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� A glance at history

• In 1831, the Cauchy formula was derived,
A.-L. Cauchy, "Oeuvres completes, Ser. 1", 4, Paris (1890)

we will use it for a function Π(q2),
in a complex plane q2 → z,

Π(q2) =
1

2πi

∫
C

dz
Π(z)

z − q2

here q2 = q2
0 − ~q2 , q is a four-momentum

• In 1969, the operator product expansion (OPE) in quantum field
theory was formulated, K. G. Wilson, Phys. Rev. 179 (1969), 1499-1512

we will use it in the momentum representation: at q2 → −∞ , (x → 0)

i
∫

d4x eiqxT{jA(x) jB(0)} =
∑

n

CAB(q2)On(0),

• both Cauchy formula and Wilsonian OPE are the underlying
elements of the QCD sum rule method

[M. Shifman, A. Vainshtein, V. Zakharov (1979)]



� Outline of these lectures

• Part 1: QCD (SVZ) sum rules based on local OPE

• calculation of the B-meson decay constant

• Part 2: QCD Light-cone sum rules (LCSRs) for B meson
semileptonic form factors

• B → π`ν`, Bs → K `ν`

• B → 2π`ν`, B → Kπ``

• Part 3: Various applications

• nonlocal effects in b → s`` exclusive transitions

• CP violation in charmed meson decays

• B meson decays into dark matter



Part 1:
QCD (SVZ) sum rules based on the local OPE



� B → τντ decay and the B-meson decay constant

• the decay
amplitude:

A(B− → τ−ν̄τ ) = GF√
2

Vub 〈0|ūγµγ5b|B〉 τ̄ γµ(1− γ5)ντ

• hadronic matrix element⇒ decay constant
〈0|ūγµγ5b|B(pB)〉 = i pµB fB, p2

B = m2
B

• partial width: (suppressed for ` = µ,e )

BR(B−→τ−ν̄τ )SM =
G2

F |Vub|2
8π

m2
τmB

(
1− m2

τ

m2
B

)2

f 2
BτB− ,

{b → u flavour-changing transition} ⊗ {QCD }

• Vub determination, BSM search/limits from B → τν measurements
are impossible without precise knowledge of fB



� Rare leptonic decays: Bs,d → `+`−

s

t

µ

Bs

t

µ

b

W
Z

• in SM t ,W ,Z -loops, sensitive to VtsV ∗tb, potentially also to new
physics

• after integrating out heavy loops: (the effective quark-lepton coupling C10 ),

the hadronic matrix element in decay amplitude is reduced to

〈0|s̄γµγ5b|Bs(pB)〉 = ipµB fBs , (s → d)

• fBd ' fBu ≡ fB (isospin symmetry), but fBs 6= fB, (SU(3)fl violation)



� B-meson annihilation from the point of view of in QCD

• Λ̄ ∼ mB −mb ∼ 500-700 MeV,
the energy scale of quark-gluon interactions binding b and ū inside
the B

αs
(Q)

Q

confinement

asympt.

freedom

1 GeV

~0.5

hadronization              perturbative QCD               

Λ QCD

+...

• αs(Λ̄) too large for a perturbative expansion

• domain of nonperturbative QCD



� B-meson annihilation in nonperturbative QCD

I |B−〉 =|bū⊕ gluons ⊕ soft quark-antiquark pairs 〉
I 〈0| , the QCD vacuum,



� QCD Vacuum

I the lowest energy state, no hadrons
contains fluctuating quark-antiquark and gluon fields:
vacuum condensates

I e.g., 〈0|qq|0〉 6= 0, q = u,d , s
-spontaneous breaking of chiral symmetry

I 〈0|GµνGµν |0〉 6= 0, 〈0|qσµνGµνq|0〉 6= 0,...

I universal set of vacuum condensate densities with
dimension d = 3,4,5, ..



� Correlation function of ub currents

I formal definition of the vacuum correlation function:

Πµν(q2) = i
∫

d4x eiqx〈0|T{jWµ (x)jW†ν (0)}|0〉 ,

a quantum amplitude of emission and absorbtion of
ub pair in vacuum by the external current:

jWµ = ūγµγ5b,
jW†µ = b̄γµγ5u b

u

jW jW
q

Πµν(q2) =

I the flavour and JP of the current can vary
currents with other meson quantum numbers (Bs, D, Ds,π ρ, ...),
(any Lorentz-covariant and colour-invariant local operator )



