
Rivet monthly dev meeting
1 June 2022



Recent activity / TODOs
● 3.1.6 release done!       Review MRs

○ Lots of activity for a patch release. Thanks to Chris for driving and running the release
○ AB to follow up on remaining bits of release process — review now. Dockers are done
○ Highlighted by Frank K: our “distutils deprecation protection” apparently wasn’t enough 

for Ubuntu 22.04. Need a 3.17 genuine patch release for Py 3.10 compatibility ⇒ AB

● YODA 2.0 developments
○ Chris G very active, e.g.

■ honing C++ interface for “mixed axis” types,
■ “projection” schemes for e.g. Histo<N> → Histo<N-1> or Profile<N-1>
■ Discuss main points

○ UCL Sci Computing MSc student Yaru started late May on developing
YODA2 Python API & designing/implementing HDF5 I/O

○ Separately, Jamie & Yoran active in migrating matplotlib plotting replacement into Rivet.
■ next step will be identifying core, non-Rivet-specific elements ⇒ move to YODA
■ YODA releases are easier than Rivet ones: can provide & refine functionality before 

needed by Rivet 3.2.0
○ Report+discuss both…

https://gitlab.com/hepcedar/rivet/-/merge_requests


Misc + AOB
● gitlab.com reducing CI time for non-premium projects: need official applications to 

Open Source Programme to regain full CPU quota
○ Application done, maybe too late. Did everything stop working today?!
○ ⇒ raise issue of CERN gitlab inaccessibility via MCnet + other routes

● MCnet event-weights standard: doc on arXiv, with SciPost, reports in
○ Reviews reviewed by Andy & Chris, actions/responses identified… to-do

● Events, schools, talk requests? + working meetings…
○ Sussex reinterpretation workshop; Grenoble visitor programme; MCnet in Graz
○ Chris to investigate an autumn Rivet/Contur/reinterpretation workshop via IPPP

■ truth-level issues (“promptness” with LLPs/weak showers, EW pileup)?
○ Other routes? Expt-specific workshops? MCnet school

● Google Summer of Code / Docs:
○ Anjelo Narendran on new Rivet tutorials and website
○ Kalp Shah on event-file manipulation and event filtering

https://about.gitlab.com/pricing/faq-efficient-free-tier/#public-projects-on-gitlab-saas-free-tier
https://about.gitlab.com/blog/2022/02/04/ultimate-perks-for-open-source-projects/
https://scipost.org/submission/2203.08230v2/
https://indico.cern.ch/event/1104027/registrations/78079/


BACKUP



Major-release tasks
● In parallel: work toward v3.2.0 —  baseline without YODA2

○ CPU-saving no-copy of the HepMC event, with API constness change: merged

○ Finish and merge thread-safety branch (important for Gambit → Tomek Procter)

○ Add early versions of automatic “object flattening”, and no-width scaling

○ Merge HDF5 analysis data, and live/dead-conversion branches  → AB

○ Plotting merge (+ CHC patches) → Jamie, Yoran, AB, CB, etc.: meeting needed

○ Jet clustering of any ParticleBase: some reclustering devel, nuanced due to need to 
propagate constituents / recluster, maybe needs a proj subclass → AB

○ Deprecation clean-out and enum rationalisation (started)
■ including “enumification” of the DISKinematics options arg :-/ → AB

○ Primary particles definition / enforcement
→ mix of PIDs and decay time; Leif started tech discussion



Path towards YODA2
● Plan for major version release around summer!
● Finalise translation of the usual YODA 1.9 objects into YODA2-style objects in time for Easter

○ Support all usual histogram/profile/scatter object types + new (continuously) binned Estimates 

● Spend some time after Easter on (more validation and) syntactic sugaring of discretely binned axes 

○ If this cannot be incorporated with reasonable turn-around (e.g. too complicated or other distractions get in the way),
propose to postpone user-friendly support of discrete binning to a later YODA 2.1 release (autumn/winter?) 
My current feeling is this won’t be necessary, though … 🤞

● Outstanding ToDos:

○ Finalise Estimate implementation

○ Syntactic sugaring for BinnedStorage<Estimate, BinnedAxis> (+ discretely binned axes)

○ Reduce operations (e.g. for live-to-dead conversion)

○ Update Python API ( 😬 )

○ Need new I/O reader and writer

○ Update docs with practical examples

○ Update build tests, tweak CI if necessary + validate, validate, validate, … 



Big picture tasks (near duplicate from April & May)
● Stats objects are our major technical bottleneck

○ Integrate and extend new plotting system
○ YODA type-extension (build on Nick R GSoC 2020 work)
○ HDF analysis data and new YODA format
○ post-finalize() always “flatten” stats objects to “binned measurement” type
○ [finish multiweight-fill optimisation (Aditya GSoC 2020)]

● Scaling
○ Analysis distribution system... again
○ Ref-data and analysis data particularly problematic: decouple data from code??
○ HD consistency

● Standardising:
○ MCnet weight-name/structure proposal: productive meeting on

May 21, lots of agreement, AB to update and recirculate proposal
○ [Event-record content: excessive size and physicality…]

https://docs.google.com/document/d/1fTMiCYnizZThc62gZHuKinBi4ANPpYHLxQAxnO_MFII/edit#


Major (stats) work plans
● “Flattening”: convert finalize output to inert objects (scatters/binnedmeas)

○ Final objects really will mean “what was plotted/listed in the paper”
○ Allow eager conversion to solve “no-bin-width issue”
○ Best that we wait for binned measurement YODA2 types: no more scatters!

● HDF5 analysis data machinery (Holger)    Status?
○ Also interested in HepMC and YODA HDF5 formats
○ Holger to ping CMS, prototype interface

● Plotting (Christian B et al)
○ Plan: generate Python MPL scripts without TeX, .plot styles → YAML
○ Rivet labels tested: MathText fails due to missing std symbols. Can we extend?
○ Stalled for a while… restarting? Possible student help from David Grellscheid
○ Christian to prototype the Python-script generation
○ Chris to extract weight-handling logic from rivet-cmphistos



Performance in Rivet and YODA  (Aditya Kumar, AB)

● Profiling revealed bottlenecks: thanks Aditya!
○ HepMC ASCII I/O (obviously) — taken out of tests by event-reuse
○ GenEvent copying — for sanitising, but hardly used: removed from Rivet.

Could/should generators write smaller “essential” events by default?
Awkwardness: we still normalise GenEvent units… so not quite analysing a const GenEvent. 
But can’t justify an expensive copy for unit conversion…

○ PID functions — sped up charge lookups by special-cases. Marginal gain
○ Multiweight calls to histo fill() very expensive: ~40-50% CPU!

100+ consecutive fills with same x: tried caching in YODA but no benefit:
cache-check costs the same as linear bin lookup! Maybe cache in Rivet?

● Thread-safety.   “Just store a ProjectionHandler in AnalysisHandler: easy!”...?
○ But then who do Projection constructors (recursively) register their contained 

projections with, before they themselves have been bound to a PH?
○ “Declare queue” implemented: not yet working (thx, unique_ptr), but should do

What should the Projection ownership be?!



YODA generalised datatypes  (Nick Rozinsky, LC, AB)

● Long-understood limitations of YODA types and design
○ Overreach in attempted non-factorisable binnings: composed 1D axes are fine
○ Complexity/mess in 2D overflows: need “infinity binning”
○ Need for binned “dead” data objects… or any type, actually
○ Want programmatic access to axis number and global/local bin indexing
○ Want labelled/discrete binnings as well as continuous
○ Code duplication, particularly in Cython interface building

● Major YODA redesign using modern C++ magic. Thanks Nick!
○ E.g. Histo1D → wrapper of a BinnedStorage<CAxis, Dbn<1>> + sugar
○ + arbitrary mixtures, e.g. 3D binnings of doubles, discretely labelled counters, … 
○ Adaptors used to map fill/set behaviours. Can do the same for I/O read/write?

● Path to a YODA2 release:
○ Needs I/O adaptors and user-facing refinements. Tie in with HDF5 format?


