matter



Part 1:
QCD (SVZ) sum rules based on the local OPE



0 B — 7v, decay and the B-meson Qecay constant

® the decay %
amplitude: } B %” N W

AB~ — 7)) = % Vb (0|Uvy,ysb|B) T (1 — vs5) v

® hadronic matrix element = decay constant
(0/Un*~sb|B(pe)) = ipgle, Pg=mp

® partial width: (suppressed for ¢ = u, e) )

I G2|Vyp)? m?
BR(B~ =17 ;)sy = HT“‘mimB <1 - m%> forg-,

{b — u flavour-changing transition} @ {QCD }

® V,, determination, BSM search/limits from B — 7 measurements
are impossible without precise knowledge of f5



O Rare leptonic decays: Bs g — (T(~

® inSMt, W, Z-loops, sensitive to VsV, potentially also to new
physics

® after integrating out heavy loops: (the effective quark-lepton coupling Cyg ),
the hadronic matrix element in decay amplitude is reduced to
(0[S7*5b|Bs(ps)) = iPgfe,, (s — d)

® fz ~ fg, = fg (isospin symmetry), but fg, # fg, (SU(3)s violation)



O B-meson annihilation from the point of view of in QCD

A~ mg — my ~ 500-700 MeV,
the energy scale of quark-gluon interactions binding b and u inside
the B

~<— confinement

o, @

asympt.
freedom

-

Aqep  1GeV Q E

hadronization perturbative QCD f
|

as(/) too large for a perturbative expansion

domain of nonperturbative QCD



0 B-meson annihilation in nonperturbative QCD

» |B7) =|bu @ gluons & soft quark-antiquark pairs )
» (0|, the QCD vacuum,



0 QCD Vacuum

» the lowest energy state, no hadrons
contains fluctuating quark-antiquark and gluon fields:
vacuum condensates

> eg., (0[qql0) #0, q=u,d;s
-spontaneous breaking of chiral symmetry

> (0|G,., G*|0) # 0, (0[Gc,., GHq|0) # O,...

» universal set of vacuum condensate densities with
dimension d = 3,4,5, ..



O Correlation function of ub currents
» formal definition of the vacuum correlation function:
() =1 [ d* 6™ O T ()1 0)}10).

a quantum amplitude of emission and absorbtion of
ub pair in vacuum by the external current:

JW¥ = Gy,sb,
it = byusu Jw ' Jw
() = q@
u

» the flavour and J” of the current can vary
currents with other meson quantum numbers (Bs, D, D, p, ...),
(any Lorentz-covariant and colour-invariant local operator )



[ Correlation function far below the B-meson threshold
b

Jw Jw
q @m

T

» 4-momentum of the bu pair:  q=(go.G), g° =5 — G,
rest frame: G =0, g% = g2, fix the energy go < mp

» the bu-pair is virtual: AEAt ~1,
the energy deficit AE ~ mp , At ~1/my

mp > /\OCD: At < 1//\QCD

» virtual quarks propagate during short times,
are asymptotically free,

»atg? < m,mg,

M, (g?) ~ simple loop diagram
@{ calculable QCD corrections} « to be added



O Calculating the correlation function at g2 < m3
» adding perturbative gluon exchanges to the simple loop ,
as(mg) < 1

» including nonperturbative effects due to condensates
» typical diagams

loop gluon exchange
quark condensate gluon condensate

» technically, using Feynman rules of QCD and considering the vacuum
quark-antiquarks and gluons as external static fields.

» The result: analytical expression for N5(g?) in terms of
mp, my and universal QCD parameters as, (9Q),...



(J Expansion of the operator-product in local operators

» interpreting the calculation as an operator-product expansion:

0)}= > Cua)(x% My, my, a5)Oy(0)

T4 (0h"

d=0,34,..

in local operators with the quantum numbers of vacuum

(Lorentz-scalar, C-,P-,T-invariant, colorless) and growing dimensions:

O =1,03=0qq,04 =

G Gy, ... (no operator of dimension 2 in QCD )

> vacuum average
integrating over

N.(q

—//d4xe'QX<0|T{/gV(x) Wi(0)}|0

Zcm/(d)(q » Mp, My, CL'S)<0|Od’0
d=0,3,4,..

