Sum rule techniques for flavour physics

Alexander Khodjamirian

Collaborative Research Center TRR 257

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

Lectures at pre-FPCP School, Lyon, May 26-27, 2023

□ A glance at history

In 1831, the Cauchy formula was derived,

A.-L. Cauchy, "Oeuvres completes, Ser. 1", 4, Paris (1890)

we will use it for a function $\Pi(q^2)$, in a complex plane $q^2 \rightarrow z$,

$$\Pi(q^2) = \frac{1}{2\pi i} \int\limits_C dz \frac{\Pi(z)}{z - q^2}$$

here $q^2 = q_0^2 - ec q^2$, q is a four-momentum

• In 1969, the operator product expansion (OPE) in quantum field theory was formulated, K. G. Wilson, Phys. Rev. **179** (1969), 1499-1512 we will use it in the momentum representation: at $q^2 \to -\infty$, $(x \to 0)$ $i \int d^4 x \, e^{iqx} T\{j_A(x) \, j_B(0)\} = \sum_n C_{AB}(q^2) \mathcal{O}_n(0),$

 both Cauchy formula and Wilsonian OPE are the underlying elements of the QCD sum rule method

[M. Shifman, A. Vainshtein, N. Zakharov (1979)] 🧠 🖉

Outline of these lectures

- Part 1: QCD (SVZ) sum rules based on local OPE
 - calculation of the B-meson decay constant
- Part 2: QCD Light-cone sum rules (LCSRs) for *B* meson semileptonic form factors

(ロ) (同) (三) (三) (三) (三) (○) (○)

- $B \to \pi \ell \nu_{\ell}, B_s \to K \ell \nu_{\ell}$
- $B \rightarrow 2\pi \ell \nu_{\ell}, B \rightarrow K\pi \ell \ell$
- Part 3: Various applications
 - nonlocal effects in $b \rightarrow s\ell\ell$ exclusive transitions
 - CP violation in charmed meson decays
 - B meson decays into dark matter

Part 1: QCD (SVZ) sum rules based on the local OPE

$\Box B \rightarrow \tau \nu_{\tau}$ decay and the *B*-meson decay constant

• the decay amplitude:

$$m{A}(m{B}^- o au^- ar{
u}_ au) = rac{G_F}{\sqrt{2}} m{V}_{ub} raket{0} ar{u} \gamma_\mu \gamma_5 m{b} ar{B} ar{ au} ar{ au} \gamma^\mu (1-\gamma_5)
u_ au$$

- hadronic matrix element \Rightarrow decay constant $\langle 0|\bar{u}\gamma^{\mu}\gamma_{5}b|B(p_{B})\rangle = i p_{B}^{\mu}f_{B}, \quad p_{B}^{2} = m_{B}^{2}$
- partial width: (suppressed for $\ell = \mu, e$) $BR(B^- \rightarrow \tau^- \bar{\nu}_{\tau})_{SM} = \frac{G_F^2 |V_{ub}|^2}{8\pi} m_{\tau}^2 m_B \left(1 - \frac{m_{\tau}^2}{m_B^2}\right)^2 f_B^2 \tau_{B^-},$

 $\{b \rightarrow u \text{ flavour-changing transition}\} \otimes \{QCD\}$

 \Box Rare leptonic decays: $B_{s,d} \rightarrow \ell^+ \ell^-$

- in SM t, W, Z-loops, sensitive to V_{ts} V^{*}_{tb}, potentially also to new physics
- after integrating out heavy loops: (the effective quark-lepton coupling C₁₀), the hadronic matrix element in decay amplitude is reduced to (0|s̄γ^μγ₅b|B_s(p_B)) = ip^μ_Bf_{B_s}, (s → d)
 f_{B_d} ≃ f_{B_u} ≡ f_B (isospin symmetry), but f_{B_s} ≠ f_B, (SU(3)_{fl} violation)

□ B-meson annihilation from the point of view of in QCD

• $\bar{\Lambda} \sim m_B - m_b \sim$ 500-700 MeV,

the energy scale of quark-gluon interactions binding b and \bar{u} inside the B

- $\alpha_s(\bar{\Lambda})$ too large for a perturbative expansion
- domain of nonperturbative QCD

□ B-meson annihilation in nonperturbative QCD

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- ► $|B^-\rangle = |b\bar{u} \oplus g|uons \oplus soft quark-antiquark pairs \rangle$
- \triangleright (0), the QCD vacuum,

QCD Vacuum

- the lowest energy state, no hadrons contains fluctuating quark-antiquark and gluon fields: vacuum condensates
- ► e.g., $\langle 0|\overline{q}q|0\rangle \neq 0$, q = u, d, s-spontaneous breaking of chiral symmetry
- $\blacktriangleright \langle 0 | G_{\mu\nu} G^{\mu\nu} | 0 \rangle \neq 0, \, \langle 0 | \overline{q} \sigma_{\mu\nu} G^{\mu\nu} q | 0 \rangle \neq 0, \dots$
- universal set of vacuum condensate densities with dimension d = 3, 4, 5, ...

(日) (日) (日) (日) (日) (日) (日)

□ Correlation function of *ub* currents

formal definition of the vacuum correlation function:

$$\Pi_{\mu
u}(q^2) = i \int d^4x \; e^{iqx} \langle 0|T\{j^W_\mu(x)j^{W\dagger}_
u(0)\}|0
angle \,,$$

a quantum amplitude of emission and absorbtion of $\overline{u}b$ pair in vacuum by the external current:

 the flavour and J^P of the current can vary currents with other meson quantum numbers (B_s, D, D_s, π ρ, ...), (any Lorentz-covariant and colour-invariant local operator)

(日) (日) (日) (日) (日) (日) (日)

Correlation function far below the B-meson threshold

- ► 4-momentum of the $b\bar{u}$ pair: $q = (q_0, \vec{q}), \quad q^2 = q_0^2 \vec{q}^2,$ rest frame: $\vec{q} = 0, q^2 = q_0^2$, fix the energy $q_0 \ll m_b$
- ► the $b\bar{u}$ -pair is virtual: $\Delta E \Delta t \sim 1$, the energy deficit $\Delta E \sim m_b$, $\Delta t \sim 1/m_b$