� Correlation function far below the B-meson threshold
b

u

jW jW
q

I 4-momentum of the bū pair: q = (q0, ~q), q2 = q2
0 − ~q2,

rest frame: ~q = 0, q2 = q2
0 , fix the energy q0 � mb

I the bū-pair is virtual: ∆E∆t ∼ 1,
the energy deficit ∆E ∼ mb , ∆t ∼ 1/mb

mb � ΛQCD: ∆t � 1/ΛQCD

I virtual quarks propagate during short times,
are asymptotically free,

I at q2 � m2
b,m

2
B ,

Πµν(q2) ' simple loop diagram
⊕{ calculable QCD corrections} ⇐ to be added



� Calculating the correlation function at q2 � m2
B

I adding perturbative gluon exchanges to the simple loop ,
αs(mB)� 1

I including nonperturbative effects due to condensates
I typical diagams

b

u

q

loop gluon exchange

quark condensate gluon condensate

I technically, using Feynman rules of QCD and considering the vacuum

quark-antiquarks and gluons as external static fields.

I The result: analytical expression for Π5(q2) in terms of
mb, mu and universal QCD parameters αs, 〈q̄q〉,...



� Expansion of the operator-product in local operators
I interpreting the calculation as an operator-product expansion:

T{jWµ (x)jW†ν (0)} =
∑

d=0,3,4,..

Cµν(d)(x2,mb,mu, αs)Od (0)

in local operators with the quantum numbers of vacuum

(Lorentz-scalar, C-,P-,T-invariant, colorless) and growing dimensions:

O0 = 1,O3 = q̄q,O4 = GµνGµν , .... (no operator of dimension 2 in QCD !)

I vacuum average,
integrating over x

Πµν(q2) = i
∫

d4x eiqx〈0|T{jWµ (x)jW†ν (0)}|0〉

=
∑

d=0,3,4,..

Cµν(d)(q2,mb,mu, αs)〈0|Od |0〉

I perturbative loops→Wilson coefficeints Cd as series in αs,
d 6= 0, 〈0|Od |0〉 ∼ (ΛQCD)d - vacuum condensate densities,

I at q2 � m2
b, high-d terms suppressed by O[(ΛQCD/mb)d ]

the OPE can safely be truncated



� Correlation function above B threshold

I Hypothetical neutrino-electron scattering,
varying c.m. energy

√
s =

√
q2,

I Πµν(q2) is the part of the scattering amplitude
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√
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� Hadronic representation of Πµν(q2)

q^2

B

B* π

. . .

OPE region

I Πµν(q2) at q2 � m2
b :

a short-distance
short-lived bū -fluctuation,
' loop diagram

I Πµν(q2) at q2 ≥ m2
B, :

propagation of B meson and excited B states
(infinite sum over resonant and multiparticle states)

I the hadronic representation (dispersion relation):

Πµν(q2) =
〈0|jWµ |B〉〈B|jW†ν |0〉

m2
B − q2

+
∑
Bexc

〈0|jWµ |Bexc〉〈Bexc |jW†ν |0〉
m2

Bexc
− q2

I rigorous theory derivation is based on
analyticity of Πµν(q2) at q2 → z
(valid in any local quantum-field theory)



� Derivation of dispersion relation
• transforming the Cauchy formula

• unitarity relation for imaginary part:

ImΠµν(s) =
∑

hB=B,B8π,...

〈0|jWµ |hB〉〈hB|jW†ν |0〉dτhB



� Quark-hadron duality

(omitting Lorentz indices everywhere)

Π(q2) =
〈0|jW |B〉〈B|jW†|0〉

m2
B − q2

+
∑
Bexc

〈0|jW |Bexc〉〈Bexc |jW†|0〉
m2

Bexc
− q2

=
1
π

s0∫
(mb+mu)2

ds
ImΠ(s)

s − q2 +
1
π

∞∫
s0

ds
ImΠ(s)

s − q2

I the sum of Bexc-states is approximated by the calculable integral
over ImΠ5(s) ⇒ s0, the effective threshold



� Deriving the sum rule for f 2
B

I isolating the ground-state B-state and introducing the spectral
density of excited hadronic states

Π(q2) =
f 2
Bm4

B

m2
B − q2

+

∞∫
sh

ds
ρh(s)

s − q2

I expressing the OPE result as a dispersion relation

Π(q2)(OPE) =
1
π

s0∫
m2

b

ds
ImΠ(OPE)(s)

s − q2 +
1
π

∞∫
s0

ds
ImΠ(OPE)(s)

s − q2

equating the two representations at q2 � m2
b

- global quark-hadron duality
I at sufficiently large s the local duality is also valid:

ρh(s) ' 1
π

ImΠ(OPE)(s),



� Deriving the sum rule for f 2
B

I semilocal quark-hadron duality is used, the effective threshold s0

∞∫
sh

ds
ρh(s)

s − q2 '
1
π

∞∫
s0

ds
ImΠ(OPE)(s)

s − q2

I this yields approximate analytical relation for decay constant:

f 2
Bm4

B

m2
B − q2

=
1
π

s0∫
m2

b

ds
ImΠ(OPE)(s)

s − q2

I Borel transformation

Π(M2) ≡ BM2 Π(q2) = lim
−q2,n→∞
−q2/n=M2

(−q2)(n+1)

n!