» perturbative loops — Wilson coefficeints Cy4 as series in as,

d # 0, (0[Og|0) ~

(/\QCD)d - vacuum condensate densities,

» at g> < m2, high-d terms suppressed by O[(Agcp/Mp)?]




O Correlation function above B threshold

» Hypothetical neutrino-electron scattering,
varying c¢.m. energy /s = \/¢?,
» M,,(g?) is the part of the scattering amplitude

Ve , Ve
D
W W /
e u \ e
Vs~ 0

highly virtual quark pair, B-meson, resonance
' Ve b e
’ / W 8 W /
8 \\ e e . 5 \
Vs>mp NS ¢

excited B mesons multiple hadrons (continuum)



O Hadronic representation of M, (g?)

» N,w(g?) at > < m: B
a short-distance
short-lived bu -fluctuation,

~ loop diagram

OPE region

» M,(g%) at g > m3, :
propagation of B meson and excited B states
(infinite sum over resonant and multiparticle states)

» the hadronic representation (dispersion relation):

M0 (G7) = (0ljB)(Blj,"|0) Y (012 | Bexc) {BexeliyT10)
. o g M

» rigorous theory derivation is based on
analyticity of M,,,(¢?) at ¢ — z
(valid in any local quantum-field theory)



(J Derivation of dispersion relation
® transforming the Cauchy formula

)
[ — 2=q’
/ \
12 e ——
[ i
\qz i /
\\\77 - /,/

R

o 1 G 1 [ Te+i)-I(z—i6) 1 [ Ti()

M) =g | “gTam | ¥ = top [ B @9
|el=R Smin E}

Suppose the function decreases at |¢?| — oo, TI(¢?) ~ 1/|¢*|", where A > 0. Then the first integral
vanishes at R — oo. Taking an infinitely small semicircle, one makes the third integral also vanishing.
Furthermore, since there are no singularities of II(z) at Re z < spin, the integrand in the second integral
reduces to the imaginary part: II(¢® + i6) — II(¢* — i6) = 2i Im II(q®) (due to Schwartz reflection
principle). Finally, we obtain the desired dispersion relation

o 1T I
e =1 [ ds% )

Smin

® unitarity relation for imaginary part:

Imn,,(s)= Y (0lj|he)(hali,’!|0)d7n,
hg=B,B8r,...



J Quark-hadron duality

(omitting Lorentz indices everywhere)

N(e?) = (01B){B|j"'T|0) n <o|jW|Bexc><Bexc|jWT|0>
m2 N q2 Bexc Bexc N q2
/ d ImM(s —/d Imn( 2)
s§—q
(mb+mu So

» the sum of Bg-states is approximated by the calculable integral
over Imls(s) = sp, the effective threshold



[ Deriving the sum rule for f3

» isolating the ground-state B-state and introducing the spectral
density of excited hadronic states

5 [ 4o p(s)

2 2 2

mg-q® ) Ts-q
h

N(g?) =

» expressing the OPE result as a dispersion relation

So oo
l_l(qz)(OPE) _ 1/ds|mn(OPE)(s) 1/ds|mﬂ(OPE)(s)

2
mj

So

equating the two representations at g% < mg
- global quark-hadron duality
» at sufficiently large s the local duality is also valid:

#(s) = LImn(OPE)(s),
i



O Deriving the sum rule for f3

» semilocal quark-hadron duality is used, the effective threshold s

oo

7 h (OPE)

/ds P (s)2 ~ 1/dsilmn (s)
s$—q

Sh

T s—@?
So

» this yields approximate analytical relation for decay constant:

So

famg 1/dslmI‘I(OPE)(s)
m—q2 s—q?

m
» Borel transformation
2y _ 2y " (—qz)("+1) d\" 2
N(M?) = ByeN(q°) = _q'!:“_m T\ n(g) -
_q2/n:M2

suppresses the higher-state contributions to the hadronic sum,
the sum rule less sensitive to the duality approximation

Bue(rztgz) = exp(—m? | MP)

m27q2



O The resulting QCD sum rule

So
fgmge—m"é/MZZH{Z dse~s/M* |mn(OPE) (s, my, my, as, (0|q|0), ...