 $m_b \gg \Lambda_{QCD}$: $\Delta t \ll 1/\Lambda_{QCD}$

- virtual quarks propagate during short times, are asymptotically free,
- at $q^2 \ll m_b^2, m_B^2$,

 $\Pi_{\mu\nu}(q^2) \simeq \text{simple loop diagram} \\ \oplus \{ \text{ calculable QCD corrections} \} \leftarrow \text{ to be added} \\ \blacksquare \forall e^{-1} \forall$

 \Box Calculating the correlation function at $q^2 \ll m_B^2$

- ► adding perturbative gluon exchanges to the simple loop , $\alpha_s(m_B) \ll 1$
- including nonperturbative effects due to condensates
- typical diagams

- technically, using Feynman rules of QCD and considering the vacuum quark-antiquarks and gluons as external static fields.
- The result: analytical expression for Π₅(q²) in terms of m_b, m_u and universal QCD parameters α_s, (q̄q),...

(日) (日) (日) (日) (日) (日) (日)

Expansion of the operator-product in local operators

interpreting the calculation as an operator-product expansion:

 $T\{j^{W}_{\mu}(x)j^{W\dagger}_{\nu}(0)\} = \sum_{d=0,3,4,..} C_{\mu\nu(d)}(x^{2}, m_{b}, m_{u}, \alpha_{s})O_{d}(0)$

in local operators with the quantum numbers of vacuum

(Lorentz-scalar, C-,P-,T-invariant, colorless) and growing dimensions:

 $O_0 = 1, O_3 = \bar{q}q, O_4 = G^{\mu\nu}G_{\mu\nu}, ...$ (no operator of dimension 2 in QCD !)

► vacuum average
integrating over
$$\Pi_{\mu\nu}(q^2) = i \int d^4x \, e^{iqx} \langle 0|T\{j^W_{\mu}(x)j^{W\dagger}_{\nu}(0)\}|0\rangle$$

$$= \sum_{d=0,3,4,..} \overline{C}_{\mu\nu(d)}(q^2, m_b, m_u, \alpha_s) \langle 0|O_d|0\rangle$$

 perturbative loops → Wilson coefficients C_d as series in α_s, d ≠ 0, ⟨0|O_d|0⟩ ~ (Λ_{QCD})^d - vacuum condensate densities,

 at q² ≪ m²_b, high-d terms suppressed by O[(Λ_{QCD}/m_b)^d] the OPE can safely be truncated

□ Correlation function above *B* threshold

- ► Hypothetical neutrino-electron scattering, varying c.m. energy $\sqrt{s} = \sqrt{q^2}$,
- $\Pi_{\mu\nu}(q^2)$ is the part of the scattering amplitude

 \Box Hadronic representation of $\Pi_{\mu\nu}(q^2)$

- Π_{µν}(q²) at q² ≥ m_B², :
 propagation of B meson and excited B states
 (infinite sum over resonant and multiparticle states)
- the hadronic representation (dispersion relation):

$$\Pi_{\mu
u}(q^2) = rac{\langle 0|j^W_\mu|B
angle\langle B|j^{W\dagger}_
u|0
angle}{m^2_B-q^2} + \sum_{B_{
m exc}}rac{\langle 0|j^W_\mu|B_{
m exc}
angle\langle B_{
m exc}|j^{W\dagger}_
u|0
angle}{m^2_{B_{
m exc}}-q^2}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 rigorous theory derivation is based on analyticity of Π_{µν}(q²) at q² → z (valid in any local quantum-field theory)

Derivation of dispersion relation

transforming the Cauchy formula

unitarity relation for imaginary part:

$$\mathrm{Im}\Pi_{\mu\nu}(s) = \sum_{h_B = B, B^8 \pi, \dots} \langle 0 | j_{\mu}^{W} | h_B \rangle \langle h_B | j_{\nu}^{W\dagger} | 0 \rangle d\tau_{h_B}$$

□ Quark-hadron duality

(omitting Lorentz indices everywhere)

$$\Pi(q^2) = \frac{\langle 0|j^W|B\rangle\langle B|j^{W\dagger}|0\rangle}{m_B^2 - q^2} + \sum_{B_{exc}} \frac{\langle 0|j^W|B_{exc}\rangle\langle B_{exc}|j^{W\dagger}|0\rangle}{m_{B_{exc}}^2 - q^2}$$
$$= \frac{1}{\pi} \int_{(m_b + m_u)^2}^{s_0} ds \frac{\mathrm{Im}\Pi(s)}{s - q^2} + \frac{1}{\pi} \int_{s_0}^{\infty} ds \frac{\mathrm{Im}\Pi(s)}{s - q^2}$$

b the sum of B_{exc}-states is approximated by the calculable integral over ImΠ₅(s) ⇒ s₀, the effective threshold

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

\Box Deriving the sum rule for f_B^2

► isolating the ground-state *B*-state and introducing the spectral density of excited hadronic states

$$\Pi(q^2) = rac{f_B^2 m_B^4}{m_B^2 - q^2} + \int\limits_{s_h}^\infty ds rac{
ho^h(s)}{s - q^2}$$

expressing the OPE result as a dispersion relation

$$\Pi(q^2)^{(OPE)} = \frac{1}{\pi} \int_{m_b^2}^{s_0} ds \frac{\text{Im}\Pi^{(OPE)}(s)}{s - q^2} + \frac{1}{\pi} \int_{s_0}^{\infty} ds \frac{\text{Im}\Pi^{(OPE)}(s)}{s - q^2}$$

equating the two representations at $q^2 \ll m_b^2$

- global quark-hadron duality
- at sufficiently large s the local duality is also valid:

$$\rho^h(\boldsymbol{s}) \simeq \frac{1}{\pi} \mathrm{Im} \Pi^{(OPE)}(\boldsymbol{s})$$