(
d

dq2

)n
Π(q2) .

suppresses the higher-state contributions to the hadronic sum,
the sum rule less sensitive to the duality approximation

BM2 ( 1
m2−q2 ) = exp(−m2/M2)



� The resulting QCD sum rule

f 2
Bm4

Be−m2
B/M2

=
s0∫

m2
b

dse−s/M2
ImΠ(OPE)(s,mb,mu, αs, 〈0|q̄q|0〉, ...)

I current accuracy of Π(OPE)(q2) at q2 � m2
b:

vacuum condensates with d ≤ 6
loop⊕O(αs)⊕O(α2

s)
[K.Chetyrkin, M.Steinhauser (2001)]

I standard way to fix s0:
calculate the mass of B-meson from the same sum rule:

m2
B = −

d
d(1/M2)

[SR]

SR



� Input parameters

AK, B. Melić, Y. M. Wang and Y. B. Wei, [arXiv:2011.11275 [hep-ph]].



� B(s) and D(s) decay constants, sum rules vs lattice QCD

Decay constant Lattice QCD (FLAG 2019)* QCD sum rules ∗∗

fB[MeV] 190.0±1.3 207+17
−9

fBs [MeV] 230.3±1.3 242+17
−12

fBs/fB 1.209± 0.005 1.17+0.04
−0.03

fD[MeV] 212.0± 0.7 201+12
−13

fDs [MeV] 249.9± 0.5 238+13
−23

fDs/fD 1.1783±0.0016 1.15+0.04
−0.05

∗ Nf = 2 + 1 + 1

∗∗ P.Gelhausen, AK, A.A.Pivovarov, D.Rosenthal, 1305.5432 hep/ph]



� Universality of the method

• q̄Q currents with various flavour and JP in the correlation
functions⇒ sum rules for decay constants of Bs, D, Ds, π ρ,K ,K ∗,
also baryonic, gluonic currents
(any Lorentz-covariant and colour-invariant local operator )

• the coefficients in the OPE depend on the currents, inputs
are universal (quark masses, αs , condensates)

• QCD (SVZ) sum rules address the question:
why are the hadrons not alike ?

• SU(3)flavour and heavy-quark symmetry violations can be
estimated (finite quark masses, strange/nonstrange condensates)



Summary of part 1

I QCD sum rule, the three key elements

Correlation function of quark-antiquark currents

⇓ ⇓
Operator Product Expansion
in terms of quark-gluon diagrams
and universal QCD parameters

=
Dispersion Relation,
a sum over hadronic amplitudes

I 2-point correlation functions of quark currents allow to
relate QCD with hadronic observables, e.g. fB or fD

I flexible quantum numbers (flavour and spin-parity)
I QCD sum rules: analytical calculation in terms of

diagrams, duality approximation for excited states
∼ 10% accuracy is probably the limit

I future goal: to better assess OPE/input/duality uncertainties



Part 2:
QCD Light-cone sum rules



� B → π transition form factors

• hadronic matrix element is
reduced to two form factors:
functions of the momentum
transfer squared q2

〈π+(p)|ūγµb|B(p + q)〉 = f +
Bπ(q2)

[
2pµ +

(
1− m2

B −m2
π

q2

)
qµ
]

+f 0
Bπ(q2)

m2
B −m2

π

q2 qµ,

• this decomposition follows from symmetry considerations only,

• observable: differential width

dΓ(B̄0 → π+l−ν)

dq2 =
G2

F |Vub|2
24π3 p3

π|f +
Bπ(q2)|2 + O(m2

l )

0 < q2 < (mB −mπ)2 ∼ 26 GeV2, pπ -kinematical factor



� B → ππ form factors

• semileptonic B → ππ`ν` decay

B−(p)
b u

ū

ν̄ℓ ℓ

d̄

d

π+(k1)

π−(k2)