b

» current accuracy of MN(OPE)(g?) at g2 < m2:
vacuum condensates with d < 6
loop @ O(as) @ O(a?)
[K.Chetyrkin, M.Steinhauser (2001)]

» standard way to fix sp:
calculate the mass of B-meson from the same sum rule:

s [SA

2
Me=~""35R



O Input parameters

parameter input value

[Ref.] ‘ rescaled values

quark-gluon coupling and quark masses

(1.5 GeV) = 0.347979:9190

as(mz) 0.1179 £ 0.0010

@5(3.0GeV) = 0.253175:99%0
TMe(Thc) L280 £ 0.025 GeV | 1y Me(1.5GeV) = 1.202 £ 0.023 GeV
My (7) 4.18 £ 0.03 GeV (3.0 GeV) = 4.46 £ 0.04 GeV

(M + M) (15 GeV) = 7.40 + 0.09 MeV
(M +ma)(2 GeV) | 6.7840.08 MeV | [3, 41]

(M + M) (3.0 GeV) = 6.14 + 0.07 MeV

condensates
3q)(1.5 GeV) = — (279 & 22 MeV)®
@) | —esermmay | wy | 9 )=~ )
(79)(3.0 GeV) = — (295 + 24 MeV)®
(GG) 0.012+3:9% Gev* —
m2 08+02Gev? | [ —

Tvac 0.55 £0.45 —

Table 1. QCD parameters used in the LCSRs and two-point sum rules.

AK, B. Meli¢, Y. M. Wang and Y. B. Wei, [arXiv:2011.11275 [hep-ph]].



0 By and D) decay constants, sum rules vs lattice QCD

Decay constant | Lattice QCD (FLAG 2019)* | QCD sum rules xx
fs[MeV] 190.0+1.3 207+
fg,[MeV] 230.3+1.3 242+17

fs, /18 1.209+ 0.005 1171004
fo[MeV] 212.0+ 0.7 201712
fo,[MeV] 249.9+ 05 238+13

fo./ fp 1.1783+0.0016 1.15+004

«Np=2+1+1

x* P.Gelhausen, AK, A.A.Pivovarov, D.Rosenthal, 1305.5432 hep/ph]




O Universality of the method

gQ currents with various flavour and J in the correlation
functions = sum rules for decay constants of Bs, D, Ds, 7 p, K, K*,
also baryonic, gluonic currents

(any Lorentz-covariant and colour-invariant local operator )

the coefficients in the OPE depend on the currents, inputs
are universal (quark masses, as , condensates)

QCD (SVZ) sum rules address the question:

SU(3) favour and heavy-quark symmetry violations can be
estimated (finite quark masses, strange/nonstrange condensates)



Summary of part 1

» QCD sum rule, the three key elements

] Correlation function of quark-antiquark currents

4 4

Operator Product Expansion
in terms of quark-gluon diagrams =
and universal QCD parameters

Dispersion Relation,
a sum over hadronic amplitudes

v

2-point correlation functions of quark currents allow to
relate QCD with hadronic observables, e.g. fg or fp

v

flexible quantum numbers (flavour and spin-parity)

v

QCD sum rules: analytical calculation in terms of
diagrams, duality approximation for excited states
~ 10% accuracy is probably the limit

future goal: to better assess OPE/input/duality uncertainties

v



Part 2:
QCD Light-cone sum rules



O B — 7 transition form factors

[ 133 %
hadronic matrix element is \\ B %%;%j%%{é |
reduced to two form factors:

functions of the momentum
transfer squared g2

+ - + 2 %_ mi
(* (P blB(P + @) = f5,(¢7) 200+ (1 = 72 )
2 — m?

+f87r(q2) qu o
this decomposition follows from symmetry considerations only,

observable: differential width
dI'(B0 — rtl7v) B G,%|Vub\2

T = SRl () + O(m)

0 < g2 < (mg— mx)2 ~ 26 GeV2, p, -kinematical factor



O B — 7r form factors
semileptonic B — nr/v, decay

expansion of B — 7w matrix element:

i(m (k1) w0 (k2)|Ty* (1 — v5)b| B° (p))
4

=—F (% K?, () —— ie"PY qo ki g K

1(q C)m Qo K1 k2,

+R(GP K2, )ﬁJrFo(q K c)z\r( —%qﬂ)
—n_ 4(q-k)(q- k) 4Kk?(q - k)
+F|\(q2»kzvé)ﬁ(k“* KT,

k(k) = ki + (—)ke
dipion state with J” = 0*,1~,2%, ..., arich set of observables
(decay width distributions, asymmetries etc.)
final-state pions interact strongly and form resonances,

p(770) with JP =17, B — ptw, is a model-dependent part of the B — 2mfv;



OThe B— K¢t¢—, B— Kntt¢~ FCNC decays

the b — s¢+¢~ loop diagrams reduced to effective local operators,
since t, Z, W are much heavier than b

10 2z e
Hetr = —% VinVis>_CiOr, M”
i=

09(10) = %[5%,(1 —75)blév* (5)L, \

Co ~ 4.4, Cyo(mp) = —4.7, ) e

O1_g play a secondary role

b /\%
in B — K¢ ¢~ the hadronic part B % ;% §§@$§ K™
for Og 10 is again reduced to the §) %

two B — K form factors

B — Krtti—, four form-factors , Kr state form the K*(892) and other
JP =0%,1~, 2% resonances



[0 Hadron form factors in QCD

(@)
HARD, FACTORIZABLE SOFT.NONFACTORIZABLE

» pion e.m. form factor, QCD asympotitics, a convolution:

)

)

u~Q

» universal pion distribution amplitude :
vacuum-pion matrix element expanded near x> = 0

1
(x(P) G)X, O, 150(0)[0) e = — Dy s /0 du e, (u)

[Chernyak, Zhitnisky,; Efremov,Radyushkin; Brodsky-Lepage (1977-1980)]
» how large is the “soft” part ? ~ 1/Q*



O Heavy-to-light form factors in QCD

use of effective theories obtained from QCD in a certain limit:
heavy-quark limit — HQET, large recoil limit — SCET

factorization theorems in my, — oo, (originally for B — 7r)
[M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda (1999)]

for B — = form factor at large recoil: (E. ~ mg/2, 2 — 0)
[M. Beneke, Th. Feldmann (2001)]

HARD,FACTORIZABLE SOFT.NONFACTORIZABLE

far(qP) ~ ozs(,u)/dwdu b (w, 1) Th(QB w, U, )pr (U, 1) + 121 (9P)

= Mmp/\

the main challenge: calculate the soft (overlap) part of the form factor



[J The method of QCD light-cone sum rules (LCSRs)

[I.1.Balitsky, V.M.Braun, A.V. Kolesnichenko (1986); V.L.Chernyak, |.Zhitnisky (1990)]

a hybrid of asymptotic formulas a’la ERBL and SVZ sum rules:
factorization predetermined

® outline of the method:

\ vacuum-to-hadron correlator of currents \

v N
| hadronic dispersion relation| = [light-cone OPE |
+ N ‘ quark-hadron duality ‘ N

sum rule for F°7"(q?)

® the method is valid at g° < (mg — mh)2 (large recoil of h)
® two different versions of LCSRs for B — h are used:

with vacuum — h correlator
with B — vacuum correlator (HQET)



[ The correlation function used for B — = form factor

@, (p+9)* < m3,
b-quark highly virtual = x2 ~ 0

Fx(q,p) = i/d4X e (m(p) | T{U(x)12b(x), b(0)irsd(0)} | 0)

= F((p + 9)% ¢*)p» + F((p+ 9)?, ¢°) g




(J Diagrams

leading order in ag (LO) including soft, i.e. low-virtuality gluon

NLO, O(as) contributions

A A
A

Lo T



[J Operator Product Expansion near the light-cone

the correlation function expressed in a factorized form:
F((p+ q)? ¢%) = i/ d*x e’qx{ [So(x2, M}, 1) + asS1(X2, MG, )]
®(r(p) | u(x)rd(0)[0)|,
+/01 dv §(x*, m}, u, v) ® (x(p) | U(x)G(vx)Fd(0)} | 0>|u} + o

So.1, S- perturbative amplitudes, (b-quark propagators)

vacuum-pion matrix elements - expanded near x> = 0
= universal pion light-cone distribution amplitudes (DAs) :

1
(<(P) 0. 01 150(0) 00 = ~ipylr | o @7 (1) + O(x?).

e the expansion near x? = 0 goes over twists (t > 2) of DAs

o terms ~ § suppressed by powers of 1/v/mpA;



O The OPE result

F((p+q). / du TO(G2, (p+q)%. M. avs, 1, 1) 2O (1. 1)
t=2,3,4,.

hard scattering amplitudes @ pion light-cone DA

- LO twist 2,3,4 gqg and gqG terms:

[V.Belyaev, A.K., R.Riickl (1993); V.Braun, V.Belyaev, A.K., R.Ruckl (1996)]

- LO twist 5,6 ggDG terms in factorizable approximation:
[A.Rusov (2017)]

-NLO O(as) twist 2, (collinear factorization)
[A.K., R.Ruickl, S.Weinzierl, O. Yakovlev (1997); E.Bagan, P.Ball, V.Braun (1997);]

-NLO O(as) twist 3 (coll.factorization for asympt. DA)

[P. Ball, R. Zwicky (2001); G.Duplancic, A.K., B.Melic, Th.Mannel, N.Offen (2007) ]

-NNLO O(a28,) correction [A Bharucha, (2012)



[J Basics of the pion DA’s
twist 2 DA: normalized with f,., expansion in Gegenbauer polynomials

on(up)=6u(t —u) [1+ S ap(wcy*(u—1)]|,
n=24,..

an(p) ~ [Log(u/Nacp)] ™ — 0 at p— oo
[Efremov-Radyushkin-Brodsky-Lepage evolution]

essential parameters: a3 ,(1o),
determined from:

TABLE V. Comparison of the second and fourth Gegenbauer
moments obtained with various methods.

e matching measured pion

Method a(1 GeV)  ay(1 GeV) Reference
form factors to LCSRs, Lattics QCD oiBsLoon 0
QCD sum rule 0.28 %?D(é)g 0 1;‘-3;“0(% [1#9}15]
e two-point QCD sum rules, preient i
condensate
° Iattlce QCD LJC[{S’Rnﬁ,uzim 0.17 +0.08 0.06 £+ 0.10 [20]
LCSR fitted to 0.22-0.33 0.12-0.25  this work
dispersion relation
recent determination vs older results [ 5.Cheng, AK, A. Rusov (2020)]

remaining minor input parameters:
normalization constants and moments of twist 3,4 DAs,
determined mainly from two-point sum rules [P. Bally V.Braun, A.Lenz (2006) |



[J Hadronic dispersion relation

Analytical continuation of the correlation function in the complex
variable (p + g)? at fixed g2 => Cauchy theorem,

ImF (s, g?)

F((p+a)*.¢%) = / S e

Smin

replacing the Im part by the sum over all possible hadronic states with
B-meson quantum numbers, located at s, = m3 and above

2 2) = u U
F(g, (p+9)°) @ _}_% @
() (B

b b
p+aq p+aq

) q

15/ (?) 5= = duality (s{)
h



O Derivation of LCSR

matching OPE with disp. relation at ¢?, (p + 9)> < m

2f f+ 2 o0 >
[F((P+ a)%, a%)]ope = M85, (9°) + / dsM

m2 — (p+ q)? s—(p+q)?

(mB* +Mx )2

quark-hadron duality approximation
(based on the s — oo limit: F(s) — Fope(s))

[ mF(s.®) _ T [ImF(s.@lore
/ dSS—(P+Q)2_/dS s—(p+q)2

(Mg« +my )2 sE
subtraction and Borel transform, = LCSR

B

So
mitafy, (q?)e /M = / dse~*/M [ImF(s, ¢°)|ope

2
mj

fixing s§ : acting with —d/d(1/M?) over both parts and dividing by
the same LCSR = the ratio equals to m3



(J Obtaining the B — = form factors from LCSRs

the second form factor f,(g?) is obtained using the LCSR from the

second invariant amplitude F

universal inputs: my, as, <p$f)(u), t=2,3,4; fg - from two-point (SVZ)
sum rule;

specific inputs: optimal interval of M?,

uncertainties due to:
e variation of input parameters,
e quark-hadron duality
(suppressed with Borel transformation, controlled by the mg calculation)

LCSRs predict both “soft-overlap” (dominant ) and “hard-scattering”
contributions to the form factors

the method uses finite my, , yields 1/my, expansion

B(s) — K form factors , including ms # 0.



O Results for B(s) — m, K form factors

[AK, A.Rusov, 1703.04765]

1
S e
oh Sin@ sl ER@
04 06
04 04
02 02
] O
GV GV’
1
. 2 o
sl fik@ s @
04 06
04 04
02 02
] 0w e & w0 n
GV GV’
1
s (2 7 2
ol S sl S
04 06
04 04
02) 02
o2 4 e s wn o2 4 6 8 w0 1
FUGeV] UGV

Figure 1. The vector (tensor) form factors of B, — K, B — K and B — 7 transitions calcu-
lated from LCSRs including estimated parametrical uncertainties are shown on the upper, middle
and lower left (right) pancls, respectively, with the dark-shaded (green) bands. Extrapolations
of the lattice QCD results for B, — K [Fermilab-MILC (2014)], B — K [HPQCD] and B — 7
[Fermilab=MILC (2015)] form factors are shown with the light-shaded (orange) bands.



O LCSR results on D — 7 form factor
[Ch. Klein, A.K., Th. Mannel, N. Offen (2009)]

simply replacing b quark to ¢ quark in the correlation function

¢ — d flavour-changing transitions

L HPQCD (2011)

Don - 4 % error
£, (0)=0.666 (20)_ (Zl)iVS

Fermilab/MILC (2005) —0—
Sum Rules (2009)
ETMC (2011, preliminary) a1

Experiment + CKM Unitarity -
CLEO-c (2009) e

Belle (2006) e

I L L Il I I
01 02 03 04 05 06 07 08 0
£°7’=0)

+

FIG. 6: The D — « form factor f7=7(0) from this work ar
comparisons with other determinations ., .

from HPQCD (2011)



J LCSRs with B-meson distribution amplitudes (DAs)

[A.K., N. Offen, Th. Mannel (2006)]
"SCET sum rules", [F. De Fazio, Th. Feldmann, T.Hurth (2006)]

vacuum-to-B-correlation function: B on-shell state
1

Fan(p,q) = i / d*x P (0[T{d(x)pq(x), G(0)[ ab(0)}[B°(q + p)) = Lav(p. q)F(p?, G°)

T N
’ h-interpolating current ‘ transition current
OPE in terms of B-meson DA’s . v

a4
b

defined in HQET,

valid at 0 < g% < m3
dispersion relation:

(
.
F(p?,q%) = L [ c%5ImF(s, ¢?) = Fope(p?, ¢°)
2 5P ®

h

q

)
(©

ImFap = (0|dTq|h) (h|GT ab|B°(q + p))md(mf — 8) + ... = LaplmF(s, ¢)

a

stpzlmFOPE(& a?)

e FEP () =

1
™

%%g




0 B-meson DAs

definition of two-particle DA in HQET:
(01824 (X)[x, 0]hy5(0)|By)

. o0
_ _’meB /dwe—imv-x
4
0

B(u) — B (w
(14y) {q&f’_(w) _ Mx} 75}
Bao

2v - x

) . @ higher twists
key input parameter: the inverse moment

1 o ¢B(w,p)
- du it )
As(w) /o YT

possible to extract Ag from B — /v, using QCDF&LCSR

[Y.-M. Wang (2016) , M.Beneke, V.M. Braun, Y.Ji, Y.-B. Wei (2018) ],

QCD sum rules in HQET: A(1 GeV) = 380 = 150 MeV
[V.Braun, D.lvanov, G.Korchemsky (2004); AK,R.Mandal, Th.Mannel (2021) ]

higher twists DAS [v. Braun, Y. Ji, A. Manashov (2017)]



[0 Uses of LCSRs with B meson DA’s

adjusting the interpolating current to the h state
® B m K,K* p [AK, TMannel, N.Offen (2006)]
® B — D,D* [SFaller,AK., CKlein,T.Mannel (2009)]
® NLO corrections to B — 7 FFs [Y.-M. Wang, Y.-L.Shen (2015)]
® NLO corrections to B — D FFS [C.-D.Lii, Y-.L. Shen,.Y-M. Wang,Y.-B. Wei (2017)]
® higher twists in OPE, B — 7, K [C.-D.L0,Y-L. Shen,.Y-M. Wang,Y.-B. Wei (2018)]
[

all B— =, K, D, p, K*, D* form factors in LO
(higher twists; uncertainties - Bayesian analysis) [N.Gubernari, A.Kokulu, D. van Dyk, (2018)]

® B — D**(1%) form factors [N.Gubernari, AK, R.Mandal, Th.Mannel (2022)]



(J Results and comparison (B — m, K, D)

from [N.Gubernari, A.Kokulu, D. van Dyk, (2018)]

[ form factor at g7 = 0 | result literature | DAs [ [Ref]
0.258 + 0.031 T [Ball,Zwicky 05']
0.25+0.05 B [AK,;Mannel,Offen 06’]
0.28 +0.05 B [AK,Mannel,Offen,Wang 11
B—
U 0.2140.07 0.31 £0.02 ™ [Imsong,AK,Mannel,vanDy}
0.281 +0.038 B [Wang,Shen 15]
0.301 4+ 0.023 ™ [AK, Rusov 177]
0.253 4+ 0.028 ™ [ Ball,Zwicky 057
0.21 +0.04 B [AK,Mannel,Offen 06’]
B—m
7 0194006 | 557340021 | = | [AK Rusovi7]
0.26 4+ 0.06 B [LU,Shen,Wang,Wei18’]
0.331 £ 0.041 K [DAs, Ball,Zwicky 05]
0.31 +0.04 B [AK,;Mannel,Offen 06’]
B—K
i 0274008 | 439510033 | K | [AK Rusovi7]
0.364 + 0.05 B [L3,Shen,Wang,Wei18’]
0.358 + 0.037 K Ball,Zwicky 05']
0.27 £ 0.04 B [AK,Mannel,Offen 06']
B—K
7 0.25+0.07 0.381 +0.027 K [AK, Rusov 17]
0.363 £ 0.08 B [L3,Shen,Wang,Wei18’]
0.69+0.2 B [Faller,AK,Klein,Mannel, 08
B—D s ’ s s
F 0.65+0.08 0.673 +0.063 B [Wang,Wei, LU, Shen,17’]
fB=D 0.57 +£0.05 — B




(J Semileptonic transitions to di-mesons

a practical problem: to assess "nonresonant" background in
B — by, or B— Kl

in the theory language:

use general B — =« form factors:
_ . 4
(m " (ki)m° (k)| T* (1 = 15)b|B°(P)) = —F (0%, K%,€) NCaw N
B

(2¢ —1) = (1 — 4m2 /k2)'/2¢cos6.., in dipion c.m.

expand in partial waves, isolate dipion P-wave
FL(G? K?,) = FI (a2, K?)

hadronic dispersion relation in dipion invariant mass



(J Dispersion relation for the B — =7 vector FF

three-resonance ansatz:

VB k) _ Gpr Voo (e)
Vk3\/Xg m2 — k2 — im,T (k%) mg+ m,
N Gplmm VBHpI(qZ)
m?, — k2 —im,T ,(k?) mg+ m,
9pinn vEmr(@?)
mi,, — K2 —im,uT i (k2) mp+my

+

inspired by the timelike pion e.m. form factor
inete” = xtr~ orinT — 7 7%,
modelled at vVk2 < 1.5 GeV to a sum of p,p/(1450), p”(1750)

calculate B — nw or B — K= form factors with QCD methods
p,p,...or K*,... have to be "embedded" in this calculation

model-dependence of the input is unavoidable



[0 Use of LCSRs with dipion distribution amplitudes

[Ch. Hambrock, AK, (2015)

. - 7 (k1)
consider B® — 7t 7%~ 1y, isospin 1, L = 1,3, , ..

vacuum — dipion correlation function

nonperturbative input: dipion distribution amplitudes (DAs)

introduced and developed for v*y — 27 processes

[M. Diehl, T. Gousset, B. Pire and O. Teryaev, (1998),
D. Miller, D. Robaschik, B. Geyer, F.-M. Dittes and J. Horejsi, (1994),
M. V. Polyakov, (1999)]

only LO, twist-2 approximation for dipion DAs available
DAs model available only at small k2 ~ 4m?

problems addressed:

how important are L > 1 partial waves of 2 state in B — wmwfv,?

comparison with B — p FFs calculated from LCSRs with narrow, p DAs



J Applying LCSRs with B-meson distribution amplitudes

[S.Cheng, AK, J.Virto, (2017)]
LCSRs with B-meson DA and -+, d interpolating current

(a) . .
The correlation function:

Fuv(k,q) = i/d4xe’k‘x<0|T{a(X)7uU(X)7U(O)%U —75)b(0)}|B%(q + k),

= vpo 07K Floy (K2, @) + G Flg) (K2, @) + iGuko Figry (K2, G7) + ..



[0 Accessing B — «wr form factors
OPE diagrams =- invariant amplitudes = dispersion form in k2:

¢8(omg)

(s — k2 + {3 — particle DAs}

F((;l;E(k27 ¢°) = fzmp /0 do

. . . . . :9:s(a,q2):amf3—crq2/6, g=1—0
hadronic dispersion.relation and unitarity:

ImF.)(s,q 2)
F, ds .
(E) / T s_k2
4m2
2ImF (k. ) = /d7—27r (01dy,u |+ 70) (0 Ty (1 — 75)BIBO(q + K)) +

Fx(s) B — 27 (¢ = 1) form factors




[J Resulting sum rules

e,g,. for the form factor F(f:” of the vector current

27

S 3
_A,:z ds &=/ {ff[fi;z(f)[l Fis) I (s.P)

2w
0

= fpmp [/
0

2™ - the solution of om3 — 0q?/5 = s2™, three-particle DA contribution A VEY

B
m
do efs(onq2)/M2 @ + mBAVBV(qZ,o'(Z)”, Mz) 7

similar sum rules for all other P-wave B — 2x form factors

not a direct calculation, given the shape of the B — 2x form factors,

these sum rules can provide normalization

probing two different p-resonance models for the B — =7 FF

= an appreciable contribution of p’ (up to 20% of p in residue) is
consistent with the LCSRs
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0 B — 27 (¢ = 1) FFs: g?-dependence at small k2

gl = Model1 ] 8l = Model1
== Model 2 == Model 2

= 27 DAs (1511.02509) z —— 27 DAs (1511.02509)
= 6r ] r
H
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¢* (Gev?) ¢* (Gev?)
extension of the method to B — K= (JP = 1~,07) form factors
[S.Descotes-Genon, AK, J.Virto, (2019)], [S.Descotes-Genon, AK, J.Virto, K.Vos, (2023)]



0 Summary

® two main versions of LCSRs for B — h form factors:
with light-hadron DAs and with B-meson DAs.

complement each other and results mutually agree within uncertainties

® | CSRs provide a variety of B — h form factors at large recoil of h,
support lattice QCD extrapolation with independent estimates

® | CSRs provide probes of resonance models for the full B — 7w, K
form factors,

® future perspectives:
the accuracy of lattice QCD calculation already in the nearest
future cannot be achieved by QCD sum rules and LCSRs

but: there are hadronic matrix elements where even a 30-40%
accuracy would be sufficient, and they are not yet accessible on the
lattice



[0 More details in these reviews:

» M. A. Shifman,
Snapshots of hadrons or the story of how the vacuum medium
determines the properties of the classical mesons which are
produced, live and die in the QCD vacuum,
arXiv:hep-ph/9802214 [hep-ph].

» V. M. Braun,
QCD sum rules for heavy flavors,
arXiv:hep-ph/9911206

» P. Colangelo and A. Khodjamirian,
QCD sum rules, a modern perspective,
arXiv:hep-ph/0010175

» A. Khodjamirian,
Quantum chromodynamics and hadrons: An Elementary
introduction,
(lectures at European School on High Energy Physics (2003))
arXiv:hep-ph/0403145.
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