\Box Deriving the sum rule for f_B^2

semilocal quark-hadron duality is used, the effective threshold s₀

$$\int\limits_{s_h}^{\infty} ds rac{
ho^h(s)}{s-q^2} \simeq rac{1}{\pi} \int\limits_{s_0}^{\infty} ds rac{ ext{Im}\Pi^{(OPE)}(s)}{s-q^2}$$

this yields approximate analytical relation for decay constant:

$$\frac{f_B^2 m_B^4}{m_B^2 - q^2} = \frac{1}{\pi} \int_{m_b^2}^{s_0} ds \frac{\text{Im}\Pi^{(OPE)}(s)}{s - q^2}$$

Borel transformation

$$\Pi(M^2) \equiv \mathcal{B}_{M^2} \Pi(q^2) = \lim_{\substack{-q^2, n \to \infty \\ -q^2/n = M^2}} \frac{(-q^2)^{(n+1)}}{n!} \left(\frac{d}{dq^2}\right)^n \Pi(q^2) \,.$$

suppresses the higher-state contributions to the hadronic sum, the sum rule less sensitive to the duality approximation

$$\mathcal{B}_{M^2}(\frac{1}{m^2-q^2}) = \exp(-m^2/M^2)$$

・ロト・西ト・西ト・西ト・日・

□ The resulting QCD sum rule

$$f_B^2 m_B^4 e^{-m_B^2/M^2} = \int_{m_b^2}^{s_0} ds e^{-s/M^2} \operatorname{Im}\Pi^{(OPE)}(s, m_b, m_u, \alpha_s, \langle 0|\bar{q}q|0\rangle, ...)$$

- current accuracy of Π^(OPE)(q²) at q² ≪ m²_b: vacuum condensates with d ≤ 6 loop ⊕ O(α_s) ⊕ O(α²_s)
 [K.Chetyrkin, M.Steinhauser (2001)]
- standard way to fix s₀: calculate the mass of *B*-meson from the same sum rule:

$$m_B^2 = -\frac{\frac{d}{d(1/M^2)}[SR]}{SR}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

□ Input parameters

parameter	input value	[Ref.]	rescaled values				
quark-gluon coupling and quark masses							
$\alpha_s(m_Z)$	0.1179 ± 0.0010		$\begin{split} \alpha_s(1.5{\rm GeV}) &= 0.3479^{+0.0100}_{-0.0096} \\ \alpha_s(3.0{\rm GeV}) &= 0.2531^{+0.0050}_{-0.0048} \end{split}$				
$\overline{m}_c(\overline{m}_c)$	$1.280 \pm 0.025 ~{\rm GeV}$	[3]	$\overline{m}_c(1.5{ m GeV}) = 1.202\pm 0.023~{ m GeV}$				
$\overline{m}_b(\overline{m}_b)$	$4.18\pm0.03~{\rm GeV}$		$\overline{m}_b(3.0{ m GeV}) = 4.46\pm 0.04~{ m GeV}$				
$(\overline{m}_u + \overline{m}_d)(2 \text{ GeV})$	$6.78\pm0.08~{\rm MeV}$	[3, 41]	$(\overline{m}_u + \overline{m}_d)(1.5 \text{ GeV}) = 7.40 \pm 0.09 \text{ MeV}$ $(\overline{m}_u + \overline{m}_d)(3.0 \text{ GeV}) = 6.14 \pm 0.07 \text{ MeV}$				
condensates							
$\langle ar{q}q angle (2{ m GeV})$	$-(286\pm23\;{\rm MeV})^3$	[41]	$\langle \bar{q}q \rangle (1.5 \text{ GeV}) = -(279 \pm 22 \text{ MeV})^3$ $\langle \bar{q}q \rangle (3.0 \text{ GeV}) = -(295 \pm 24 \text{ MeV})^3$				
$\langle GG \rangle$	$0.012^{+0.006}_{-0.012}~{\rm GeV^4}$		_				
m_0^2	$0.8\pm0.2{ m GeV}^2$	[44]	_				
r_{vac}	0.55 ± 0.45		_				

Table 1. QCD parameters used in the LCSRs and two-point sum rules.

AK, B. Melić, Y. M. Wang and Y. B. Wei, [arXiv:2011.11275 [hep-ph]].

 \square $B_{(s)}$ and $D_{(s)}$ decay constants, sum rules vs lattice QCD

Decay constant	Lattice QCD (FLAG 2019)*	QCD sum rules **
f _₿ [MeV]	190.0±1.3	207^{+17}_{-9}
f _{Bs} [MeV]	230.3±1.3	242^{+17}_{-12}
f_{B_s}/f_B	$1.209{\pm}\ 0.005$	$1.17\substack{+0.04 \\ -0.03}$
f _D [MeV]	212.0± 0.7	201^{+12}_{-13}
<i>f_{Ds}</i> [MeV]	249.9± 0.5	238^{+13}_{-23}
f_{D_s}/f_D	1.1783±0.0016	$1.15\substack{+0.04 \\ -0.05}$

 $* N_f = 2 + 1 + 1$

** P.Gelhausen, AK, A.A.Pivovarov, D.Rosenthal, 1305.5432 hep/ph], and a second second

Universality of the method

• $\bar{q}Q$ currents with various flavour and J^P in the correlation functions \Rightarrow sum rules for decay constants of B_s , D, D_s , $\pi \rho$, K, K^* , also baryonic, gluonic currents

(any Lorentz-covariant and colour-invariant local operator)

• the coefficients in the OPE depend on the currents, inputs are universal (quark masses, α_s , condensates)

• QCD (SVZ) sum rules address the question: why are the hadrons not alike ?