• expansion of B → ππ matrix element:

i〈π+(k1)π0(k2)|ūγµ(1− γ5)b|B̄0(p)〉

= −F⊥(q2, k2, ζ)
4√

k2λB
iεµαβγ qα k1β k2γ

+Ft (q2, k2, ζ)
qµ√

q2
+ F0(q2, k2, ζ)

2
√

q2
√
λB

(
kµ − k · q

q2
qµ
)

+F‖(q2, k2, ζ)
1√
k2

(
k
µ − 4(q · k)(q · k)

λB
kµ +

4k2(q · k)

λB
qµ
)
,

k(k̄) = k1 + (−)k2

• dipion state with JP = 0+,1−,2+, ..., a rich set of observables
(decay width distributions, asymmetries etc.)
• final-state pions interact strongly and form resonances,
ρ(770) with JP = 1− , B → ρ`ν` is a model-dependent part of the B → 2π`ν`



� The B → K `+`−, B → Kπ`+`− FCNC decays

• the b → s`+`− loop diagrams reduced to effective local operators,
since t ,Z ,W are much heavier than b

Heff = −GF√
2
VtbV ∗ts

10∑
i=1

CiOi ,

O9(10) = αem
2π [s̄γµ(1− γ5)b]`γµ(γ5)`,

C9 ' 4.4, C10(mb) = −4.7,

O1−8 play a secondary role

• in B → K `+`− the hadronic part
for O9,10 is again reduced to the
two B → K form factors

B

b s

W

b s

K(∗)

t t

ℓ+

ℓ−

ℓ+

ℓ−
γ∗, Z

• B → Kπ`+`−, four form-factors , Kπ state form the K ∗(892) and other
JP = 0+,1−,2+ resonances



� Hadron form factors in QCD

π π π π

γ∗(Q2) γ∗(Q2)

HARD,FACTORIZABLE SOFT,NONFACTORIZABLE

I pion e.m. form factor, QCD asympotitics, a convolution:

Fπ(Q2)asympt =
8παsf 2

π

9Q2

( 1∫
0

du
ϕπ(u, µ)

ū

)2∣∣∣∣∣
µ∼Q

,

I universal pion distribution amplitude :
vacuum-pion matrix element expanded near x2 = 0

〈π(p)|ū(x)[x ,0]γµγ5d(0)|0〉x2=0 = −ipµfπ
∫ 1

0
du eiup·xϕπ(u)

[Chernyak, Zhitnisky; Efremov,Radyushkin; Brodsky-Lepage (1977-1980)]

I how large is the “soft” part ? ∼ 1/Q4



� Heavy-to-light form factors in QCD

• use of effective theories obtained from QCD in a certain limit:
heavy-quark limit→ HQET, large recoil limit→ SCET

• factorization theorems in mb →∞, (originally for B → ππ)
[M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda (1999)]

• for B → π form factor at large recoil: (Eπ ∼ mB/2, q2 → 0)
[M. Beneke, Th. Feldmann (2001)]

B π B

W W

l+

νl νl

l+

π

HARD,FACTORIZABLE SOFT,NONFACTORIZABLE

fBπ(q2) ∼ αs(µ)

∫
dωdu φ+

B (ω, µ)Th(q2, ω, u, µ)ϕπ(u, µ) + f soft
Bπ (q2)

µ =
√

mbΛ

• the main challenge: calculate the soft (overlap) part of the form factor



� The method of QCD light-cone sum rules (LCSRs)
[I.I.Balitsky, V.M.Braun, A.V. Kolesnichenko (1986); V.L.Chernyak, I.Zhitnisky (1990)]

• a hybrid of asymptotic formulas a’la ERBL and SVZ sum rules:
factorization predetermined

• outline of the method:

vacuum-to-hadron correlator of currents

↙ ↘

hadronic dispersion relation = light-cone OPE

↓ ↖ quark-hadron duality ↙

sum rule for F (B→h)
i (q2)

• the method is valid at q2 � (mB −mh)2 (large recoil of h)

• two different versions of LCSRs for B → h are used:

• with vacuum→ h correlator
• with B → vacuum correlator (HQET)

• in what follows: derivaiton of LCSR for the B → π form factor



� The correlation function used for B → π form factor

p + q
q

ud

b

π(p)

q2, (p+q)2 � m2
b,

b-quark highly virtual⇒ x2 ∼ 0

Fλ(q,p) = i
∫

d4x eiqx〈π(p) | T{ū(x)γλb(x), b̄(0)iγ5d(0)} | 0〉

= F ((p + q)2,q2)pλ + F̃ ((p + q)2,q2)qλ



� Diagrams

• leading order in αs (LO) including soft, i.e. low-virtuality gluon

p + q
q

ud

b

π(p)

p + q
q

ud

b

π(p)

• NLO, O(αs) contributions



� Operator Product Expansion near the light-cone

• the correlation function expressed in a factorized form:

F ((p + q)2,q2) = i
∫

d4x eiqx

{[
S0(x2,m2

b, µ) + αsS1(x2,m2
b, µ)

]
⊗〈π(p) | ū(x)Γd(0) |0〉|µ

+

∫ 1

0
dv S̃(x2,m2

b, µ, v)⊗ 〈π(p) | ū(x)G(vx)Γ̃d(0)} | 0〉|µ
}

+ ...

• S0,1, S̃ - perturbative amplitudes, (b-quark propagators)

• vacuum-pion matrix elements - expanded near x2 = 0
⇒ universal pion light-cone distribution amplitudes (DAs) :

〈π(p)|ū(x)[x ,0]γµγ5d(0)|0〉x2=0 = −ipµfπ
∫ 1

0
du eiup·xϕπ(u) + O(x2) .

• the expansion near x2 = 0 goes over twists (t ≥ 2) of DAs

• terms ∼ S̃ suppressed by powers of 1/
√

mbΛ;



� The OPE result

F ((p+q)2,q2) =
∑

t=2,3,4,..

∫
du T (t)(q2, (p+q)2,m2

b, αs,u, µ)ϕ(t)
π (u, µ)

hard scattering amplitudes ⊗ pion light-cone DA

- LO twist 2,3,4 qq̄ and q̄qG terms:
[V.Belyaev, A.K., R.Rückl (1993); V.Braun, V.Belyaev, A.K., R.Rückl (1996)]

- LO twist 5,6 qq̄DG terms in factorizable approximation:
[A.Rusov (2017)]

-NLO O(αs) twist 2, (collinear factorization)
[A.K., R.Rückl, S.Weinzierl, O. Yakovlev (1997); E.Bagan, P.Ball, V.Braun (1997);]

-NLO O(αs) twist 3 (coll.factorization for asympt. DA)
[P. Ball, R. Zwicky (2001); G.Duplancic, A.K., B.Melic, Th.Mannel, N.Offen (2007) ]

-NNLO O(α2
sβ0) correction [A.Bharucha, (2012) ]



� Basics of the pion DA’s

• twist 2 DA: normalized with fπ, expansion in Gegenbauer polynomials

ϕπ(u, µ) = 6u(1− u)

1 +
∑

n=2,4,..

aπn (µ)C3/2
n (2u − 1)

 ,
aπ2n(µ) ∼ [Log(µ/ΛQCD)]−γ2n → 0 at µ→∞

[Efremov-Radyushkin-Brodsky-Lepage evolution]

• essential parameters: aπ2,4(µ0),
determined from:

• matching measured pion
form factors to LCSRs,

• two-point QCD sum rules,

• lattice QCD

• recent determination vs older results [ S.Cheng, AK, A. Rusov (2020)]

• remaining minor input parameters:
normalization constants and moments of twist 3,4 DAs,
determined mainly from two-point sum rules [P. Ball, V.Braun, A.Lenz (2006) ]



� Hadronic dispersion relation

• Analytical continuation of the correlation function in the complex
variable (p + q)2 at fixed q2⇒ Cauchy theorem,

F ((p+q)2,q2) =

∞∫
smin

ds
ImF (s,q2)

s − (p+q)2 − iε

• replacing the Im part by the sum over all possible hadronic states with
B-meson quantum numbers, located at smin = m2

B and above

π

b

u

q

B

B

p + q

b

+
∑

h

F(q2, (p + q)2) =

π

b

u

q

p + q

b

Bh

Bh

fBf
+
Bπ(q

2)
∑

Bh

→ duality (sB
0 )



� Derivation of LCSR

• matching OPE with disp. relation at q2, (p + q)2 � m2
b

[F ((p + q)2,q2)]OPE =
m2

BfBf +
Bπ(q2)

m2
B − (p + q)2

+

∞∫
(mB∗+mπ)2

ds
ImF (s,q2)

s − (p + q)2

• quark-hadron duality approximation
(based on the s →∞ limit: F (s)→ FOPE (s))