• *SU*(3)_{*flavour*} and heavy-quark symmetry violations can be estimated (finite quark masses, strange/nonstrange condensates)

Summary of part 1

QCD sum rule, the three key elements

- 2-point correlation functions of quark currents allow to relate QCD with hadronic observables, e.g. f_B or f_D
- flexible quantum numbers (flavour and spin-parity)
- QCD sum rules: analytical calculation in terms of diagrams, duality approximation for excited states
 10% accuracy is probably the limit
- future goal: to better assess OPE/input/duality uncertainties

Part 2: QCD Light-cone sum rules

$\Box B \rightarrow \pi$ transition form factors

 hadronic matrix element is reduced to two form factors:

functions of the momentum transfer squared q^2

$$egin{aligned} &\langle \pi^+(m{p}) | ar{u} \gamma_\mu b | B(m{p}+m{q})
angle = f^+_{B\pi}(m{q}^2) \Big[2 p_\mu + ig(1 - rac{m_B^2 - m_\pi^2}{q^2} ig) q_\mu \Big] \ &+ f^0_{B\pi}(m{q}^2) rac{m_B^2 - m_\pi^2}{q^2} q_\mu, \end{aligned}$$

- this decomposition follows from symmetry considerations only,
- observable: differential width

$$\frac{d\Gamma(\bar{B}^0 \to \pi^+ l^- \nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} p_\pi^3 |f_{B\pi}^+(q^2)|^2 + O(m_l^2)$$

 $0 < q^2 < (m_B - m_\pi)^2 \sim$ 26 GeV $^2, \, p_\pi$ -kinematical factor

$\Box B \rightarrow \pi\pi$ form factors

 $(k_1$ • semileptonic $B \to \pi \pi \ell \nu_{\ell}$ decay $B^{-}(p)$ expansion of $B \rightarrow \pi\pi$ matrix element: (k_2) π $i\langle \pi^{+}(k_{1})\pi^{0}(k_{2})|\bar{u}\gamma^{\mu}(1-\gamma_{5})b|\bar{B}^{0}(p)\rangle$ $= -F_{\perp}(q^2, k^2, \zeta) \frac{4}{\sqrt{k^2 \lambda_p}} i \epsilon^{\mu \alpha \beta \gamma} q_{\alpha} k_{1\beta} k_{2\gamma}$ $+F_{l}(q^{2},k^{2},\zeta)\frac{q^{\mu}}{\sqrt{a^{2}}}+F_{0}(q^{2},k^{2},\zeta)\frac{2\sqrt{q^{2}}}{\sqrt{\lambda_{B}}}\left(k^{\mu}-\frac{k\cdot q}{a^{2}}q^{\mu}\right)$ $+F_{\parallel}(q^2,k^2,\zeta)\frac{1}{\sqrt{k^2}}\left(\overline{k}^{\mu}-\frac{4(q\cdot k)(q\cdot \overline{k})}{\lambda_{\mathcal{P}}}k^{\mu}+\frac{4k^2(q\cdot \overline{k})}{\lambda_{\mathcal{P}}}q^{\mu}\right),$ $k(\bar{k}) = k_1 + (-)k_2$

• dipion state with $J^P = 0^+, 1^-, 2^+, ...,$ a rich set of observables (decay width distributions, asymmetries etc.)

• final-state pions interact strongly and form resonances, $\rho(770)$ with $J^P = 1^-$, $B \rightarrow \rho \ell \nu_{\ell}$ is a model-dependent part of the $B \rightarrow 2\pi \ell \nu_{\ell}$

\Box The $B \to K \ell^+ \ell^-$, $B \to K \pi \ell^+ \ell^-$ FCNC decays

 the b → sℓ⁺ℓ⁻ loop diagrams reduced to effective local operators, since t, Z, W are much heavier than b

$$H_{eff} = -rac{G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i O_i \,,$$

$$O_{9(10)} = rac{lpha_{em}}{2\pi} [ar{s} \gamma_\mu (1-\gamma_5) b] \ell \gamma^\mu (\gamma_5) \ell,$$

$$C_9 \simeq 4.4, C_{10}(m_b) = -4.7,$$

O_{1-8} play a secondary role

• in $B \to K \ell^+ \ell^-$ the hadronic part for $O_{9,10}$ is again reduced to the two $B \to K$ form factors

• $B \to K \pi \ell^+ \ell^-$, four form-factors , $K \pi$ state form the $K^*(892)$ and other $J^P = 0^+, 1^-, 2^+$ resonances

□ Hadron form factors in QCD

pion e.m. form factor, QCD asympotitics, a convolution:

$$F_{\pi}(Q^{2})^{asympt} = \frac{8\pi\alpha_{s}f_{\pi}^{2}}{9Q^{2}} \left(\int_{0}^{1} du \frac{\varphi_{\pi}(u,\mu)}{\bar{u}}\right)^{2} \bigg|_{\mu \sim Q},$$

universal pion distribution amplitude : vacuum-pion matrix element expanded near x² = 0

$$\langle \pi(\boldsymbol{p})|\bar{u}(x)[x,0]\gamma_{\mu}\gamma_{5}d(0)|0
angle_{x^{2}=0}=-ip_{\mu}f_{\pi}\int_{0}^{1}du\,e^{iup\cdot x}\varphi_{\pi}(u)$$

[Chernyak, Zhitnisky; Efremov, Radyushkin; Brodsky-Lepage (1977-1980)]

• how large is the "soft" part ? $\sim 1/Q^4$

・ロ・・四・・ヨ・・ヨ・・日・

Heavy-to-light form factors in QCD

- use of effective theories obtained from QCD in a certain limit: heavy-quark limit \rightarrow HQET, large recoil limit \rightarrow SCET
- factorization theorems in $m_b \rightarrow \infty$, (originally for $B \rightarrow \pi\pi$)

[M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda (1999)]

• for $B \to \pi$ form factor at large recoil: $(E_{\pi} \sim m_B/2, q^2 \to 0)$

[M. Beneke, Th. Feldmann (2001)]

$$f_{B\pi}(q^2) \sim \alpha_s(\mu) \int d\omega du \, \phi_B^+(\omega, \mu) T_h(q^2, \omega, u, \mu) \varphi_{\pi}(u, \mu) + f_{B\pi}^{soft}(q^2)$$
$$\mu = \sqrt{m_b \Lambda}$$

• the main challenge: calculate the soft (overlap) part of the form factor

□ The method of QCD light-cone sum rules (LCSRs)

[I.I.Balitsky, V.M.Braun, A.V. Kolesnichenko (1986); V.L.Chernyak, I.Zhitnisky (1990)]

- a hybrid of asymptotic formulas a'la ERBL and SVZ sum rules: factorization predetermined
- outline of the method:

- the method is valid at $q^2 \ll (m_B m_h)^2$ (large recoil of h)
- two different versions of LCSRs for $B \rightarrow h$ are used:
 - with vacuum $\rightarrow h$ correlator
 - with $B \rightarrow$ vacuum correlator (HQET)

\Box The correlation function used for $B \rightarrow \pi$ form factor

 $q^2, (p+q)^2 \ll m_b^2,$ b-quark highly virtual $\Rightarrow x^2 \sim 0$

 $F_{\lambda}(q,p) = i \int d^4x \ e^{iqx} \langle \pi(p) \mid T\{\bar{u}(x)\gamma_{\lambda}b(x), \bar{b}(0)i\gamma_5d(0)\} \mid 0 \rangle$ $= F((p+q)^2, q^2)p_{\lambda} + \widetilde{F}((p+q)^2, q^2)q_{\lambda}$

Diagrams

• leading order in α_s (LO) including soft, i.e. low-virtuality gluon

• NLO, $O(\alpha_s)$ contributions

Operator Product Expansion near the light-cone

• the correlation function expressed in a factorized form:

$$F((p+q)^2, q^2) = i \int d^4 x \, e^{iqx} \left\{ \left[S_0(x^2, m_b^2, \mu) + \alpha_s S_1(x^2, m_b^2, \mu) \right] \\ \otimes \langle \pi(p) \mid \bar{u}(x) \Gamma d(0) \mid 0 \rangle |_{\mu} \right. \\ \left. + \int_0^1 dv \; \tilde{S}(x^2, m_b^2, \mu, v) \otimes \langle \pi(p) \mid \bar{u}(x) G(vx) \tilde{\Gamma} d(0) \} \mid 0 \rangle |_{\mu} \right\} + \dots$$

• $S_{0,1}$, \tilde{S} - perturbative amplitudes, (*b*-quark propagators)

vacuum-pion matrix elements - expanded near x² = 0
 ⇒ universal pion light-cone distribution amplitudes (DAs) :

$$\langle \pi(p) | \bar{u}(x)[x,0] \gamma_{\mu} \gamma_5 d(0) | 0 \rangle_{x^2=0} = -i p_{\mu} f_{\pi} \int_0^1 du \, e^{i u p \cdot x} \varphi_{\pi}(u) + O(x^2) \, .$$

- the expansion near $x^2 = 0$ goes over twists $(t \ge 2)$ of DAs
- terms $\sim \tilde{S}$ suppressed by powers of $1/\sqrt{m_b\Lambda}$;

□ The OPE result

$$F((p+q)^2, q^2) = \sum_{t=2,3,4,..} \int du \ T^{(t)}(q^2, (p+q)^2, m_b^2, \alpha_s, u, \mu) \varphi_{\pi}^{(t)}(u, \mu)$$

hard scattering amplitudes \otimes pion light-cone DA

A D F A 同 F A E F A E F A Q A

- LO twist 2,3,4 $q\bar{q}$ and $\bar{q}qG$ terms:

[V.Belyaev, A.K., R.Rückl (1993); V.Braun, V.Belyaev, A.K., R.Rückl (1996)]

- LO twist 5,6 *qqDG* terms in factorizable approximation: [A.Rusov (2017)]
- -NLO $O(\alpha_s)$ twist 2, (collinear factorization) [A.K., R.Rückl, S.Weinzierl, O. Yakovlev (1997); E.Bagan, P.Ball, V.Braun (1997);] -NLO $O(\alpha_s)$ twist 3 (coll.factorization for asympt. DA) [P. Ball, R. Zwicky (2001); G.Duplancic, A.K., B.Melic, Th.Mannel, N.Offen (2007)]

-NNLO $O(\alpha_s^2 \beta_0)$ correction [A.Bharucha, (2012)]

Basics of the pion DA's

• twist 2 DA: normalized with f_{π} , expansion in Gegenbauer polynomials

$$\varphi_{\pi}(u,\mu) = 6u(1-u) \left[1 + \sum_{n=2,4,\ldots} a_n^{\pi}(\mu) C_n^{3/2}(2u-1) \right],$$

 $a^{\pi}_{2n}(\mu) \sim [Log(\mu/\Lambda_{QCD})]^{-\gamma_{2n}} o 0 \quad ext{ at } \mu o \infty$

 essential parameters: a^π_{2,4}(μ₀), determined from:

- matching measured pion form factors to LCSRs,
- two-point QCD sum rules,
- lattice QCD
- recent determination vs older results

 remaining minor input parameters: normalization constants and moments of twist 3,4 DAs, determined mainly from two-point sum rules

[Efremov-Radyushkin-Brodsky-Lepage evolution]

TABLE V. Comparison of the second and fourth Gegenbauer moments obtained with various methods.

Method	$a_2(1 \text{ GeV})$	$a_4(1 \text{ GeV})$	Reference
Lattice QCD	0.135 ± 0.032		[1]
QCD sum rule	0.28 ± 0.08		[9]
QCD sum rule	$0.203^{+0.069}_{-0.057}$	$-0.143^{+0.094}_{-0.087}$	[18,45]
with nonlocal condensate			
LCSR fitted to Jlab data	0.17 ± 0.08	0.06 ± 0.10	[20]
LCSR fitted to dispersion relation	0.22-0.33	0.12-0.25	this work

[S.Cheng, AK, A. Rusov (2020)]

🗧 [P. Ball, V.Braun, A.Lenz (2006)] 🖉 🖉 🖉

□ Hadronic dispersion relation

• Analytical continuation of the correlation function in the complex variable $(p+q)^2$ at fixed $q^2 \Rightarrow$ Cauchy theorem,

$$F((p+q)^2, q^2) = \int_{s_{min}}^{\infty} ds rac{\mathrm{Im}F(s, q^2)}{s - (p+q)^2 - i\epsilon}$$

• replacing the Im part by the sum over all possible hadronic states with *B*-meson quantum numbers, located at $s_{min} = m_B^2$ and above

 $f_B f_{B\pi}^+(q^2)$

 $\sum_{B_h} \rightarrow duality \ (s_0^B)$

Derivation of LCSR

• matching OPE with disp. relation at q^2 , $(p+q)^2 \ll m_b^2$

$$[F((p+q)^2,q^2)]_{OPE} = rac{m_B^2 f_B f_{B\pi}^+(q^2)}{m_B^2 - (p+q)^2} + \int\limits_{(m_{B^*}+m_{\pi})^2}^{\infty} ds \, rac{{
m Im} F(s,q^2)}{s - (p+q)^2}$$

quark-hadron duality approximation

(based on the $s \to \infty$ limit: $F(s) \to F_{OPE}(s)$)

$$\int_{(m_{B^*}+m_{\pi})^2}^{\infty} ds \, \frac{\mathrm{Im}F(s,q^2)}{s - (p+q)^2} = \int_{s_0^0}^{\infty} ds \, \frac{[\mathrm{Im}F(s,q^2)]_{OPE}}{s - (p+q)^2}$$

subtraction and Borel transform, \Rightarrow LCSR

$$m_B^2 f_B f_{B\pi}^+(q^2) e^{-m_B^2/M^2} = \int_{m_b^2}^{s_0^B} ds \, e^{-s/M^2} [\mathrm{Im}F(s,q^2)]_{OPE}$$

• fixing s_0^B : acting with $-d/d(1/M^2)$ over both parts and dividing by the same LCSR \Rightarrow the ratio equals to m_B^2 \Box Obtaining the $B \rightarrow \pi$ form factors from LCSRs

- the second form factor $f_0(q^2)$ is obtained using the LCSR from the second invariant amplitude \tilde{F}
- universal inputs: m
 _b, α_s, φ^(t)_π(u), t=2,3,4; f_B from two-point (SVZ) sum rule;
- specific inputs: optimal interval of M², μ
- uncertainties due to:
 - variation of input parameters,
 - quark-hadron duality

(suppressed with Borel transformation, controlled by the m_B calculation)

- LCSRs predict *both* "soft-overlap" (dominant !) and "hard-scattering" contributions to the form factors
- the method uses finite m_b , yields $1/m_b$ expansion
- $B_{(s)} \rightarrow K$ form factors , including $m_s \neq 0$.

\Box Results for $B_{(s)} \rightarrow \pi, K$ form factors

[AK, A.Rusov, 1703.04765]

Figure 1. The vector (reasor) form factors of $B_{s} \rightarrow K$, $B \rightarrow K$ and $B \rightarrow \pi$ transitions calulated from LCSRs including estimated parametrical uncertainties are shown on the upper, middle and lower left (right) panels, respectively, with the dark-shaded (green) bands. Extrapolations of the lattice QCD results for $B_s \rightarrow K$ [Fermilab-MILC (2014)], $B \rightarrow K$ [HPQCD] and $B \rightarrow \pi$ [Fermilab-MILC (2015)] form factors are shown with the light-shaded (compe) bands.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

\Box LCSR results on $D \rightarrow \pi$ form factor

- simply replacing b quark to c quark in the correlation function
- $c \rightarrow d$ flavour-changing transitions

FIG. 6: The $D \to \pi$ form factor $f_+^{D \to \pi}(0)$ from this work an comparisons with other determinations [12, 13, 23-25].

from HPQCD (2011)

500

□ LCSRs with *B*-meson distribution amplitudes (DAs)

□ B-meson DAs

definition of two-particle DA in HQET:

$$\langle 0|\bar{q}_{2\alpha}(x)[x,0]h_{\nu\beta}(0)|\bar{B}_{\nu}\rangle$$

$$= -\frac{if_Bm_B}{4}\int_0^\infty d\omega e^{-i\omega\nu\cdot x} \left[(1+\not) \left\{ \phi^B_+(\omega) - \frac{\phi^B_+(\omega) - \phi^B_-(\omega)}{2\nu\cdot x} \not\right\} \gamma_5 \right]_{\beta\alpha}$$

⊕ higher twists

key input parameter: the inverse moment

$$rac{1}{\lambda_B(\mu)} = \int_0^\infty d\omega rac{\phi^B_+(\omega,\mu)}{\omega}$$

• possible to extract λ_B from $B \to \gamma \ell \nu_\ell$ using QCDF \oplus LCSR

[Y.-M. Wang (2016) , M.Beneke, V.M. Braun, Y.Ji, Y.-B. Wei (2018)],

• QCD sum rules in HQET: $\lambda_B(1 \text{ GeV}) = 380 \pm 150 \text{ MeV}$

[V.Braun, D.Ivanov, G.Korchemsky (2004); AK, R.Mandal, Th.Mannel (2021)]

• higher twists DAs [V. Braun, Y. Ji, A. Manashov (2017)]

□ Uses of LCSRs with *B* meson DA's

adjusting the interpolating current to the h state

- $B \rightarrow \pi, K, K^*, \rho$ [A.K., T.Mannel, N.Offen (2006)]
- $B \rightarrow D, D^*$ [S.Faller,A.K., C.Klein,T.Mannel (2009)]
- NLO corrections to B → π FFs [Y.-M. Wang, Y.-L.Shen (2015)]
- NLO corrections to B → D FFs [C.-D.Lü, Y-.L. Shen, Y-M. Wang, Y.-B. Wei (2017)]
- higher twists in OPE, $B \rightarrow \pi, K$ [C.-D.Lü,Y-.L. Shen, Y-M. Wang,Y.-B. Wei (2018)]
- all $B \to \pi, K, D, \rho, K^*, D^*$ form factors in LO (higher twists; uncertainties Bayesian analysis) [N.Gubernari, A.Kokulu, D. van Dyk, (2018)]

A D F A 同 F A E F A E F A Q A

• $B \rightarrow D^{**}(1^+)$ form factors [N.Gubernari, AK, R.Mandal, Th.Mannel (2022)]

\Box Results and comparison ($B \rightarrow \pi, K, D$)

form factor at $q^2 = 0$	result	literature	DAs	[Ref.]
$f^{B o \pi}_+$	0.21 ± 0.07	0.258 ± 0.031	π	[Ball,Zwicky 05']
		0.25 ± 0.05	В	[AK,Mannel,Offen 06']
		0.28 ± 0.05	В	[AK,Mannel,Offen,Wang 11
		0.31 ± 0.02	π	[Imsong,AK,Mannel,vanDyl
		0.281 ± 0.038	В	[Wang,Shen 15']
		0.301 ± 0.023	π	[AK, Rusov 17']
	0.19 ± 0.06	0.253 ± 0.028	π	[Ball,Zwicky 05']
${}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_$		0.21 ± 0.04	В	[AK,Mannel,Offen 06']
T_T		0.273 ± 0.021	π	[AK, Rusov 17']
		0.26 ± 0.06	В	[Lü,Shen,Wang,Wei18']
$f_+^{B \to K}$	0.27 ± 0.08	0.331 ± 0.041	K	[DAs, Ball,Zwicky 05']
		0.31 ± 0.04	В	[AK,Mannel,Offen 06']
		0.395 ± 0.033	K	[AK, Rusov 17']
		0.364 ± 0.05	В	[Lü,Shen,Wang,Wei18']
$f_T^{B \to K}$	0.25 ± 0.07	0.358 ± 0.037	K	Ball,Zwicky 05']
		0.27 ± 0.04	В	[AK,Mannel,Offen 06']
		0.381 ± 0.027	K	[AK, Rusov 17']
		0.363 ± 0.08	В	[Lü,Shen,Wang,Wei18']
$f_+^{B \to D}$	0.65 ± 0.08	0.69 ± 0.2	В	[Faller,AK,Klein,Mannel, 08
		0.673 ± 0.063	B	[Wang,Wei, Lü, Shen,17']
$f_T^{B \to D}$	0.57 ± 0.05	—	В	

from [N.Gubernari, A.Kokulu, D. van Dyk, (2018)]

Semileptonic transitions to di-mesons

- a practical problem: to assess "nonresonant" background in $B \to \pi \pi \ell \nu_{\ell}$ or $B \to K \pi \ell \ell$
- In the theory language:

• use general $B \rightarrow \pi\pi$ form factors:

$$\langle \pi^+(k_1)\pi^0(k_2)|\bar{u}\gamma^\mu(1-\gamma_5)b|\bar{B}^0(p)\rangle = -F_{\perp}(q^2,k^2,\zeta)\frac{4}{\sqrt{k^2\lambda_B}}\,i\epsilon^{\mu\alpha\beta\gamma}\,q_\alpha\,k_{1\beta}\,k_{2\gamma}+\dots$$

 $(2\zeta - 1) = (1 - 4m_{\pi}^2/k^2)^{1/2}cos\theta_{\pi}$, in dipion c.m.

- expand in partial waves, isolate dipion *P*-wave $F_{\perp}(q^2, k^2, \zeta) \Rightarrow F_{\perp}^{(\ell=1)}(q^2, k^2)$
- hadronic dispersion relation in dipion invariant mass

 \Box Dispersion relation for the $B \rightarrow \pi \pi$ vector FF

three-resonance ansatz:

$$\frac{\sqrt{3}F_{\perp}^{(\ell=1)}(q^{2},k^{2})}{\sqrt{k^{2}}\sqrt{\lambda_{B}}} = \frac{g_{\rho\pi\pi}}{m_{\rho}^{2}-k^{2}-im_{\rho}\Gamma_{\rho}(k^{2})}\frac{V^{B\to\rho}(q^{2})}{m_{B}+m_{\rho}}$$
$$+\frac{g_{\rho'\pi\pi}}{m_{\rho'}^{2}-k^{2}-im_{\rho'}\Gamma_{\rho'}(k^{2})}\frac{V^{B\to\rho'}(q^{2})}{m_{B}+m_{\rho'}}+$$
$$+\frac{g_{\rho''\pi\pi}}{m_{\rho''}^{2}-k^{2}-im_{\rho''}\Gamma_{\rho''}(k^{2})}\frac{V^{B\to\rho''}(q^{2})}{m_{B}+m_{\rho''}}+\dots$$

- inspired by the timelike pion e.m. form factor in $e^+e^- \rightarrow \pi^+\pi^-$ or in $\tau \rightarrow \pi^-\pi^0\nu_{\tau}$: modelled at $\sqrt{k^2} \lesssim 1.5$ GeV to a sum of $\rho, \rho'(1450), \rho''(1750)$
- calculate $B \to \pi\pi$ or $B \to K\pi$ form factors with QCD methods ρ, ρ', \dots or K^*, \dots have to be "embedded" in this calculation
- model-dependence of the input is unavoidable

Use of LCSRs with dipion distribution amplitudes

[Ch. Hambrock, AK, (2015)

- consider $\bar{B}^0 \to \pi^+ \pi^0 \ell^- \nu_\ell$, isospin 1, L = 1, 3, ...
- vacuum \rightarrow dipion correlation function

- nonperturbative input: dipion distribution amplitudes (DAs)
- introduced and developed for $\gamma^* \gamma \rightarrow 2\pi$ processes [M. Diehl, T. Gousset, B. Pire and O. Teryaev, (1998), D. Müller, D. Robaschik, B. Geyer, F.-M. Dittes and J. Horejsi, (1994), M. V. Polyakov, (1999)]
- only LO, twist-2 approximation for dipion DAs available
- DAs model available only at small $k^2 \sim 4 m_\pi^2$
- problems addressed:
 - how important are L > 1 partial waves of 2π state in $B \rightarrow \pi \pi \ell \nu_{\ell}$?
 - comparison with $B \to \rho$ FFs calculated from LCSRs with parrow ρ DAs, $A \equiv 0$

□ Applying LCSRs with *B*-meson distribution amplitudes

[S.Cheng, AK, J.Virto, (2017)]

• LCSRs with *B*-meson DA and $\bar{u}\gamma_{\mu}d$ interpolating current

• The correlation function:

$$\begin{aligned} F_{\mu\nu}(k,q) &= i \int d^4 x e^{ik \cdot x} \langle 0 | \mathrm{T}\{\bar{d}(x)\gamma_{\mu}u(x), \bar{u}(0)\gamma_{\nu}(1-\gamma_5)b(0)\} | \bar{B}^0(q+k) \rangle, \\ &= \varepsilon_{\mu\nu\rho\sigma} q^{\rho} k^{\sigma} F_{(\varepsilon)}(k^2,q^2) + ig_{\mu\nu} F_{(g)}(k^2,q^2) + iq_{\mu} k_{\nu} F_{(qk)}(k^2,q^2) + \dots \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

\Box Accessing $B \rightarrow \pi\pi$ form factors

• OPE diagrams \Rightarrow invariant amplitudes \Rightarrow dispersion form in k^2 :

$$F_{(\varepsilon)}^{\text{OPE}}(k^2, q^2) = f_B m_B \int_0^\infty d\sigma \ \frac{\phi_+^B(\sigma m_B)}{\bar{\sigma}(s - k^2)} + \{3 - \text{particle DAs}\}$$

 $s = s(\sigma, q^2) = \sigma m_B^2 - \sigma q^2 / \bar{\sigma}$, $\bar{\sigma} \equiv 1 - \sigma$ • hadronic dispersion.relation and unitarity:

$$\mathcal{F}_{(\varepsilon)}(k^2,q^2) = rac{1}{\pi} \int\limits_{4m_\pi^2}^\infty ds \; rac{{
m Im} \mathcal{F}_{(\varepsilon)}(s,q^2)}{s-k^2} \, .$$

$$2 \operatorname{Im} F_{\mu\nu}(k,q) = \int d\tau_{2\pi} \underbrace{\langle 0 | \bar{d} \gamma_{\mu} u | \pi^{+} \pi^{0} \rangle}_{F_{\pi}(s)} \underbrace{\langle \pi^{+} \pi^{0} | \bar{u} \gamma_{\nu} (1 - \gamma_{5}) b | \bar{B}^{0}(q + k) \rangle}_{B \to 2\pi \ (\ell = 1) \text{ form factors}} + \cdots,$$

Resulting sum rules

• e,g,. for the form factor $F_{\perp}^{(\ell=1)}$ of the vector current

$$\begin{split} \int_{4m_{\pi}^{2}}^{s_{0}^{2\pi}} ds \, e^{-s/M^{2}} \frac{\sqrt{s} [\beta_{\pi}(s)]^{3}}{4\sqrt{6}\pi^{2}\sqrt{\lambda}} \, F_{\pi}^{*}(s) \, F_{\perp}^{(\ell=1)}(s,q^{2}) \\ &= f_{B}m_{B} \left[\int_{0}^{\sigma_{0}^{2\pi}} d\sigma \, e^{-s(\sigma,q^{2})/M^{2}} \, \frac{\phi_{+}^{B}(\sigma m_{B})}{\bar{\sigma}} + m_{B} \, \Delta V^{BV}(q^{2},\sigma_{0}^{2\pi},M^{2}) \right], \end{split}$$

 $\sigma_0^{2\pi}$ - the solution of $\sigma m_B^2 - \sigma q^2/\bar{\sigma} = s_0^{2\pi}$, three-particle DA contribution ΔV^{BV}

- similar sum rules for all other *P*-wave $B
 ightarrow 2\pi$ form factors
- not a direct calculation, given the shape of the B → 2π form factors, these sum rules can provide normalization
- probing two different *ρ*-resonance models for the *B* → ππ FF
 ⇒ an appreciable contribution of *ρ'* (up to 20% of *ρ* in residue) is consistent with the LCSRs

$\Box B \rightarrow 2\pi \ (\ell = 1)$ FFs: dipion mass dependence

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○

$\Box B \rightarrow 2\pi \ (\ell = 1)$ FFs: q^2 -dependence at small k^2

• extension of the method to $B \to K\pi(J^P = 1^-, 0^+)$ form factors

[S.Descotes-Genon, AK, J.Virto, (2019)], [S.Descotes-Genon, AK, J.Virto, K.Vos, (2023)]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

□ Summary

- two main versions of LCSRs for $B \rightarrow h$ form factors: with light-hadron DAs and with *B*-meson DAs. complement each other and results mutually agree within uncertainties
- LCSRs provide a variety of $B \rightarrow h$ form factors at large recoil of h, support lattice QCD extrapolation with independent estimates
- LCSRs provide probes of resonance models for the full $B \rightarrow \pi \pi, K \pi$ form factors,
- future perspectives:
 - the accuracy of lattice QCD calculation already in the nearest future cannot be achieved by QCD sum rules and LCSRs
 - but: there are hadronic matrix elements where even a 30-40% accuracy would be sufficient, and they are not yet accessible on the lattice

□ More details in these reviews:

M. A. Shifman,

Snapshots of hadrons or the story of how the vacuum medium determines the properties of the classical mesons which are produced, live and die in the QCD vacuum, arXiv:hep-ph/9802214 [hep-ph].

 V. M. Braun, QCD sum rules for heavy flavors, arXiv:hep-ph/9911206

 P. Colangelo and A. Khodjamirian, QCD sum rules, a modern perspective, arXiv:hep-ph/0010175

 A. Khodjamirian, Quantum chromodynamics and hadrons: An Elementary introduction, (lectures at European School on High Energy Physics (2003)) arXiv:hep-ph/0403145.

□ even more details in this book:

Hadron Form Factors

From Basic Phenomenology to QCD Sum Rules

Alexander Khodjamirian

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