∞∫
(mB∗+mπ)2

ds
ImF (s,q2)

s − (p + q)2 =

∞∫
sB

0

ds
[ImF (s,q2)]OPE

s − (p + q)2

• subtraction and Borel transform,⇒ LCSR

m2
BfBf +

Bπ(q2)e−m2
B/M2

=

sB
0∫

m2
b

ds e−s/M2
[ImF (s,q2)]OPE

• fixing sB
0 : acting with −d/d(1/M2) over both parts and dividing by

the same LCSR⇒ the ratio equals to m2
B



� Obtaining the B → π form factors from LCSRs

• the second form factor f0(q2) is obtained using the LCSR from the
second invariant amplitude F̃

• universal inputs: mb, αs, ϕ(t)
π (u), t=2,3,4; fB - from two-point (SVZ)

sum rule;

• specific inputs: optimal interval of M2, µ

• uncertainties due to:
• variation of input parameters,
• quark-hadron duality

(suppressed with Borel transformation, controlled by the mB calculation)

• LCSRs predict both “soft-overlap” (dominant !) and “hard-scattering”
contributions to the form factors

• the method uses finite mb , yields 1/mb expansion

• B(s) → K form factors , including ms 6= 0.



� Results for B(s) → π,K form factors
[AK, A.Rusov, 1703.04765]
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Figure 1. The vector (tensor) form factors of Bs → K, B → K and B → π transitions calcu-

lated from LCSRs including estimated parametrical uncertainties are shown on the upper, middle

and lower left (right) panels, respectively, with the dark-shaded (green) bands. Extrapolations

of the lattice QCD results for Bs → K [Fermilab-MILC (2014)], B → K [HPQCD] and B → π

[Fermilab=MILC (2015)] form factors are shown with the light-shaded (orange) bands.
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� LCSR results on D → π form factor
[Ch. Klein, A.K., Th. Mannel, N. Offen (2009)]

• simply replacing b quark to c quark in the correlation function

• c → d flavour-changing transitions

from HPQCD (2011)



� LCSRs with B-meson distribution amplitudes (DAs)
[A.K., N. Offen, Th. Mannel (2006)]

"SCET sum rules", [F. De Fazio, Th. Feldmann, T.Hurth (2006)]

• vacuum-to-B-correlation function: B on-shell state
↓

Fab(p, q) = i
∫

d4x eip·x 〈0|T{d̄(x)Γbq(x), q̄(0)Γab(0)}|B̄0(q + p)〉 = Lab(p, q)F (p2, q2)

↑ ↖
h-interpolating current transition current

• OPE in terms of B-meson DA’s
defined in HQET,

p

b

d
q

B

q

(a)

B

(b)

B

(c)

• valid at 0 < q2 � m2
B• dispersion relation:

F (p2, q2) = 1
π

∞∫
m2

h

ds
s−p2 ImF (s, q2) = FOPE (p2, q2)

ImFab = 〈0|d̄Γbq|h〉〈h|q̄Γab|B̄0(q + p)〉πδ(m2
h − s) + ... = Lab ImF (s, q2)

fh
m2

h−p2 F (B→h)(q2) = 1
π

s0∫
m2

h

ds
s−p2 ImFOPE (s,q2)



� B-meson DAs

• definition of two-particle DA in HQET:

〈0|q̄2α(x)[x , 0]hvβ(0)|B̄v 〉

= − ifBmB

4

∞∫
0

dωe−iωv·x

[
(1 + /v)

{
φB

+(ω)−
φB

+(ω)− φB
−(ω)

2v · x /x

}
γ5

]
βα

⊕ higher twists
• key input parameter: the inverse moment

1
λB(µ)

=

∫ ∞
0

dω
φB

+(ω, µ)

ω

• possible to extract λB from B → γ`ν` using QCDF⊕LCSR
[Y.-M. Wang (2016) , M.Beneke, V.M. Braun, Y.Ji, Y.-B. Wei (2018) ],

• QCD sum rules in HQET: λB(1 GeV) = 380± 150 MeV
[V.Braun, D.Ivanov, G.Korchemsky (2004); AK,R.Mandal, Th.Mannel (2021) ]

• higher twists DAs [V. Braun, Y. Ji, A. Manashov (2017)]



� Uses of LCSRs with B meson DA’s

• adjusting the interpolating current to the h state

• B → π,K ,K∗, ρ [A.K., T.Mannel, N.Offen (2006)]

• B → D,D∗ [S.Faller,A.K., C.Klein,T.Mannel (2009)]

• NLO corrections to B → π FFs [Y.-M. Wang, Y.-L.Shen (2015)]

• NLO corrections to B → D FFs [C.-D.Lü, Y-.L. Shen,.Y-M. Wang,Y.-B. Wei (2017)]

• higher twists in OPE, B → π,K [C.-D.Lü,Y-.L. Shen,.Y-M. Wang,Y.-B. Wei (2018)]

• all B → π,K ,D, ρ,K∗,D∗ form factors in LO
(higher twists; uncertainties - Bayesian analysis) [N.Gubernari, A.Kokulu, D. van Dyk, (2018)]

• B → D∗∗(1+) form factors [N.Gubernari, AK, R.Mandal, Th.Mannel (2022)]



� Results and comparison (B → π,K ,D)

from [N.Gubernari, A.Kokulu, D. van Dyk, (2018)]
form factor at q2 = 0 result literature DAs [Ref.]

f B→π
+ 0.21± 0.07

0.258± 0.031 π [Ball,Zwicky 05’]
0.25± 0.05 B [AK,Mannel,Offen 06’]
0.28± 0.05 B [AK,Mannel,Offen,Wang 11’]
0.31± 0.02 π [Imsong,AK,Mannel,vanDyk 14’]

0.281± 0.038 B [Wang,Shen 15’]
0.301± 0.023 π [AK, Rusov 17’]

f B→π
T 0.19± 0.06

0.253± 0.028 π [ Ball,Zwicky 05’]
0.21± 0.04 B [AK,Mannel,Offen 06’]

0.273± 0.021 π [AK, Rusov 17’]
0.26± 0.06 B [Lü,Shen,Wang,Wei18’]

f B→K
+ 0.27± 0.08

0.331± 0.041 K [DAs, Ball,Zwicky 05’]
0.31± 0.04 B [AK,Mannel,Offen 06’]

0.395± 0.033 K [AK, Rusov 17’]
0.364± 0.05 B [Lü,Shen,Wang,Wei18’]

f B→K
T 0.25± 0.07

0.358± 0.037 K Ball,Zwicky 05’]
0.27± 0.04 B [AK,Mannel,Offen 06’]

0.381± 0.027 K [AK, Rusov 17’]
0.363± 0.08 B [Lü,Shen,Wang,Wei18’]

f B→D
+ 0.65± 0.08 0.69± 0.2 B [Faller,AK,Klein,Mannel, 08’]

0.673± 0.063 B [Wang,Wei, Lü, Shen,17’]
f B→D
T 0.57± 0.05 — B



� Semileptonic transitions to di-mesons

• a practical problem: to assess "nonresonant" background in
B → ππ`ν` or B → Kπ``

• in the theory language:

• use general B → ππ form factors:

〈π+(k1)π0(k2)|ūγµ(1− γ5)b|B̄0(p)〉 = −F⊥(q2, k2, ζ)
4√

k2λB
iεµαβγ qα k1β k2γ + ...

(2ζ − 1) = (1− 4m2
π/k2)1/2cosθπ, in dipion c.m.

• expand in partial waves, isolate dipion P-wave
F⊥(q2, k2, ζ)⇒ F (`=1)

⊥ (q2, k2)

• hadronic dispersion relation in dipion invariant mass



� Dispersion relation for the B → ππ vector FF

• three-resonance ansatz:

√
3F (`=1)
⊥ (q2, k2)√

k2
√
λB

=
gρππ

m2
ρ − k2 − imρΓρ(k2)

V B→ρ(q2)

mB + mρ

+
gρ′ππ

m2
ρ′ − k2 − imρ′Γρ′ (k2)

V B→ρ′ (q2)

mB + mρ′
+

+
gρ′′ππ

m2
ρ′′ − k2 − imρ′′Γρ′′ (k2)

V B→ρ′′ (q2)

mB + mρ′′
+ ...

• inspired by the timelike pion e.m. form factor
in e+e− → π+π− or in τ → π−π0ντ :
modelled at

√
k2 . 1.5 GeV to a sum of ρ,ρ′(1450), ρ′′(1750)

• calculate B → ππ or B → Kπ form factors with QCD methods
ρ, ρ′, ... or K ∗,... have to be "embedded" in this calculation

• model-dependence of the input is unavoidable



� Use of LCSRs with dipion distribution amplitudes
[Ch. Hambrock, AK, (2015)

• consider B̄0 → π+π0`−ν`, isospin 1, L = 1, 3, , ..

• vacuum→ dipion correlation function

• nonperturbative input: dipion distribution amplitudes (DAs)

• introduced and developed for γ∗γ → 2π processes
[M. Diehl, T. Gousset, B. Pire and O. Teryaev, (1998),
D. Müller, D. Robaschik, B. Geyer, F.-M. Dittes and J. Horejsi, (1994),
M. V. Polyakov, (1999)]

• only LO, twist-2 approximation for dipion DAs available

• DAs model available only at small k2 ∼ 4m2
π

• problems addressed:

• how important are L > 1 partial waves of 2π state in B → ππ`ν`?

• comparison with B → ρ FFs calculated from LCSRs with narrow ρ DAs



� Applying LCSRs with B-meson distribution amplitudes

[S.Cheng, AK, J.Virto, (2017)]

• LCSRs with B-meson DA and ūγµd interpolating current

d

b

u B̄0

PB

k

q

(b)

B̄0

PB

k

q

(a)• The correlation function:

Fµν(k , q) = i
∫

d4xeik·x 〈0|T{d̄(x)γµu(x), ū(0)γν(1− γ5)b(0)}|B̄0(q + k)〉,

= εµνρσqρkσF(ε)(k2, q2) + igµνF(g)(k2, q2) + iqµkνF(qk)(k2, q2) + ...



� Accessing B → ππ form factors

• OPE diagrams⇒ invariant amplitudes⇒ dispersion form in k2:

F OPE
(ε) (k2, q2) = fBmB

∫ ∞
0

dσ
φB

+(σmB)

σ̄(s − k2)
+ {3− particle DAs}

s = s(σ, q2) = σm2
B − σq2/σ̄ , σ̄ ≡ 1− σ

• hadronic dispersion.relation and unitarity:

F(ε)(k2, q2) =
1
π

∞∫
4m2
π

ds
ImF(ε)(s, q2)

s − k2
.

2 ImFµν(k , q) =

∫
dτ2π 〈0|d̄γµu |π+π0〉︸ ︷︷ ︸

Fπ(s)

〈π+π0|ūγν(1− γ5)b|B̄0(q + k)〉︸ ︷︷ ︸
B → 2π (` = 1) form factors

+ · · · ,

k d

b

uB̄0

PB

k

d

u

π+

π0

d

b

uB̄0

PB

k1

k2 + · · ·

q q



� Resulting sum rules

• e,g,. for the form factor F (`=1)
⊥ of the vector current

∫ s2π
0

4m2
π

ds e−s/M2
√

s [βπ(s)]3

4
√

6π2
√
λ

F?π(s) F (`=1)
⊥ (s, q2)

= fBmB

[∫ σ2π
0

0
dσ e−s(σ,q2)/M2 φB

+(σmB)

σ̄
+ mB ∆V BV (q2, σ2π

0 ,M2)

]
,

σ2π
0 - the solution of σm2

B − σq2/σ̄ = s2π
0 , three-particle DA contribution ∆V BV

• similar sum rules for all other P-wave B → 2π form factors
• not a direct calculation, given the shape of the B → 2π form factors,

these sum rules can provide normalization

• probing two different ρ-resonance models for the B → ππ FF
⇒ an appreciable contribution of ρ′ (up to 20% of ρ in residue) is
consistent with the LCSRs



� B → 2π (` = 1) FFs: dipion mass dependence
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� B → 2π (` = 1) FFs: q2-dependence at small k2
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• extension of the method to B → Kπ(JP = 1−,0+) form factors
[S.Descotes-Genon, AK, J.Virto, (2019)], [S.Descotes-Genon, AK, J.Virto, K.Vos, (2023)]



� Summary

• two main versions of LCSRs for B → h form factors:
with light-hadron DAs and with B-meson DAs.
complement each other and results mutually agree within uncertainties

• LCSRs provide a variety of B → h form factors at large recoil of h,
support lattice QCD extrapolation with independent estimates

• LCSRs provide probes of resonance models for the full B → ππ,Kπ
form factors,

• future perspectives:
• the accuracy of lattice QCD calculation already in the nearest
future cannot be achieved by QCD sum rules and LCSRs

• but: there are hadronic matrix elements where even a 30-40%
accuracy would be sufficient, and they are not yet accessible on the
lattice



� More details in these reviews:

I M. A. Shifman,
Snapshots of hadrons or the story of how the vacuum medium
determines the properties of the classical mesons which are
produced, live and die in the QCD vacuum,
arXiv:hep-ph/9802214 [hep-ph].

I V. M. Braun,
QCD sum rules for heavy flavors,
arXiv:hep-ph/9911206

I P. Colangelo and A. Khodjamirian,
QCD sum rules, a modern perspective,
arXiv:hep-ph/0010175

I A. Khodjamirian,
Quantum chromodynamics and hadrons: An Elementary
introduction,
(lectures at European School on High Energy Physics (2003))
arXiv:hep-ph/0403145.



� even more details in this book:


