The Dispersive Matrix approach and exclusive｜$V_{u b}$｜

Work in collaboration with G．Martinelli and S．Simula ［PRD＇21（2105．02497），JHEP＇22（2202．10285），．．．］

Ludovico Vittorio（LAPTh \＆CNRS，Annecy，France）
Implications of LHCb measurements and future prospects 2022 －CERN

ᄂペ戸丁た

（from J．Phys．G 46 （2019）2，023001）

State-of-the-art of the semileptonic heavy-to-light B decays

State-of-the-art of the semileptonic heavy-to-light B decays

- $V_{u b}$ puzzle:

EXCLUSIVE
INCLUSIVE

$$
\left|V_{u b}\right| \times 10^{3}=3.74(17) \quad \text { VS }
$$

Lot of averaged values:
FLAG Review 2021 [EPJC 22 (2111.09849)]

$$
\begin{aligned}
& \left|V_{u b}\right|_{\text {incl }} \cdot 10^{3}=4.19(12)\binom{+0.11}{-0.12} \\
& \text { hrian coll. [arxiv: :2a06.07801] } \\
& \left|V_{u b}\right|_{\text {incl }} \cdot 10^{3}=4.32(29) \\
& \text { FLAG Review 2021 [FPJC 'R2 (2111.09849)] } \\
& \left|V_{u b}\right|_{i n c l} \cdot 10^{3}=4.13(26) \\
& \text { PDG Review } 2021 \text { [PTEP } 2020 \text { 083C01] }
\end{aligned}
$$

State-of-the-art of the semileptonic heavy-to-light B decays

- $V_{u b}$ puzzle:

$$
\begin{aligned}
& \text { EXCLUSIVE } \\
& \text { INCLUSIVE } \\
& \left|V_{u b}\right| \times 10^{3}=3.74(17) \quad \text { VS Lot of averaged values: } \\
& \text { FLAG Review } 2021 \text { [EPJC }{ }^{2} \text { (22 (211.09849)] } \\
& \begin{array}{|c|}
\sim 1.5-2 \sigma \\
\text { difference } \\
\hline
\end{array}
\end{aligned}
$$

State-of-the-art of the semileptonic heavy-to-light B decays

- $V_{u b}$ puzzle:

EXCLUSIVE
INCLUSIVE

$$
\left|V_{0 b}\right| \times 10^{3}=3.74(17) \quad \text { VS }
$$

FLAG Review 2021 [EPJC ${ }^{2}$ (22 (2111.09849)]

$$
\begin{gathered}
\sim 1.5-2 \sigma \\
\text { difference }
\end{gathered}
$$

$$
\begin{gathered}
\left|V_{u b}\right|_{\text {incl }} \cdot 10^{3}=4.19(12)\binom{+0.11}{-0.12} \\
\left|V_{u b}\right|_{\text {HFLAV Coll. [arXiv:2206.07501] }} \cdot 10^{3}=4.32(29) \\
\text { FLAG Review 2021 [EPJC (22 (2111.09849)] } \\
\left|V_{u b}\right|_{\substack{\text { incl } \\
\text { PDG Review 2021 [PTEP 2020 083Col] }}} \cdot 10^{3}=4.13(26)
\end{gathered}
$$

Although the difference is only about 1.5-2 σ, in view of what happens in the case of V_{cb} it is important to address the problem of an accurate determination of V_{ub} from the relevant exclusive channels

State-of-the-art of the semileptonic heavy-to-light B decays

- $V_{u b}$ puzzle:

EXCLUSIVE
INCLUSIVE

$$
\begin{aligned}
& \left|V_{u b}\right| \times 10^{3}=3.74(17) \quad \text { vs } \\
& \text { FLAG Review 2021 [EPJC ‘ん2 (2111.09849)] }
\end{aligned}
$$

Lot of averaged values:

$$
\begin{gathered}
\left|V_{u b}\right|_{i n c l} \cdot 10^{3}=4.19(12)\left(\begin{array}{c}
+0.11 \\
\text { HFLAV Coll. [arXiv:2206.07501] } \\
-0.12
\end{array}\right) \\
\left|V_{u b}\right|_{i n c l} \cdot 10^{3}=4.32(29) \\
\text { FLAG Review 2021 [EPJC (22 (2111.09849)] } \\
\left|V_{u b}\right|_{\substack{\text { incl } \\
\text { PDG Review 2021 [PTEP 2020 083C01] }}} \cdot 10^{3}=4.13(26)
\end{gathered}
$$

To this end, a central role is played by the hadronic Form Factors (FFs), which enter in the differential decay widths:

$$
\begin{aligned}
\frac{d \Gamma\left(B_{(s)} \rightarrow \pi(K) \ell \nu_{\ell}\right)}{d q^{2}} & =\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{24 \pi^{3}}\left(1-\frac{m_{\ell}^{2}}{q^{2}}\right)^{2}\left[\left|\vec{p}_{\pi(K)}\right|^{3}\left(1+\frac{m_{\ell}^{2}}{2 q^{2}}\right)\left|f_{+}^{\pi(K)}\left(q^{2}\right)\right|^{2}\right. \\
& \left.+m_{B_{(s)}}^{2}\left|\vec{p}_{\pi(K)}\right|\left(1-r_{\pi(K)}^{2}\right)^{2} \frac{3 m_{\ell}^{2}}{8 q^{2}}\left|f_{0}^{\pi(K)}\left(q^{2}\right)\right|^{2}\right]
\end{aligned}
$$

State-of-the-art of the semileptonic heavy-to-light B decays

- $V_{u b}$ puzzle:

EXCLUSIVE
INCLUSIVE

$$
\left|V_{u b}\right| \times 10^{3}=3.74(17) \quad \text { VS } \quad \text { Lot of averaged values: }
$$

FLAG Review 2021 [EPJC ‘2ん (2111.09849)]

$$
\begin{gathered}
\left|V_{u b}\right|_{\text {incl }} \cdot 10^{3}=4.19(12)\binom{+0.11}{-0.12} \\
\left|V_{u b}\right|_{\text {HFLAV Coll. [arXiv:2206.07501] }} \cdot 10^{3}=4.32(29) \\
\text { FLAG Review 2021 [EPJC (22 (2111.09849)] } \\
\left|V_{u b}\right|_{\substack{\text { incl } \\
\text { PDG Review 2021 [PTEP 2020 083Col] }}} \cdot 10^{3}=4.13(26)
\end{gathered}
$$

To this end, a central role is played by the hadronic Form Factors (FFs), which enter in the differential decay widths:

$$
\begin{aligned}
\frac{d \Gamma\left(B_{(s)} \rightarrow \pi(K) \ell \nu_{\ell}\right)}{d q^{2}} & =\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{24 \pi^{3}}\left(1-\frac{m_{\ell}^{2}}{q^{2}}\right)^{2}\left[\left|\vec{p}_{\pi(K)}\right|^{3}\left(1+\frac{m_{\ell}^{2}}{2 q^{2}}\right)\left|f_{+}^{\pi(K)}\left(q^{2}\right)\right|^{2}\right. \\
& \left.+m_{B_{(s)}}^{2}\left|\vec{p}_{\pi(K)}\right|\left(1-r_{\pi(K)}^{2}\right)^{2} \frac{3 m_{\ell}^{2}}{8 q^{2}}\left|f_{0}^{\pi(K)}\left(q^{2}\right)\right|^{2}\right]
\end{aligned}
$$

State-of-the-art of the semileptonic heavy-to-light B decays

- $V_{u b}$ puzzle:

EXCLUSIVE
INCLUSIVE

$\left|V_{u b}\right| \times 10^{3}=3.74(17) \quad$ VS \quad Lot of averaged values:

FLAG Review 2021 [EPJC 〔22 (2111.09849)]

$$
\left.\begin{array}{c}
\left|V_{u b}\right|_{i n c l} \cdot 10^{3}=4.19(12)\binom{+0.11}{\text { HFLAV Coll. [arXiv:2206.07501] }} \\
\left|V_{u b}\right|_{i n c l} \cdot 10^{3}=4.32(29) \\
\text { FLAG Review 2021 [EPJC (22 (2111.09849)] }
\end{array}\right)
$$

To this end, a central role is played by the hadronic Form Factors (FFs), which enter in the differential decay widths:

$$
\begin{aligned}
\frac{d \Gamma\left(B_{(s)} \rightarrow \pi(K) \ell \nu_{\ell}\right)}{d q^{2}} & =\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{24 \pi^{3}}\left(1-\frac{m_{\ell}^{2}}{q^{2}}\right)^{2}\left[\left|\vec{p}_{\pi(K)}\right|^{3}\left(1+\frac{m_{\ell}^{2}}{2 q^{2}}\right) \sqrt[\left.f_{+}^{\pi(K)}\left(q^{2}\right)\right|^{2}]{\begin{array}{c}
\text { Lattice QCD (LQCD) } \\
\text { simulations can determine }
\end{array}}\right. \\
& \left.+m_{B_{(s)}}^{2}\left|\vec{p}_{\pi(K)}\right|\left(1-r_{\pi(K)}^{2}\right)^{2} \frac{3 m_{\ell}^{2}}{8 q^{2}}\left|{\mid f_{0}^{\pi(K)}\left(q^{2}\right.}_{2}\right|^{2}\right],
\end{aligned} \begin{gathered}
\begin{array}{c}
\text { the FFs ONLY at high values } \\
\text { of momentum transfer... }
\end{array}
\end{gathered}
$$

The Dispersive Matrix (DM) method

Our goal is to describe the FFs using a novel, non-perturbative and model independent approach: starting from the available LQCD computations of the FFs in the high- q^{2} (or low-w) regime, we extract the FFs behaviour in the low- q^{2} (or high-w) region!

- Pioneering works from S. Okubo [PRD, 3 (1971); PRD, 4 (1971)], C.'Bourrely et al [NPB, 189 (1981)] and L. Lellouch [NPB, 479 (1996)]
- New developments in PRD '21 (2105.02497)

The Dispersive Matrix (DM) method

Our goal is to describe the FFs using a novel, non-perturbative and model independent approach: starting from the available LQCD computations of the FFs in the high- q^{2} (or low- w) regime, we extract the FFs behaviour in the low- q^{2} (or high-w) region!

- Pioneering works from S. Okubo [PRD, 3 (1971); PRD, 4 (1971)], C.'Bourrely et al [NPB, 189 (1981)] and L. Lellouch [NPB, 479 (1996)]
- New developments in PRD 'R1 (2105.02497)

The resulting description of the FFs

- is entirely based on first principles (LQCD evaluation of 2- and 3-point Euclidean correlators)
- is independent of any assumption on the functional dependence of the FFs on the momentum transfer
- can be applied to theoretical calculations of the FFs, but also to experimental data
- keep theoretical calculations and experimental data separated
- is universal: it can be applied to any exclusive semileptonic decays of mesons and baryons

The Dispersive Matrix (DM) method

Our goal is to describe the FFs using a novel, non-perturbative and model independent approach: starting from the available LQCD computations of the FFs in the high- q^{2} (or low- w) regime, we extract the FFs behaviour in the low- q^{2} (or high-w) region!

- Pioneering works from S. Okubo [PRD, 3 (1971); PRD, 4 (1971)], C.'Bourrely et al [NPB, 189 (1981)] and L. Lellouch [NPB, 479 (1996)]
- New developments in PRD 'ん1 (2105.02497)

The resulting description of the FFs

- is entirely based on first principles (LQCD evaluation of 2- and 3-point Euclidean correlators)
- is independent of any assumption on the functional dependence of the FFs on the momentum transfer
- can be applied to theoretical calculations of the FFs, but also to experimental data
- keep theoretical calculations and experimental data separated
- is universal: it can be applied to any exclusive semileptonic decays of mesons and baryons

No HQET, no series expansion, no perturbative bounds with respect to the well-known other parametrizations

The Dispersive Matrix (DM) method

Our goal is to describe the FFs using a novel, non-perturbative and model independent approach: starting from the available LQCD computations of the FFs in the high- q^{2} (or low-w) regime, we extract the FFs behaviour in the low- q^{2} (or high-w) region!

- Pioneering works from S. Okubo [PRD, 3 (1971); PRD, 4 (1971)], C.'Bourrely et al [NPB, 189 (1981)] and L. Lellouch [NPB, 479 (1996)]
- New developments in PRD ' 21 (2105.02497)

The resulting description of the FFs

- is entirely based on first principles (LQCD evaluation of 2- and 3-point Euclidean correlators)
- is independent of any assumption on the functional dependence of the FFs on the momentum transfer
- can be applied to theoretical calculations of the FFs, but also to experimental data
- keep theoretical calculations and experimental data separated
- is universal: it can be applied to any exclusive semileptonic decays of mesons and baryons

No HQET, no series expansion, no perturbative bounds with respect to the well-known other parametrizations

The DM method

Let us focus on a generic FF f : we can define

$$
\mathbf{M}=\left(\begin{array}{cccccc}
\chi & \phi f & \phi_{1} f_{1} & \phi_{2} f_{2} & \ldots & \phi_{N} f_{N} \\
\phi f & \frac{1}{1-z^{2}} & \frac{1}{1-z z_{1}} & \frac{1}{1-z z_{2}} & \cdots & \frac{1}{1-z z_{N}} \\
\phi_{1} f_{1} & \frac{1}{1-z_{1} z} & \frac{1}{1-z_{1}^{2}} & \frac{1}{1-z_{1} z_{2}} & \cdots & \frac{1}{1-z_{1} z_{N}} \\
\phi_{2} f_{2} & \frac{1}{1-z_{2} z} & \frac{1}{1-z_{2} z_{1}} & \frac{1}{1-z_{2}^{2}} & \cdots & \frac{1}{1-z_{2} z_{N}} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\phi_{N} f_{N} & \frac{1}{1-z_{N} z} & \frac{1}{1-z_{N} z_{1}} & \frac{1}{1-z_{N} z_{2}} & \cdots & \frac{1}{1-z_{N}^{2}} \\
\phi_{i} f_{i} \equiv \phi\left(z_{i}\right) f\left(z_{i}\right)(\text { with } i=1,2, \ldots N)
\end{array}\right)
$$

L. Vittorio (LAPTh \& CNRS, Annecy)

Non-perturbative values of the susceptibilities from the dispersion relations (see PRD '21 (2105.07851) and JHEP '22 (2202.10285))

$$
\mathbf{M}=\left(\begin{array}{cc|cccc}
\phi_{1} f_{1} & \frac{1}{1-z_{1} z} & \frac{1}{1-z_{1}^{2}} & \frac{1}{1-z_{1} z_{2}} & \cdots & \frac{1}{1-z_{1} z_{N}} \\
\phi_{2} f_{2} & \frac{1}{1-z_{2} z} & \frac{1}{1-z_{2} z_{1}} & \frac{1}{1-z_{2}^{2}} & \cdots & \frac{1}{1-z_{2} z_{N}} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\phi_{N} f_{N} & \frac{1}{1-z_{N} z} & \frac{1}{1-z_{N} z_{1}} & \frac{1}{1-z_{N} z_{2}} & \cdots & \frac{1}{1-z_{N}^{2}}
\end{array}\right)
$$

The DM method

$$
\phi_{i} f_{i} \equiv \phi\left(z_{i}\right) f\left(z_{i}\right)(\text { with } i=1,2, \ldots N)
$$

Estimates of the FFs, computed on the

computed on the lattice	$\left(\begin{array}{c}z(t)=\frac{\sqrt{\frac{t_{+}-t}{t_{+}-t_{-}}}-1}{\sqrt{\frac{t_{+}-t}{t_{+}-t_{-}}}+1} \\ t_{ \pm} \equiv\left(m_{B(s)} \pm m_{\pi(K)}\right)^{2} \\ t: m o m e n t u m \text { transfer }\end{array}\right)$
I One	-
de	$\mathbf{M} \geq 0$
\boldsymbol{l}	
I	
I	
$f_{\mathrm{lo}}(z) \leq$	$f(z) \leq f_{\text {up }}(z){ }^{\prime}$

Values of the momentum transfer @ which FFs are computed on the lattice

A sketch of the calculation of the susceptibilities

In Appendix A of JHEP '22 (2202.10285), we have presented the results of the first computation on the lattice of the susceptibilities for the $b \rightarrow u$ quark transition, using the $N_{f}=2+1+1$ gauge ensembles generated by ETM Collaboration.

A sketch of the calculation of the susceptibilities

In Appendix A of JHEP '22 (2202.10285), we have presented the results of the first computation on the lattice of the susceptibilities for the $b \rightarrow u$ quark transition, using the $N_{f}=2+1+1$ gauge ensembles generated by ETM Collaboration.

How are they defined? The starting point is the HVP tensor:

$$
\begin{aligned}
\Pi_{V}^{\mu \nu}(Q) & =\int d^{4} x e^{-i Q \cdot x}\langle 0| T\left\{\bar{b}(x) \gamma_{\mu}^{E} u(x) \bar{u}(0) \gamma_{\nu}^{E} b(0)\right\}|0\rangle \\
& =\left(\delta^{\mu \nu} Q^{2}-Q^{\mu} Q^{\nu}\right) \Pi_{1^{-}}\left(Q^{2}\right)-Q^{\mu} Q^{\nu} \Pi_{0^{+}}\left(Q^{2}\right),
\end{aligned}
$$

A sketch of the calculation of the susceptibilities

In Appendix A of JHEP '22 (2202.10285), we have presented the results of the first computation on the lattice of the susceptibilities for the $b \rightarrow u$ quark transition, using the $N_{f}=2+1+1$ gauge ensembles generated by ETM Collaboration.

How are they defined? The starting point is the HVP tensor:

$$
\begin{aligned}
\Pi_{V}^{\mu \nu}(Q) & =\int d^{4} x e^{-i Q \cdot x}\langle 0| T\left\{\bar{b}(x) \gamma_{\mu}^{E} u(x) \bar{u}(0) \gamma_{\nu}^{E} b(0)\right\}|0\rangle \\
& =\left(\delta^{\mu \nu} Q^{2}-Q^{\mu} Q^{\nu}\right) \Pi_{1^{-}}\left(Q^{2}\right)-Q^{\mu} Q^{\nu} \Pi_{0^{+}}\left(Q^{2}\right),
\end{aligned}
$$

To compute the susceptibilities on the lattice, we start from the Euclidean correlators:

$$
\begin{aligned}
& \chi_{0^{+}}\left(Q^{2}\right) \equiv \frac{\partial}{\partial Q^{2}}\left[Q^{2} \Pi_{0^{+}}\left(Q^{2}\right)\right]=\int_{0}^{\infty} d t t^{2} j_{0}(Q t) C_{0^{+}}(t), \\
& \chi_{1^{-}}\left(Q^{2}\right) \equiv-\frac{1}{2} \frac{\partial^{2}}{\partial^{2} Q^{2}}\left[Q^{2} \Pi_{1^{-}}\left(Q^{2}\right)\right]=\frac{1}{4} \int_{0}^{\infty} d t t^{4} \frac{j_{1}(Q t)}{Q t} C_{1^{-}}(t) \\
& \chi_{0^{-}}\left(Q^{2}\right) \equiv \frac{\partial}{\partial Q^{2}}\left[Q^{2} \Pi_{0^{-}}\left(Q^{2}\right)\right]=\int_{0}^{\infty} d t t^{2} j_{0}(Q t) C_{0^{-}}(t), \\
& \chi_{1^{+}}\left(Q^{2}\right) \equiv-\frac{1}{2} \frac{\partial^{2}}{\partial^{2} Q^{2}}\left[Q^{2} \Pi_{1^{+}}\left(Q^{2}\right)\right]=\frac{1}{4} \int_{0}^{\infty} d t t^{4} \frac{j_{1}(Q t)}{Q t} C_{1^{+}}(t)
\end{aligned}\left\{\begin{array}{l}
C_{0^{+}}(t)=\int d^{3}\langle 0| T\left[\bar{b}(x) \gamma_{0} u(x) \bar{u}(0) \gamma_{0} b(0)\right]|0\rangle, \\
C_{0^{-}}(t)=\frac{1}{3} \sum_{j=1}^{3} \int d^{3} x\langle 0| T\left[\bar{b}(x) \gamma_{j} u(x) \bar{u}(0) \gamma_{j} b(0)\right]|0\rangle, \\
C_{1^{+}}(t)=\frac{1}{3} \sum_{j=1}^{3} \int d^{3} x\langle 0| T\left[\bar{b}(x) \gamma_{0} \gamma_{5} u(x) \bar{u}(0) \gamma_{0} \gamma_{5} b(0)\right]|0\rangle,
\end{array}\right.
$$

A sketch of the calculation of the susceptibilities

In Appendix A of JHEP '22 (2202.10285), we have presented the results of the first computation on the lattice of the susceptibilities for the $b \rightarrow u$ quark transition, using the $N_{f}=2+1+1$ gauge ensembles generated by ETM Collaboration.

How are they defined? The starting point is the HVP tensor:

$$
\begin{aligned}
\Pi_{V}^{\mu \nu}(Q) & =\int d^{4} x e^{-i Q \cdot x}\langle 0| T\left\{\bar{b}(x) \gamma_{\mu}^{E} u(x) \bar{u}(0) \gamma_{\nu}^{E} b(0)\right\}|0\rangle \\
& =\left(\delta^{\mu \nu} Q^{2}-Q^{\mu} Q^{\nu}\right) \Pi_{1^{-}}\left(Q^{2}\right)-Q^{\mu} Q^{\nu} \Pi_{0^{+}}\left(Q^{2}\right)
\end{aligned}
$$

To compute the susceptibilities on the lattice, we start from the Euclidean correlators:

$$
\begin{aligned}
& \chi_{0^{+}}\left(Q^{2}\right) \equiv \frac{\partial}{\partial Q^{2}}\left[Q^{2} \Pi_{0^{+}}\left(Q^{2}\right)\right]=\int_{0}^{\infty} d t t^{2} j_{0}(Q t) C_{0^{+}}(t), \xrightarrow{W . I .} \frac{1}{4} \int_{0}^{\infty} d t^{\prime} t^{\prime 4} \frac{j_{1}\left(Q t^{\prime}\right)}{Q t^{\prime}}\left[\left(m_{b}-m_{u}\right)^{2} C_{S}\left(t^{\prime}\right)+Q^{2} C_{0^{+}}\left(t^{\prime}\right)\right] \\
& \chi_{1^{-}}\left(Q^{2}\right) \equiv-\frac{1}{2} \frac{\partial^{2}}{\partial^{2} Q^{2}}\left[Q^{2} \Pi_{1^{-}}\left(Q^{2}\right)\right]=\frac{1}{4} \int_{0}^{\infty} d t t^{4} \frac{j_{1}(Q t)}{Q t} C_{1^{-}}(t) \\
& \chi_{0^{-}}\left(Q^{2}\right) \equiv \frac{\partial}{\partial Q^{2}}\left[Q^{2} \Pi_{0^{-}}\left(Q^{2}\right)\right]=\int_{0}^{\infty} d t t^{2} j_{0}(Q t) C_{0^{-}}(t), \xrightarrow{W . I .} \frac{1}{4} \int_{0}^{\infty} d t^{\prime} t^{\prime 4} \frac{j_{1}\left(Q t^{\prime}\right)}{Q t^{\prime}}\left[\left(m_{b}+m_{u}\right)^{2} C_{P}\left(t^{\prime}\right)+Q^{2} C_{0^{-}}\left(t^{\prime}\right)\right] \\
& \chi_{1^{+}}\left(Q^{2}\right) \equiv-\frac{1}{2} \frac{\partial^{2}}{\partial^{2} Q^{2}}\left[Q^{2} \Pi_{1^{+}}\left(Q^{2}\right)\right]=\frac{1}{4} \int_{0}^{\infty} d t t^{4} \frac{j_{1}(Q t)}{Q t} C_{1^{+}}(t)
\end{aligned}
$$

A sketch of the calculation of the susceptibilities

The possibility to compute the χ s on the lattice allows us

NOT POSSIBLE IN PERTURBATION THEORY since to choose whatever value of Q^{2} !

POSSIBLE IMPROVEMENT IN THE STUDY
OF THE FFs through our method
Work in progress...
To compute the susceptibilities on the lattice, we start from the Euclidean correlators:

$$
\begin{aligned}
& \chi_{0^{+}}\left(Q^{2}\right) \equiv \frac{\partial}{\partial Q^{2}}\left[Q^{2} \Pi_{0^{+}}\left(Q^{2}\right)\right]=\int_{0}^{\infty} d t t^{2} j_{0}(Q t) C_{0^{+}}(t), \xrightarrow{\text { W.I. }} \frac{1}{4} \int_{0}^{\infty} d t^{\prime} t^{\prime 4} \frac{j_{1}\left(Q t^{\prime}\right)}{Q t^{\prime}}\left[\left(m_{b}-m_{u}\right)^{2} C_{S}\left(t^{\prime}\right)+Q^{2} C_{0^{+}}\left(t^{\prime}\right)\right] \\
& \chi_{1^{-}}\left(Q^{2}\right) \equiv-\frac{1}{2} \frac{\partial^{2}}{\partial^{2} Q^{2}}\left[Q^{2} \Pi_{1^{-}}\left(Q^{2}\right)\right]=\frac{1}{4} \int_{0}^{\infty} d t t^{4} \frac{j_{1}(Q t)}{Q t} C_{1^{-}}(t) \\
& \chi_{0^{-}}\left(Q^{2}\right) \equiv \frac{\partial}{\partial Q^{2}}\left[Q^{2} \Pi_{0^{-}}\left(Q^{2}\right)\right]=\int_{0}^{\infty} d t t^{2} j_{0}(Q t) C_{0^{-}}(t), \xrightarrow{W . I .} \frac{1}{4} \int_{0}^{\infty} d t^{\prime} t^{\prime 4} \frac{j_{1}\left(Q t^{\prime}\right)}{Q t^{\prime}}\left[\left(m_{b}+m_{u}\right)^{2} C_{P}\left(t^{\prime}\right)+Q^{2} C_{0^{-}}\left(t^{\prime}\right)\right] \\
& \chi_{1^{+}}\left(Q^{2}\right) \equiv-\frac{1}{2} \frac{\partial^{2}}{\partial^{2} Q^{2}}\left[Q^{2} \Pi_{1^{+}}\left(Q^{2}\right)\right]=\frac{1}{4} \int_{0}^{\infty} d t t^{4} \frac{j_{1}(Q t)}{Q t} C_{1^{+}}(t)
\end{aligned}
$$

Non-perturbative computation of the susceptibilities

Let us choose for the moment zero Q^{2} :

$$
\begin{aligned}
& \chi_{0^{+}}\left(Q^{2}=0\right)=\int_{0}^{\infty} d t t^{2} C_{0^{+}}(t), \\
& \chi_{1^{-}}\left(Q^{2}=0\right)=\frac{1}{12} \int_{0}^{\infty} d t t^{4} C_{1^{-}}(t), \\
& \chi_{0^{-}}\left(Q^{2}=0\right)=\int_{0}^{\infty} d t t^{2} C_{0^{-}}(t), \\
& \chi_{1^{+}}\left(Q^{2}=0\right)=\frac{1}{12} \int_{0}^{\infty} d t t^{4} C_{1^{+}}(t) . \\
& \chi_{0^{+}}\left(Q^{2}=0\right)=\frac{1}{12}\left(m_{b}-m_{u}\right)^{2} \int_{0}^{\infty} d t t^{4} C_{S}(t) \\
& \chi_{0^{-}}\left(Q^{2}=0\right)=\frac{1}{12}\left(m_{b}+m_{u}\right)^{2} \int_{0}^{\infty} d t t^{4} C_{P}(t)
\end{aligned}
$$

$$
\begin{aligned}
& C_{0^{+}}(t)=\widetilde{Z}_{V}^{2} \int d^{3} x\langle 0| T\left[\bar{q}_{1}(x) \gamma_{0} q_{2}(x) \bar{q}_{2}(0) \gamma_{0} q_{1}(0)\right]|0\rangle, \\
& C_{1^{-}}(t)=\widetilde{Z}_{V}^{2} \frac{1}{3} \sum_{j=1}^{3} \int d^{3} x\langle 0| T\left[\bar{q}_{1}(x) \gamma_{j} q_{2}(x) \bar{q}_{2}(0) \gamma_{j} q_{1}(0)\right]|0\rangle, \\
& C_{0-}(t)=\widetilde{Z}_{A}^{2} \int d^{3} x\langle 0| T\left[\bar{q}_{1}(x) \gamma_{0} \gamma_{5} q_{2}(x) \bar{q}_{2}(0) \gamma_{0} \gamma_{5} q_{1}(0)\right]|0\rangle, \\
& C_{1}(t)=\widetilde{Z}_{A}^{2} \frac{1}{3} \sum_{j=1}^{3} \int d^{3} x\langle 0| T\left[\bar{q}_{1}(x) \gamma_{j} \gamma_{5} q_{2}(x) \bar{q}_{2}(0) \gamma_{j} \gamma_{5} q_{1}(0)\right]|0\rangle, \\
& C_{S}(t)=\widetilde{Z}_{S}^{2} \int d^{3} x\langle 0| T\left[\bar{q}_{1}(x) q_{2}(x) \bar{q}_{2}(0) q_{1}(0)\right]|0\rangle, \\
& C_{P}(t)=\widetilde{Z}_{P}^{2} \int d^{3} x\langle 0| T\left[\bar{q}_{1}(x) \gamma_{5} q_{2}(x) \bar{q}_{2}(0) \gamma_{5} q_{1}(0)\right]|0\rangle,
\end{aligned}
$$

We are working in twisted mass LQCD: the Wilson parameter r can be equal or opposite for the two quarks in the currents
\longrightarrow Two possible independent combinations of $\left(r_{1}, r_{2}\right)$!
Z: appropriate renormalization constants
N. Carrasco et al. [ETM Coll.], NPB 887 (2014) [arXiv:1403.4504]

Non-perturbative computation of the susceptibilities

Following set of masses:

$$
\begin{aligned}
& m_{h}(n)=\lambda^{n-1} m_{c}^{p h y s} \quad \text { for } n=1,2, \ldots \\
& \quad m_{h}=a \mu_{h} /\left(Z_{P} a\right) \\
& \lambda \equiv\left[m_{b}^{\text {phys }} / m_{c}^{\text {phys }}\right]^{1 / 10}=[5.198 / 1.176]^{1 / 10} \simeq 1.1602
\end{aligned}
$$

Nine masses values!
$m_{h}(1)=m_{c}^{p h y s}$
$m_{h}(9) \simeq 3.9 \mathrm{GeV} \simeq 0.75 m_{b}^{p h y s}$
r : Wilson parameter

Non-perturbative computation of the susceptibilities

Following set of masses:
$m_{h}(n)=\lambda^{n-1} m_{c}^{p h y s} \quad$ for $n=1,2, \ldots$
$m_{h}=a \mu_{h} /\left(Z_{P} a\right)$
$\lambda \equiv\left[m_{b}^{\text {phys }} / m_{c}^{p h y s}\right]^{1 / 10}=[5.198 / 1.176]^{1 / 10} \simeq 1.1602$
Nine masses values!
$m_{h}(1)=m_{c}^{p h y s}$
$m_{h}(9) \simeq 3.9 \mathrm{GeV} \simeq 0.75 m_{b}^{p h y s}$
r : Wilson parameter

ETMC ratio method \& final results

For the extrapolation to the physical b-quark point we have used the ETMC ratio method in JHEP ' 10 [0909.3187]:

$$
R_{j}\left(n ; a^{2}, m_{u d}\right) \equiv \frac{\chi_{j}\left[m_{h}(n) ; a^{2}, m_{u d}\right]}{\chi_{j}\left[m_{h}(n-1) ; a^{2}, m_{u d}\right]} \frac{\rho_{j}\left[m_{h}(n)\right]}{\rho_{j}\left[m_{h}(n-1)\right]}
$$

ETMC ratio method \& final results

For the extrapolation to the physical b-quark point we have used the ETMC ratio method in JHEP ' 10 [0909.3187]:

ETMC ratio method \& final results

For the extrapolation to the physical b-quark point we have used the ETMC ratio method in JHEP ' 10 [0909.3187]:

$$
R_{j}\left(n ; a^{2}, m_{u d}\right) \equiv \frac{\chi_{j}\left[m_{h}(n) ; a^{2}, m_{u d}\right]}{\chi_{j}\left[m_{h}(n-1) ; a^{2}, m_{u d}\right]} \frac{\rho_{j}\left[m_{h}(n)\right]}{\rho_{j}\left[m_{h}(n-1)\right]} \underset{\substack{\text { to ensure that } \\
\text { lim }_{n \rightarrow \infty} R_{j}(n)=1}}{ } \begin{aligned}
& \rho_{0+}\left(m_{h}\right)=\rho_{0}\left(m_{h}\right)=1, \\
& \rho_{1-}\left(m_{h}\right)=\rho_{1}+\left(m_{h}\right)=\left(m_{h}^{\text {pole }}\right)^{2}
\end{aligned}
$$

All the details are deeply discussed in PRD '21 (2105.07851) and JHEP '22 (2202.10285). In this way, we have obtained the first lattice QCD determination of susceptibilities of heavy-to-light transition current densities:

	$\boldsymbol{b} \rightarrow \boldsymbol{u}$	
	Non-perturbative	With subtraction
$\chi_{V_{L}}\left[10^{-2}\right]$	2.04(20)	-
$\chi_{A_{L}}\left[10^{-2}\right]$	2.34 (13)	-
$\chi_{V_{T}}\left[10^{-4} \mathrm{GeV}^{-2}\right]$	4.88(1.16)	4.45(1.16)
$\chi_{A_{T}}\left[10^{-4} \mathrm{GeV}^{-2}\right]$	4.65(1.02)	-

Consistency with the estimate using perturbative QCD (with small contributions from quark and gluon condensates): $\chi_{1-}\left(m_{b}^{\text {phys }}\right)=5.01 \cdot 10^{-4} \mathbf{G e V}^{-2}$ Bourrely, Caprini and Lellouch, PRD '09 [0807.2'72ఙ]

All this machinery can also be applied to heavy-to-heavy transition current densities...

DM applied to semileptonic $\mathrm{B} \rightarrow \pi$ decays

Two LQCD inputs have been used for our DM method (JHEP '22 [arXiv:2202.10285]):

- 3 RBC/UKQCD synthetic data (points) [PRD ‘15 (1501.05363)]
- 3 FNAL/MILC data (squares) from their fits [PRD ‘15 (1503.07839)]

One KC: $f_{0}(0)=f_{+}(0)$

L. Vittorio (LAPTh \& CNRS, Annecy)

DM applied to semileptonic $\mathrm{B} \rightarrow \pi$ decays

Two LQCD inputs have been used for our DM method (JHEP '22 [arXiv:2202.10285]):

- 3 RBC/UKQCD synthetic data (points) [PRD '15 (1501.05363)]
- 3 FNAL/MILC data (squares) from their fits [PRD '15 (1503.07839)]

$$
\left.f^{\pi}\left(q^{2}=0\right)\right|_{\mathrm{RBC} / \mathrm{UKQCD}}=-0.06 \pm 0.25
$$

Peculiarity of $B \rightarrow \pi$ decays: LONG extrapolation in q^{2}

$$
\left.f^{\pi}\left(q^{2}=0\right)\right|_{\mathrm{FNAL} / \mathrm{MILC}}=-0.01 \pm 0.16
$$

$\left.f^{\pi}\left(q^{2}=0\right)\right|_{\text {combined }}=-0.04 \pm 0.22$

It seems that the mean value and the uncertainty are not stable under variation of the truncation order of a series expansion of the FFs in z [see back-up slides]...

The DM approach
is independent of this issue!!!
L. Vittorio (LAPTh \& CNRS, Annecy)

DM applied to semileptonic $\mathrm{B} \rightarrow \pi$ decays

Two LQCD inputs have been used for our DM method (JHEP '22 [arXiv:2202.10285]):

- 3 RBC/UKQCD synthetic data (points) [PRD '15 (1501.05363)]
- 3 FNAL/MILC data (squares) from their fits [PRD '15 (1503.07839)]

Peculiarity of $B \rightarrow \pi$ decays: LONG extrapolation in q^{2}

$$
\left.f^{\pi}\left(q^{2}=0\right)\right|_{\mathrm{RBC} / \mathrm{UKQCD}}=-0.06 \pm 0.25
$$

$$
\left.f^{\pi}\left(q^{2}=0\right)\right|_{\mathrm{FNAL} / \mathrm{MILC}}=-0.01 \pm 0.16
$$

$$
\left.f^{\pi}\left(q^{2}=0\right)\right|_{\text {combined }}=-0.04 \pm 0.22
$$

Important issue: the DM method equivalent to the results of all possible (BCL) fits which satisfy unitarity and at the same time reproduce exactly the input data
L. Vittorio (LAPTh \& CNRS, Annecy)

DM applied to semileptonic $\mathrm{B} \rightarrow \pi$ decays

Two LQCD inputs have been used for our DM method (JHEP '22 [arXiv:2202.10285]):

- 3 RBC/UKQCD synthetic data (points) [PRD '15 (1501.05363)]
- 3 FNAL/MILC data (squares) from their fits [PRD '15 (1503.07839)]

$$
\left.f^{\pi}\left(q^{2}=0\right)\right|_{\mathrm{RBC} / \mathrm{UKQCD}}=-0.06 \pm 0.25
$$

IMPORTANT: new LQCD computations published by JLQCD Collaboration (PRD '22 [2203.04938])!

$$
\left.f^{\pi}\left(q^{2}=0\right)\right|_{\mathrm{FNAL} / \mathrm{MILC}}=-0.01 \pm 0.16
$$

$$
\left.f^{\pi}\left(q^{2}=0\right)\right|_{\text {combined }}=-0.04 \pm 0.22
$$

Some differences in the slopes with respect to the RBC/UKQCD and the FNAL/MILC cases, although the extrapolations at zero momentum transfer are compatible to each other:

$$
f^{\pi}\left(q^{2}=0\right) \mid \mathrm{JLQCD}=0.155 \pm 0.176
$$

L. Vittorio (LAPTh \& CNRS, Annecy)

DM applied to semileptonic $\mathrm{B} \rightarrow \pi$ decays

Two LQCD inputs have been used for our DM method (JHEP '22 [arXiv:2202.10285]):

- 3 RBC/UKQCD synthetic data (points) [PRD '15 (1501.05363)]
- 3 FNAL/MILC data (squares) from their fits [PRD '15 (1503.07839)]

$$
\left.f^{\pi}\left(q^{2}=0\right)\right|_{\mathrm{RBC} / \mathrm{UKQCD}}=-0.06 \pm 0.25
$$

IMPORTANT: new LQCD computations published by JLQCD Collaboration (PRD '22 [2203.04938])!

$$
\left.f^{\pi}\left(q^{2}=0\right)\right|_{\mathrm{FNAL} / \mathrm{MILC}}=-0.01 \pm 0.16
$$

L. Vittorio (LAPTh \& CNRS, Annecy)

LFU in semileptonic $\mathbf{B} \rightarrow \pi$ decays

The extrapolation of the FFs at zero momentum transfer is of capital importance to test LFU:

$$
R_{\pi}^{\tau / \mu} \equiv \frac{\Gamma\left(B \rightarrow \pi \tau \nu_{\tau}\right)}{\Gamma\left(B \rightarrow \pi \mu \nu_{\mu}\right)}
$$

THEORY with DM method
EXPERIMENT

Input	RBC/UKQCD	FNAL/MILC	combined
$R_{\pi}^{\tau / \mu}$	$0.767(145)$	$0.838(75)$	$0.793(118)$

$$
\left.R_{\pi}^{\tau / \mu}\right|_{\exp }=1.05 \pm 0.51
$$

LFU in semileptonic $B \rightarrow \pi$ decays

The extrapolation of the FFs at zero momentum transfer is of capital importance to test LFU:

$$
R_{\pi}^{\tau / \mu} \equiv \frac{\Gamma\left(B \rightarrow \pi \tau \nu_{\tau}\right)}{\Gamma\left(B \rightarrow \pi \mu \nu_{\mu}\right)}
$$

THEORY with DM method

Input	RBC/UKQCD	FNAL/MILC	combined
$R_{\pi}^{\tau / \mu}$	$0.767(145)$	$0.838(75)$	$0.793(118)$

EXPERIMENT
$\left.R_{\pi}^{\tau / \mu}\right|_{\text {exp }}=1.05 \pm 0.51$

Expected improved
precision @ Belle II (PTEP '19 (1808.10567))

$$
\underset{\sim 80 \%}{\delta R_{\pi}^{\tau / \mu} / \mu} \simeq 0.09
$$

LFU in semileptonic $B \rightarrow \pi$ decays

The extrapolation of the FFs at zero momentum transfer is of capital importance to test LFU:

$$
R_{\pi}^{\tau / \mu} \equiv \frac{\Gamma\left(B \rightarrow \pi \tau \nu_{\tau}\right)}{\Gamma\left(B \rightarrow \pi \mu \nu_{\mu}\right)}
$$

THEORY with DM method

Input	RBC/UKQCD	FNAL/MILC	combined
$R_{\pi}^{\tau / \mu}$	0.767 (1)	0.838)	0.793(18)

Expected improved precision in LQCD computations of the FFs
@ high momentum transfer

Input	RBC/UKQCD	FNAL/MILC	combined
$\delta R_{\pi}^{\tau / \mu}$	0.73	0.38	0.59

Hypothetical 50\% reduction of the error...

EXPERIMENT

Expected improved
precision @ Belle II
(PTEP '19 (1808.10567))
$\underset{\sim 80 \text { rereduction of the error }}{\delta} R^{\tau / \mu} 0.09$

LFU in semileptonic $B \rightarrow \pi$ decays

The extrapolation of the FFs at zero momentum transfer is of capital importance to test LFU:

$$
R_{\pi}^{\tau / \mu} \equiv \frac{\Gamma\left(B \rightarrow \pi \tau \nu_{\tau}\right)}{\Gamma\left(B \rightarrow \pi \mu \nu_{\mu}\right)}
$$

THEORY with DM method

Input	RBC/UKQCD	FNAL/MILC	combined
$R_{\pi}^{\tau / \mu}$	0.767 (1)	0.838)	0.793(18)

Expected improved precision in LQCD
computations of the FFs
@ high momentum transfer

Input	RBC/UKQCD	FNAL/MILC	combined
$\delta R_{\pi}^{\tau / \mu}$	0.73	0.38	0.59

Hypothetical 50\% reduction of the error...

EXPERIMENT
 $\left.R_{\pi}^{\tau / \mu}\right|_{\text {exp }}=1.05 \pm$ 父 ${ }_{1}$

 Expected improved
 precision @ Belle II
 (PTEP '19 (1808.10567))

$$
\underset{\sim 80 \% \text { reduction of the error! }}{\delta R_{\pi}^{\tau / \mu}} 0.09
$$

For further investigation of possible NP effects in the future, it is fundamental to extrapolate appropriately the FFs behaviour in the whole kinematical range
L. Vittorio (LAPTh \& CNRS, Annecy)

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ from semileptonic $\mathrm{B} \rightarrow \pi$ decays

Six sets of data from Belle and BaBar collaborations:
BaBar 2011, 1 channel [PRD '11 (1005.3288)]
Belle 2011, 1 channel [PRD '11 (1012.0090)]
BaBar 2012, 2 channels [PRD '12 (1208.1253)]
Belle 2013, 2 channels [PRD '13 (1306.2781)]

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ from semileptonic $\mathrm{B} \rightarrow \pi$ decays

Six sets of data from Belle and BaBar collaborations:
BaBar 2011, 1 channel [PRD '11 (1005.3288)]
Belle 2011, 1 channel [PRD '11 (1012.0090)]
BaBar 2012, 2 channels [PRD '12 (1208.1253)]
Belle 2013, 2 channels [PRD '13 (1306.2781)]

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ from semileptonic $\mathrm{B} \rightarrow \pi$ decays

Six sets of data from Belle and BaBar collaborations:
BaBar 2011, 1 channel [PRD '11 (1005.3288)]
Belle 2011, 1 channel [PRD '11 (1012.0090)]
BaBar 2012, 2 channels [PRD '12 (1208.1253)]
Belle 2013, 2 channels [PRD '13 (1306.2781)]

The bands are the results of correlated weigthed averages:
$\left|V_{u b}\right|_{n}=\frac{\sum_{i, j}\left(\mathbf{C}^{-1}\right)_{i j}\left|V_{u b}\right|_{j}}{\sum_{i, j}\left(\mathbf{C}^{-1}\right)_{i j}}, \quad \sigma_{\left|V_{u b}\right|_{n}}^{2}=\frac{1}{\sum_{i, j}\left(\mathbf{C}^{-1}\right)_{i j}}$
L. Vittorio (LAPTh \& CNRS, Annecy)

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ from semileptonic $\mathrm{B} \rightarrow \pi$ decays

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ from semileptonic $\mathrm{B} \rightarrow \pi$ decays

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ from semileptonic $\mathrm{B} \rightarrow \pi$ decays

We are going to update our analysis with the new measurements of the differential decay widths by Belle II
Collaboration, see for instance arKiv:2210.04224

The bands are the results of correlated weigthed averages:

$$
\left|V_{u b}\right|_{n}=\frac{\sum_{i, j}\left(\mathbf{C}^{-1}\right)_{i j}\left|V_{u b}\right|_{j}}{\sum_{i, j}\left(\mathbf{C}^{-1}\right)_{i j}}, \quad \sigma_{\left|V_{u b}\right|_{n}}^{2}=\frac{1}{\sum_{i, j}\left(\mathbf{C}^{-1}\right)_{i j}}
$$

DM applied to semileptonic $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}$ decays \& phenomenology

Three LQCD inputs have been used (JHEP '22 [arXiv:2202.10285]):

- 3 RBC/UKQCD synthetic data [PRD ‘ 15 (1501.05363)]
- 3 FNAL/MILC data from their fits [PRD ‘ 19 (1901.02561)]
- 3 HPQCD data from their fits [PRD '14 (1406.2279)]

DM applied to semileptonic $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}$ decays \& phenomenology

Three LQCD inputs have been used (arXiv:2202.10285):

- 3 RBC/UKQCD synthetic data [PRD ‘ 15 (1501.05363)]
- 3 FNAL/MILC data from their fits [PRD '19 (1901.02561)]
- 3 HPQCD data from their fits [PRD '14 (1406.2279)]

DM applied to semileptonic $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}$ decays \& phenomenology

Three LQCD inputs have been used (arXiv:2202.10285):

- 3 RBC/UKQCD synthetic data [PRD '15 (1501.05363)]
- 3 FNAL/MILC data from their fits [PRD '19 (1901.02561)]
- 3 HPQCD data from their fits [PRD ‘'14 (1406.2279)]

- We can firstly $\quad R_{K}^{\tau / \mu}=0.755 \pm 0.138$
Investigate LFU:
In
in -

DM applied to semileptonic $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}$ decays \& phenomenology

Three LQCD inputs have been used (arXiv:2202.10285):

- 3 RBC/UKQCD synthetic data [PRD ‘ 15 (1501.05363)]
- 3 FNAL/MILC data from their fits [PRD '19 (1901.02561)]
- 3 HPQCD data from their fits [PRD ‘'14 (1406.2279)]

|Vub|: LHCb Coll. has measured for the first time

$$
R_{B F} \equiv \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}\right)} \quad \begin{array}{ll}
\text { Low- } q^{2}: & q^{2} \leq 7 \mathrm{GeV}^{2} \\
\text { High-q} q^{2}: & q^{2} \geq 7 \mathrm{GeV}^{2}
\end{array}
$$

$$
\begin{gathered}
\text { We can firstly } \quad R_{K}^{\tau / \mu}=0.755 \pm 0.138 \\
\text { investigate LFU: }
\end{gathered}
$$ LHCb Collaboration, PRL ‘21 [2012.05143]

DM applied to semileptonic $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}$ decays \& phenomenology

Three LQCD inputs have been used (arXiv:2202.10285):

- 3 RBC/UKQCD synthetic data [PRD '15 (1501.05363)]
- 3 FNAL/MILC data from their fits [PRD '19 (1901.02561)]
- 3 HPQCD data from their fits [PRD '14 (1406.2279)]
once combined
| Vub|: LHCb Coll. has measured for the first time

$$
R_{B F} \equiv \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}\right)}
$$

$$
\begin{array}{ll}
\text { Low- } q^{2}: & q^{2} \leq 7 \mathrm{GeV}^{2} \\
\text { High- } q^{2}: & q^{2} \geq 7 \mathrm{GeV}^{2}
\end{array}
$$

$$
\begin{aligned}
& \text { We can firstly } \quad R_{K}^{\tau / \mu}=0.755 \pm 0.138 \\
& \text { investigate LFU: }
\end{aligned}
$$

LHCb Collaboration, PRL ‘21 [2012.05143]

	q^{2}-bin	RBC/UKQCD	FNAL/MILC	HPQCD	combined
	low	6.70 ± 3.26	6.43 ± 2.03	3.57 ± 1.94	5.31 ± 3.02
by using the exp. value of the $B R$ @ denominator	high	4.20 ± 0.56	4.10 ± 0.38	3.54 ± 0.43	3.94 ± 0.59
from LHCb Collaboration, PRD ‘20 [2001.03225].	average	3.93 ± 0.46	3.93 ± 0.35	3.54 ± 0.35	3.77 ± 0.48

L. Vittorio (LAPTh \& CNRS, Annecy)

DM applied to semileptonic $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}$ decays \& phenomenology

Three LQCD inputs have been used (arXiv:2202.10285):

- 3 RBC/UKQCD synthetic data [PRD '15 (1501.05363)]
- 3 FNAL/MILC data from their fits [PRD '19 (1901.02561)]
- 3 HPQCD data from their fits [PRD '14 (1406.2279)]
once combined
|Vub|: LHCb Coll. has measured for the first time

$$
R_{B F} \equiv \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}\right)} \quad \begin{array}{ll}
\text { Low- } q^{2}: & q^{2} \leq 7 \mathrm{GeV}^{2} \\
\text { High-q}{ }^{2}: & q^{2} \geq 7 \mathrm{GeV}^{2}
\end{array}
$$

$$
\begin{aligned}
& \text { We can firstly } R_{K}^{\tau / \mu}=0.755 \pm 0.138 \\
& \text { investigate LFU: }
\end{aligned}
$$

LHCb Collaboration, PRL ‘21 [2012.05143]

	q^{2}-bin	RBC/UKQCD	FNAL/MILC	HPQCD	combined
	low	6.70 ± 3.26	6.43 ± 2.03	3.57 ± 1.94	5.31 ± 3.02
by using the exp. value f the BR @ denominator	high	4.20 ± 0.56	4.10 ± 0.38	3.54 ± 0.43	3.94 ± 0.59
from LHCb Collaboration, PRD ‘20 [2001.03225].	average	3.93 ± 0.46	3.93 ± 0.35	3.54 ± 0.35	3.77 ± 0.48

L. Vittorio (LAPTh \& CNRS, Annecy)

Final improved determination of $\left|\mathrm{V}_{\mathrm{ub}}\right|$ from the DM method

Unitarity bound $\left|\mathrm{V}_{\mathrm{ub}}\right|^{2} \chi_{1}$. with an initial guess $\left|\mathrm{V}_{\mathrm{ub}}\right|$
L. Vittorio (LAPTh \& CNRS, Annecy)

Final improved determination of $\left|\mathrm{V}_{\mathrm{ub}}\right|$ from the $D M$ method

L. Vittorio (LAPTh \& CNRS, Annecy)

Final improved determination of $\left|\mathrm{V}_{\mathrm{ub}}\right|$ from the DM method

L. Vittorio (LAPTh \& CNRS, Annecy)

Final improved determination of $\left|\mathrm{V}_{\mathrm{ub}}\right|$ from the $D M$ method

L. Vittorio (LAPTh \& CNRS, Annecy)

Other exclusive determinations of Vub in literature

$$
\left|V_{u b}\right|_{\mathrm{DM}}^{\mathrm{final}} \times 10^{3}=3.85 \pm 0.27
$$

（LATEST）EXCLUSIVE

$$
\left|V_{u b}\right| \cdot 10^{3}=3.77(15)
$$

D．Leljak，B．Melic and D．van Dyk，JHEP ‘21［2102．07233］

$$
\left|V_{u b}\right| \cdot 10^{3}=3.68(5)
$$

S．Gonzalez－Solis，P．Masjuan and C．Rojas，PRD ‘21［2110．06153］

$$
\left|V_{u b}\right| \cdot 10^{3}=3.87(13)
$$

A．Biswas，S．Nandi，S．K．Patra and I．Ray，JHEP＇21［2103．01809］ （see also the recent study of $b \rightarrow\{u, d\}$ quark transition in arXiv：2\＆08．14463）

INCLUSIVE

$$
\begin{aligned}
& \left|V_{u b}\right|_{\text {incl }} \cdot 10^{3}=4.19(12)\binom{+0.11}{-0.12} \\
& \text { HFLAV Coll. [arXiv:2ん06.07501] } \\
& \left|V_{u b}\right|_{i n c l} \cdot 10^{3}=4.32(29) \\
& \text { FLAG Review 2021 [EPJC ‘2ん (2111.09849)] } \\
& \left|V_{u b}\right|_{i n c l} \cdot 10^{3}=4.13(26) \\
& \text { PDG Review 2021 [PTEP 2020 083CO1] }
\end{aligned}
$$

Other exclusive determinations of Vub in literature

$$
\left|V_{u b}\right|_{\mathrm{DM}}^{\mathrm{final}} \times 10^{3}=3.85 \pm 0.27
$$

(LATEST) EXCLUSIVE

$$
\left|V_{u b}\right| \cdot 10^{3}=3.77(15)
$$

D. Leljak, B. Melic and D. van Dyk, JHEP ‘21 [2102.07233]

$$
\left|V_{u b}\right| \cdot 10^{3}=3.68(5)
$$

S. Gonzalez-Solis, P. Masjuan and C. Rojas, PRD ‘(21 [2110.06153]

$$
\left|V_{u b}\right| \cdot 10^{3}=3.87(13)
$$

A. Biswas, S. Nandi, S.K. Patra and I. Ray, JHEP '21 [2103.01809] (see also the recent study of $b \rightarrow\{u, d\}$ quark transition in arXiv:2\&08.14463)

INCLUSIVE

$$
\begin{gathered}
\left|V_{u b}\right|_{\text {incl }} \cdot 10^{3}=4.19(12)\left(\begin{array}{c}
+0.11 \\
\text { HFLAV Coll. [arXiv:2206.07501] } \\
-0.12
\end{array}\right) \\
\left|V_{u b}\right|_{i n c l} \cdot 10^{3}=4.32(29) \\
\text { FLAG Review 2021 [EPJC '22 (2111.09849)] }
\end{gathered}
$$

Nice consistency of the DM result with both the other exclusive and the inclusive determinations

Summary plots/tables

Summary plots/tables

Summary plots/tables

	RBC/UKQCD	FNAL/MILC	combined
$R_{\pi}^{\tau / \mu}$	$0.767(145)$	$0.838(75)$	$0.793(118)$
$\overline{\mathcal{A}}_{F B}^{\mu, \pi}$	$0.0043(39)$	$0.0018(14)$	$0.0034(31)$
$\overline{\mathcal{A}}_{F B}^{\tau, \pi}$	$0.219(25)$	$0.221(19)$	$0.220(24)$
$\overline{\mathcal{A}}_{\text {polar }}^{\mu, \pi}$	$0.985(11)$	$0.991(4)$	$0.988(9)$
$\overline{\mathcal{A}}_{\text {polar }}^{\tau, \pi}$	$0.294(87)$	$0.309(82)$	$0.301(86)$

	RBC/UKQCD	FNAL/MILC	HPQCD	combined
$R_{K}^{\tau / \mu}$	$0.845(122)$	$0.816(64)$	$0.680(134)$	$0.755(138)$
$\overline{\mathcal{A}}_{F B}^{\mu, K}$	$0.0032(18)$	$0.0024(12)$	$0.0059(29)$	$0.0046(28)$
$\overline{\mathcal{A}}_{F B}^{\tau, K}$	$0.257(14)$	$0.246(14)$	$0.278(19)$	$0.262(23)$
$\overline{\mathcal{A}}_{\text {polar }}^{\mu, K}$	$0.990(5)$	$0.992(4)$	$0.982(8)$	$0.986(7)$
$\overline{\mathcal{A}}_{\text {polar }}^{\tau, K}$	$0.172(54)$	$0.254(64)$	$0.112(79)$	$0.172(91)$

L. Vittorio (LAPTh \& CNRS, Annecy)

THANKS FOR
 YOUR ATTENTION!

BACK-UP SLIDES

A methodological break: comparison with $\mathrm{BGL} / \mathrm{BCL}$

 What is the main improvement with respect to $B G L / B C L$ parametrization?Boyd, Grinstein and Lebed, Phys. Lett. B353, 306 (1995)
Boyd, Grinstein and Lebed, Nucl. Phys. B461, 493 (1996) Boyd, Grinstein and Lebed, Phys. Rev. D 56, 6895 (1997)
Basics of BGL: the hadronic FFs corresponding to definite spin-parity can be represented as an expansion, originating from unitarity, analyticity and crossing symmetry, in terms of the conformal variable z, for instance

$$
g(z)=\frac{1}{\sqrt{\chi_{1^{-}}\left(q_{0}^{2}\right)}} \frac{1}{\phi_{g}\left(z, q_{0}^{2}\right) P_{1^{-}}(z)} \sum_{n=0}^{\infty} a_{n} z^{n}
$$

Basics of BCL: similar to BGL, the expansion series has a simpler form, for instance

$$
f_{+}(z)=\frac{1}{1-q^{2} / m_{B^{*}}^{2}} \sum_{n=0}^{N_{z}-1} a_{k}\left[z^{n}-(-1)^{n-N_{z}} \frac{n}{N_{z}} z^{N_{z}}\right]
$$

$$
f_{0}(z)=\sum_{n=0}^{N_{z}-1} b_{k} z^{k}
$$

Bourrely, Caprini and Lellouch, Phys. Rev. D 79, 013008 (2009)

$$
\begin{gathered}
\text { Unitarity: } \\
\sum_{i, j=0}^{N_{z}} B_{m n}^{+} a_{m} a_{n} \leq 1, \quad \sum_{i, j=0}^{N_{z}} B_{m n}^{0} b_{m} b_{n} \leq 1
\end{gathered}
$$

L. Vittorio (LAPTh \& CNRS, Annecy)

LFU in semileptonic $B \rightarrow \pi$ decays

$\left.$| Fit | $N_{z}=3$ | $N_{z}=4$ | $N_{z}=5$ |
| :---: | :---: | :---: | :---: | :---: |$\quad f^{\pi}\left(q^{2}=0\right)\right|_{\text {RBC /UKQCD }}=-0.06 \pm 0.25$

L. Vittorio (LAPTh \& CNRS, Annecy)

LFU in semileptonic $B \rightarrow \pi$ decays

L. Vittorio (LAPTh \& CNRS, Annecy)

LFU in semileptonic $B \rightarrow \pi$ decays

	Fit	$N_{z}=3$	$N_{z}=4$	$N_{z}=5$
	$\chi^{2} /$ dof	2.5	0.64	0.73
	dof	6	4	2
	p	0.02	0.63	0.48
Table XIII	$\sum B_{m n}^{+} b_{m}^{+} b_{n}^{+}$	$0.11(2)$	$0.016(5)$	$1.0(2.3)$
of arXiv:1503.07839	$\sum B_{m n}^{0} b_{m}^{0} b_{n}^{0}$	$0.33(8)$	$2.8(1.7)$	$8(19)$
(FNAL/MILC Coll.)	$f(0)$	$0.00(4)$	$0.20(14)$	$0.36(27)$
	b_{0}^{+}	$0.395(15)$	$0.407(15)$	$0.408(15)$
	b_{2}^{+}	$-0.93(11)$	$-0.65(16)$	$-0.60(21)$
	b_{3}^{+}		$-1.6(1)$	$-0.5(9)$
$-0.2(1.4)$				
	b_{4}^{+}		$0.4(1.3)$	$3(4)$
	b_{0}^{0}	$0.515(19)$	$0.507(22)$	$0.511(24)$
	b_{1}^{0}	$-1.84(10)$	$-1.77(18)$	$-1.69(22)$
	b_{2}^{0}	$-0.14(25)$	$1.3(8)$	$2(1)$
	b_{3}^{0}		$4(1)$	$7(5)$
	b_{4}^{0}			$3(9)$

$$
\begin{aligned}
& \left.f^{\pi}\left(q^{2}=0\right)\right|_{\mathrm{RBC} / \mathrm{UKQCD}}=-0.06 \pm 0.25 \\
& \text { DM result } \\
& \left.f^{\pi}\left(q^{2}=0\right)\right|_{\mathrm{FNAL} / \mathrm{MILC}}=-0.01 \pm 0.16
\end{aligned}
$$

$$
\left.f^{\pi}\left(q^{2}=0\right)\right|_{\text {combined }}=-0.04 \pm 0.22
$$

It seems that the mean value and the uncertainty are not stable under variation of the truncation order...

The DM approach is independent of this issue!!!
L. Vittorio (LAPTh \& CNRS, Annecy)

LFU in semileptonic $B \rightarrow \pi$ decays

$$
\begin{array}{r}
\left.f^{\pi}\left(q^{2}=0\right)\right|_{\mathrm{RBC} / \mathrm{UKQCD}}=-0.06 \pm 0.25 \\
\left.f^{\pi}\left(q^{2}=0\right)\right|_{\mathrm{FNAL} / \mathrm{MILC}}=-0.01 \pm 0.16 \\
\left.f^{\pi}\left(q^{2}=0\right)\right|_{\text {combined }}=-0.04 \pm 0.22
\end{array}
$$

Table XIX of arXiv:1501.05363 (RBC/UKQCD Coll.)

K	$b^{(0)}$	$b^{(1)} / b^{(0)}$	$\begin{gathered} f_{+}^{B \pi} \\ b^{(2)} / b^{(0)} \\ \hline \end{gathered}$	$b^{(3)} / b^{(0)}$	$\sum B_{m n} b_{m} b_{n}$	K	$b^{(0)}$	$b^{(1)} / b^{(0)}$	$\begin{aligned} & \hline f_{0}^{B \pi} \\ & b^{(2)} / b^{(0)} \end{aligned}$	$b^{(3)} / b^{(0)}$	$\sum B_{m n} b_{m} b_{n}$	$f\left(q^{2}=0\right)$	$\chi^{2} /$ dof	p
1	0.447(36)				0.00394(63)							0.447(36)	4.02	2\%
2	0.410(39)	-1.30(52)			0.0120(59)							0.241(83)	0.30	58\%
3	0.420(43)	-1.46(59)	-4.7(7.2)		0.15(42)							0.07(32)		
						1	0.460(61)				0.0225(60)	0.460(61)	90.1	0\%
						2	0.516(61)	-4.09(55)			0.408(63)	-0.074(73)	0.03	87\%
						3	0.516(61)	-3.94(97)	0.7(3.8)		0.32(41)	-0.02(28)		
2	0.366(37)	-2.79(54)			0.0337(85)	2	0.587(58)	-3.33(38)			0.346(55)	0.040(65)	6.18	0\%
3	0.427(40)	-1.62(46)	-7.7(1.5)		0.38(15)	2	0.521(60)	-4.03(52)			0.404(62)	-0.066(70)	0.10	91\%
2	0.410(39)	-1.24(51)			0.0113(56)	3	0.520(60)	-3.12(42)	4.5(1.3)		0.41(17)	0.248(82)	0.58	56\%
3	0.424(41)	-1.50(57)	-6.0(5.0)		0.24(38)	3	0.519(60)	-3.81(81)	1.2(3.4)		0.27 (25)	0.01(24)	0.07	79\%

L. Vittorio (LAPTh \& CNRS, Annecy)

LFU in semileptonic $B \rightarrow \pi$ decays

Same considerations developed for the FNAL/MILC case...

$$
\left.f^{\pi}\left(q^{2}=0\right)\right|_{\mathrm{RBC} / \mathrm{UKQCD}}=-0.06 \pm 0.25
$$

Table XIX
of arXiv:1501.05363
(RBC/UKQCD Coll.)

$$
\left.f^{\pi}\left(q^{2}=0\right)\right|_{\mathrm{FNAL} / \mathrm{MILC}}=-0.01 \pm 0.16
$$

$$
\left.f^{\pi}\left(q^{2}=0\right)\right|_{\text {combined }}=-0.04 \pm 0.22
$$

K	$b^{(0)}$	$b^{(1)} / b^{(0)}$	$\begin{gathered} f_{+}^{B \pi} \\ b^{(2)} / b^{(0)} \\ \hline \end{gathered}$	$b^{(3)} / b^{(0)}$	$\sum B_{m n} b_{m} b_{n}$	K	$b^{(0)}$	$b^{(1)} / b^{(0)}$	$\begin{aligned} & \hline f_{0}^{B \pi} \\ & b^{(2)} / b^{(0)} \end{aligned}$	$b^{(3)} / b^{(0)}$	$\sum B_{m n} b_{m} b_{n}$	$f\left(q^{2}=0\right)$	$\chi^{2} /$ dof	p
1	0.447(36)				0.00394(63)							0.447 (36)	4.02	2\%
2	0.410(39)	-1.30(52)			0.0120(59)							0.241(83)	0.30	58\%
3	0.420(43)	-1.46(59)	-4.7(7.2)		0.15(42)							0.07(32)		
						1	0.460(61)				0.0225(60)	0.460(61)	90.1	0\%
						2	0.516(61)	-4.09(55)			0.408(63)	-0.074(73)	0.03	87\%
						3	0.516(61)	-3.94(97)	0.7(3.8)		0.32(41)	-0.02(28)		
2	0.366(37)	-2.79(54)			0.0337(85)	2	0.587(58)	-3.33(38)			0.346(55)	0.040(65)	6.18	0\%
3	0.427(40)	-1.62(46)	-7.7(1.5)		0.38(15)	2	0.521(60)	-4.03(52)			0.404(62)	-0.066(70)	0.10	91\%
2	0.410(39)	-1.24(51)			0.0113(56)	3	0.520(60)	-3.12(42)	4.5(1.3)		0.41(17)	0.248(82)	0.58	56%
3	0.424(41)	-1.50(57)	-6.0(5.0)		0.24(38)	3	0.519(60)	-3.81(81)	1.2(3.4)		0.27(25)	0.01(24)	0.07	79\%

L. Vittorio (LAPTh \& CNRS, Annecy)

LFU in semileptonic $B \rightarrow \pi$ decays

Same considerations developed for the FNAL/MILC case...

$$
\left.f^{\pi}\left(q^{2}=0\right)\right|_{\mathrm{RBC} / \mathrm{UKQCD}}=-0.06 \pm 0.25
$$

DM result

$$
\left.f^{\pi}\left(q^{2}=0\right)\right|_{\mathrm{FNAL} / \mathrm{MILC}}=-0.01 \pm 0.16
$$

$$
\left.f^{\pi}\left(q^{2}=0\right)\right|_{\text {combined }}=-0.04 \pm 0.22
$$

K	$b^{(0)}$	$b^{(1)} / b^{(0)}$	$\begin{gathered} f_{+}^{B \pi} \\ b^{(2)} / b^{(0)} \end{gathered}$	$b^{(3)} / b^{(0)}$	$\sum B_{m n} b_{m} b_{n}$	K	$b^{(0)}$	$b^{(1)} / b^{(0)}$	$\begin{aligned} & f_{0}^{B \pi} \\ & b^{(2)} / b^{(0)} \end{aligned}$	$b^{(3)} / b^{(0)}$	$\sum B_{m n} b_{m} b_{n}$	$f\left(q^{2}=0\right)$	$\chi^{2} /$ dof	p
1	0.447(36)				0.00394(63)							$0.447(36)$	4.02	2\%
2	0.410(39)	-1.30(52)			0.0120(59)							0.241(83)	0.30	58\%
3	0.420(43)	-1.46(59)	-4.7(7.2)		0.15(42)							0.07(32)		
						1	0.460(61)				0.0225(60)	0.460(61)	90.1	0\%
						2	0.516(61)	-4.09(55)			0.408(63)	-0.074(73)	0.03	87\%
						3	0.516(61)	-3.94(97)	0.7(3.8)		0.32(41)	-0.02(28)		
2	0.366(37)	-2.79(54)			0.0337(85)	2	0.587(58)	-3.33(38)			0.346(55)	0.040(65)	6.18	0\%
3	0.427(40)	-1.62(46)	-7.7(1.5)		0.38(15)	2	0.521(60)	-4.03(52)			0.404(62)	-0.066(70)	0.10	91\%
2	0.410(39)	-1.24(51)			0.0113(56)	3	0.520(60)	-3.12(42)	4.5(1.3)		0.41(17)	0.248(82)	0.58	56\%
3	0.424(41)	-1.50(57)	-6.0(5.0)		0.24(38)	3	0.519(60)	-3.81(81)	1.2(3.4)		0.27 (25)	0.01(24)	0.07	79\%

Important issue: the DM method equivalent to the results of all possible fits which satisfy unitarity and at the same time reproduce exactly the input data

How to build up the combined case

FFs with mean values $x_{i}^{(k)}$ and uncertainties $\sigma_{i}^{(k)}(k=1, \cdots, N)$

Covariance matrix of the new combined values

$$
C_{i j} \equiv \frac{1}{N} \sum_{k=1}^{N} C_{i j}^{(k)}+\frac{1}{N} \sum_{k=1}^{N}\left(x_{i}^{(k)}-x_{i}\right)\left(x_{j}^{(k)}-x_{j}\right)
$$

Conservative choice in arXiv:2202.10285

How to build up the combined case

	RBC/UKQCD	HPQCD	FNAL/MILC	Combined
$f_{+}^{K}\left(17.6 \mathrm{GeV}^{2}\right)$	$0.99(4)(5)$	$1.04(5)$	$1.01(4)$	$1.01(6)$
$f_{+}^{K}\left(20.8 \mathrm{GeV}^{2}\right)$	$1.64(6)(7)$	$1.68(7)$	$1.68(5)$	$1.67(8)$
$f_{+}^{K}\left(23.4 \mathrm{GeV}^{2}\right)$	$2.77(9)(11)$	$2.94(13)$	$2.91(9)$	$2.87(15)$
$f_{0}^{K}\left(17.6 \mathrm{GeV}^{2}\right)$	$0.48(2)(3)$	$0.53(3)$	$0.44(2)$	$0.48(4)$
$f_{0}^{K}\left(20.8 \mathrm{GeV}^{2}\right)$	$0.63(2)(4)$	$0.64(3)$	$0.59(1)$	$0.62(4)$
$f_{0}^{K}\left(23.4 \mathrm{GeV}^{2}\right)$	$0.81(2)(5)$	$0.79(4)$	$0.76(2)$	$0.79(5)$

Table 2. Mean values and uncertainties of the LQCD computations of the FFs $f_{+, 0}^{K}\left(q^{2}\right)$ obtained at three selected values of q^{2} from the results of the $R B C / U K Q C D$ [20], $H P Q C D$ [22] and FNAL/MILC [23] Collaborations. For the RBC/UKQCD computations the first error is statistical while the second one is systematic. The last column contains the results of the combination procedure given in Eqs. (3.1)-(3.2) with $\omega^{(k)}=1 / N$.

How to build up the combined case

E. Lunghi, «Challenges in Semileptonic B Decays», 19-23 Apr 202\% @ Barolo

Bin-per-bin |Vub| with new JLQCD data

Other observables for phenomenology

Starting point: $\quad \frac{d^{2} \Gamma\left(B_{(s)} \rightarrow \pi(K) \ell \nu_{\ell}\right)}{d q^{2} d \cos \theta_{\ell}}=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{128 \pi^{3} m_{B_{(s)}}^{2}}\left(1-\frac{m_{\ell}^{2}}{q^{2}}\right)^{2}$

$$
\begin{aligned}
& \cdot\left\{4 m_{B_{(s)}}^{2}\left|\vec{p}_{\pi(K)}\right|^{3}\left(\sin ^{2} \theta_{\ell}+\frac{m_{\ell}^{2}}{2 q^{2}} \cos ^{2} \theta_{\ell}\right)\left|f_{+}^{\pi(K)}\left(q^{2}\right)\right|^{2}\right. \\
& +\frac{4 m_{\ell}^{2}}{q^{2}}\left(m_{B_{(s)}}^{2}-m_{\pi(K)}^{2}\right) m_{B_{(s)}}\left|\vec{p}_{\pi(K)}\right|^{2} \cos \theta_{\ell} \Re\left(f_{+}^{\pi(K)}\left(q^{2}\right) f_{0}^{* \pi(K)}\left(q^{2}\right)\right) \\
& \left.+\frac{m_{\ell}^{2}}{q^{2}}\left(m_{B_{(s)}}^{2}-m_{\pi(K)}^{2}\right)^{2}\left|\vec{p}_{\pi(K)}\right|\left|f_{0}^{\pi(K)}\left(q^{2}\right)\right|^{2}\right\},
\end{aligned}
$$

θ_{1} is the angle between the final charged lepton and the $\mathrm{B}_{(s)^{-}}$ meson momenta in the rest frame of the final state leptons

- Forward-backward asymmetry:

$$
\mathcal{A}_{F B}^{\ell, \pi(K)}\left(q^{2}\right) \equiv \int_{0}^{1} \frac{d^{2} \Gamma}{d q^{2} d \cos \theta_{l}} d \cos \theta_{l}-\int_{-1}^{0} \frac{d^{2} \Gamma}{d q^{2} d \cos \theta_{l}} d \cos \theta_{l} \quad \square \quad \overline{\mathcal{A}}_{F B}^{\ell, \pi(K)} \equiv \frac{\int d q^{2} \mathcal{A}_{F B}^{\ell, \pi(K)}\left(q^{2}\right)}{\int d q^{2} d \Gamma^{\pi(K)} / d q^{2}}
$$

- Lepton polarization asymmetry:

$$
\begin{gathered}
\qquad \mathcal{A}_{\text {polar }}^{\ell, \pi(K)}\left(q^{2}\right) \equiv \frac{d \Gamma_{-}^{\pi(K)}}{d q^{2}}-\frac{d \Gamma_{+}^{\pi(K)}}{d q^{2}} \\
\text { U. G. Meißner and W. Wang, JHEP '14 [1311.5420] }
\end{gathered} \quad \square \quad \overline{\mathcal{A}}_{\text {polar }}^{\ell, \pi(K)} \equiv \frac{\int d q^{2} \mathcal{A}_{\text {polar }}^{\ell, \pi(K)}\left(q^{2}\right)}{\int d q^{2} d \Gamma^{\pi(K)} / d q^{2}}
$$

Pole heavy-quark mass

How to compute the pole heavy-quark mass?

- Start from the heavy mass computed in $\overline{M S}(2 \mathrm{GeV})$ scheme
- Scale evolution from $\mu=2 \mathrm{GeV}$ to the value $\mu=m_{h}$ using N^{3} LO perturbation theory
- Finally:

$$
\begin{aligned}
m_{h}^{\text {pole }}= & m_{h}\left(m_{h}\right)\left\{1+\frac{4}{3} \frac{\alpha_{s}\left(m_{h}\right)}{\pi}+\left(\frac{\alpha_{s}\left(m_{h}\right)}{\pi}\right)^{2}\right. \\
& \left.\cdot\left[\frac{\beta_{0}}{24}\left(8 \pi^{2}+71\right)+\frac{35}{24}+\frac{\pi^{2}}{9} \ln (2)-\frac{7 \pi^{2}}{12}-\frac{\zeta_{3}}{6}\right]+\mathcal{O}\left(\alpha_{s}^{3}\right)\right\}
\end{aligned}
$$

where

$$
\beta_{0}=\left(33-2 n_{\ell}\right) / 12 \text { and } \zeta_{3} \simeq 1.20206
$$

Fit to lattice data

Fit to lattice data

For the numerical values of the lattice parameters see NPB '14 [1403.4504]!

$$
\begin{aligned}
R_{j}\left(n ; a^{2}, m_{u d}\right)= & R_{j}(n)\left[1+A_{1}\left(m_{u d}-m_{u d}^{p h y s}\right)+D_{1} \frac{a^{2}}{r_{0}^{2}}+D_{2} \frac{a^{4}}{r_{0}^{4}}\right] \\
& \cdot\left(1+F_{1} \frac{\bar{M}^{2}}{(4 \pi f)^{2}} \frac{e^{-\bar{M} L}}{(\bar{M} L)^{p}}\right)^{\text {Finite volume }} \text { effects }
\end{aligned}
$$

Final extrapolation at the physical b-quark point

For the final extrapolation at the physical b-quark point:

$$
R_{j}(n)=1+\sum_{k=1}^{M}\left[A_{k}+A_{k}^{s} \frac{\alpha_{s}\left(m_{h}(n)\right)}{\pi}\right]\left(\frac{1}{m_{h}(n)}\right)^{k} \quad\{M=3\}
$$

Final extrapolation at the physical b-quark point

$$
\chi_{j}\left(m_{b}^{p h y s}\right)=\chi_{j}\left(m_{c}^{p h y s}\right) \cdot \frac{\rho_{j}\left(m_{c}^{p h y s}\right)}{\rho_{j}\left(m_{b}^{p h y s}\right)} \cdot \prod_{n=2}^{11} R_{j}(n)
$$

Subtraction of bound-state contributions

channel j	$\chi_{j}\left(m_{c}^{\text {phys }}\right)$	$\chi_{j}\left(m_{b}^{\text {phys }}\right)$
0^{+}	$(1.50 \pm 0.13) \cdot 10^{-2}$	$(2.04 \pm 0.20) \cdot 10^{-2}$
1^{-}	$(4.81 \pm 1.14) \cdot 10^{-3} \mathrm{GeV}^{-2}$	$(4.88 \pm 1.16) \cdot 10^{-4} \mathrm{GeV}^{-2}$
0^{-}	$(2.36 \pm 0.15) \cdot 10^{-2}$	$(2.34 \pm 0.13) \cdot 10^{-2}$
1^{+}	$(3.61 \pm 0.81) \cdot 10^{-3} \mathrm{GeV}^{-2}$	$(4.65 \pm 1.02) \cdot 10^{-4} \mathrm{GeV}^{-2}$

Subtraction of bound-state contributions

channel j	$\chi_{j}\left(m_{c}^{\text {phys }}\right)$	$\chi_{j}\left(m_{b}^{\text {phys }}\right)$
0^{+}	$(1.50 \pm 0.13) \cdot 10^{-2}$	$(2.04 \pm 0.20) \cdot 10^{-2}$
1^{-}	$(4.81 \pm 1.14) \cdot 10^{-3} \mathrm{GeV}^{-2}$	$(4.88 \pm 1.16) \cdot 10^{-4} \mathrm{GeV}^{-2}$
0^{-}	$(2.36 \pm 0.15) \cdot 10^{-2}$	$(2.34 \pm 0.13) \cdot 10^{-2}$
1^{+}	$(3.61 \pm 0.81) \cdot 10^{-3} \mathrm{GeV}^{-2}$	$(4.65 \pm 1.02) \cdot 10^{-4} \mathrm{GeV}^{-2}$

The previous estimates can be improved by removing the contributions of the bound states lying below the pair production threshold:

$$
\chi_{1_{-}^{-}}^{(g s)}\left(m_{b}^{\text {phys }}\right)=\frac{f_{B^{*}}^{2}}{M_{B^{*}}^{4}} \longrightarrow \chi_{1^{-}}^{(g s)}\left(m_{b}^{\text {phys }}\right)=(0.431 \pm 0.033) \cdot 10^{-4} \mathrm{GeV}^{-2}
$$

$$
\chi_{1^{-}}\left(m_{b}^{\text {phys }}\right)=(4.45 \pm 1.16) \cdot 10^{-4} \mathrm{GeV}^{-2}
$$

Contact terms \& perturbative subtraction

Contact terms \& perturbative subtraction

WHY?

Contact terms \& perturbative subtraction

In twisted mass LQCD:

$$
\begin{aligned}
\Pi_{V}^{\alpha \beta}= & \int_{-\pi / a}^{+\pi / a} \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{Tr}\left[\gamma^{\alpha} G_{1}\left(k+\frac{Q}{2}\right) \gamma^{\beta} G_{2}\left(k-\frac{Q}{2}\right)\right],
\end{aligned} \quad \begin{aligned}
G_{i}(p)=\frac{-i \gamma_{\mu} \stackrel{\circ}{p}_{\mu}+\mathcal{M}_{i}(p)-i r_{i} \mu_{q, i} \gamma_{5}}{\stackrel{p}{p}_{\mu}^{2}+\mathcal{M}_{i}^{2}(p)+\mu_{q, i}^{2}} \\
\stackrel{p}{\mu}_{\mu} \equiv \frac{1}{a} \sin \left(a p_{\mu}\right), \quad \mathcal{M}_{i}(p) \equiv m_{i}+\frac{r_{i}}{2} a \hat{p}_{\mu}^{2}, \quad \hat{p} \equiv \frac{2}{a} \sin \left(\frac{a p_{\mu}}{2}\right) .
\end{aligned}
$$

F. Burger et al., ETM Coll., JHEP '15 [arXiv:1412.0546]

Contact terms \& perturbative subtraction

In twisted mass LQCD (tmLQCD):

$$
\Pi_{V}^{\alpha \beta}=\int_{-\pi / a}^{+\pi / a} \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{Tr}\left[\gamma^{\alpha} G_{1}\left(k+\frac{Q}{2}\right) \gamma^{\beta} G_{2}\left(k-\frac{Q}{2}\right)\right]
$$

Thus, by separating the longitudinal and the transverse contributions, we can compute the susceptibilities for all the spin-parity quantum numbers in the free theory on the lattice, i.e. at order $\mathcal{O}\left(\alpha_{s}^{0}\right)$ using twisted-mass fermions!

$$
\chi_{j}^{\text {free }}=\chi_{j}^{L O}+\chi_{j}^{\text {discr }}
$$

Perturbative subtraction:

Higher order corrections?

$$
\chi_{j} \rightarrow \chi_{j}-\left[\chi_{j}^{f r e e}-\chi_{j}^{L O}\right]
$$

Contact terms \& perturbative subtraction

NOT ENOUGH...

Contact terms \& perturbative subtraction

OK

ETMC ratio method \& final results

For the extrapolation to the physical b-quark point we have used the ETMC ratio method:

$$
R_{j}\left(n ; a^{2}, m_{u d}\right) \equiv \frac{\chi_{j}\left[m_{h}(n) ; a^{2}, m_{u d}\right]}{\chi_{j}\left[m_{h}(n-1) ; a^{2}, m_{u d}\right]} \frac{\rho_{j}\left[m_{h}(n)\right]}{\rho_{j}\left[m_{h}(n-1)\right]} \underset{\substack{\text { to ensure that } \\
\text { lim }_{n \rightarrow \infty} R_{j}(n)=1}}{ } \begin{aligned}
& \rho_{0+}\left(m_{h}\right)=\rho_{0}\left(m_{h}\right)=1, \\
& \rho_{1-}\left(m_{h}\right)=\rho_{1}+\left(m_{h}\right)=\left(m_{h}^{\text {pole }}\right)^{2}
\end{aligned}
$$

All the details are deeply discussed in arXiv:2105.07851. In this way, we have obtained the first lattice QCD determination of susceptibilities of heavy-to-heavy (and heavy-to-light, in prep.) transition current densities:

$b \rightarrow c$					$b \rightarrow u$	
	Perturbative	With subtraction	Non-perturbative	With subtraction	Non-perturbative	With subtraction
$\chi_{V_{L}}\left[10^{-3}\right]$	6.204(81)	-	7.58(59)	-	2.04(20)	-
$\chi_{A_{L}}\left[10^{-3}\right]$	24.1	19.4	25.8(1.7)	21.9(1.9)	2.34(13)	-
$\chi_{V_{T}}\left[10^{-4} \mathrm{GeV}^{-2}\right]$	6.486(48)	5.131(48)	6.72 (41)	5.88(44)	4.88(1.16)	4.45(1.16)
$\chi_{A_{T}}\left[10^{-4} \mathrm{GeV}^{-2}\right]$	3.894	-	4.69 (30)	-	4.65(1.02)	-

Differences with PT? ~4\% for $\mathbf{1}^{-}, \mathbf{\sim 7 \%}$ for $\mathbf{0}^{-}, \mathbf{\sim 2 0} \%$ for $\mathbf{0}^{+}$and $\mathbf{1}^{+}$

Bigi, Gambino PRD '16

Bigi, Gambino, Schacht PLB '17
Bigi, Gambino, Schacht JHEP '17

$$
t_{ \pm} \equiv\left(m_{B(s)} \pm m_{\pi(K)}\right)^{2}
$$

Poles \& branch cuts

How to parametrize the effect of the branch cut?
C: coupling in diagrams connecting the (V - A) current to an external
B-D or B-D* pair through non-resonant on-shell intermediate states.

$$
\begin{array}{r}
\operatorname{Im} g(t)=C\left(\sqrt{t-M_{b}^{2}} \theta\left(t-M_{b}^{2}\right)-\sqrt{t-M_{a}^{2}} \theta\left(t-M_{a}^{2}\right)\right) \\
M_{a}^{2}=\left(m_{B}+m_{\pi}\right)^{2}
\end{array}
$$

$$
g_{\mathrm{cut}}(z)=4 c M^{s-2} \sqrt{r}\left(\frac{\sqrt{\left(z-z_{a}\right)\left(1-z_{a}\right)}}{(1-z)\left(1-z_{a}\right)}-\frac{\sqrt{\left(z-z_{b}\right)\left(1-z_{b}\right)}}{(1-z)\left(1-z_{b}\right)}\right)
$$

Poles \& branch cuts

At the end of the day: if $f_{\text {cut }}=g_{\text {cut }} \phi P$, then we have guaranteed the analiticity (on the unit disc) of $\tilde{f} \phi P$, where

$$
\tilde{f}(z)=f(z)-g_{\mathrm{cut}}(z)
$$

How to describe then the unitarity constraint?

$$
\begin{gathered}
\left(\int_{0}^{2 \pi} d \theta|\tilde{f} \phi|^{2}\right)^{1 / 2} \leq\left(\int_{0}^{2 \pi} d \theta|f \phi|^{2}\right)^{1 / 2}+\left(\int_{0}^{2 \pi} d \theta\left|f_{\mathrm{cut}}\right|^{2}\right)^{1 / 2} \leq \sqrt{2 \pi}\left(1+I_{\mathrm{cut}}^{1 / 2}\right) \\
I_{\mathrm{cut}} \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta\left|f_{\mathrm{cut}}\right|^{2}
\end{gathered}
$$

In the B_{s} \to K case, we expect $I_{\text {cut }}$ to be small... Moreover:

- We are far from the unitarity limit (practically the 100\% of the generated bootstraps is accepted within the DM approach)
- The susceptibilities are affected by big uncertainties...

The Dispersive Matrix (DM) method

Let us examine the case of the production of a pseudoscalar meson (as for the $B \rightarrow D$ case). Supposing to have n LQCD data for the FFs at the quadratic momenta $\left\{t_{1}, \cdots, t_{n}\right\}$ (hereafter $t \equiv q^{2}$), we define

$$
\mathbf{M}=\left(\begin{array}{ccccc}
\langle\phi f \mid \phi f\rangle & \left\langle\phi f \mid g_{t}\right\rangle & \left\langle\phi f \mid g_{t_{1}}\right\rangle & \cdots & \left\langle\phi f \mid g_{t_{n}}\right\rangle \\
\left\langle g_{t} \mid \phi f\right\rangle & \left\langle g_{t} \mid g_{t}\right\rangle & \left\langle g_{t} \mid g_{t_{1}}\right\rangle & \cdots & \left\langle g_{t} \mid g_{t_{n}}\right\rangle \\
\left\langle g_{t_{1}} \mid \phi f\right\rangle & \left\langle g_{t_{1}} \mid g_{t}\right\rangle & \left\langle g_{t_{1}} \mid g_{t_{1}}\right\rangle & \cdots & \left\langle g_{t_{1}} \mid g_{t_{n}}\right\rangle \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\left\langle g_{t_{n}} \mid \phi f\right\rangle & \left\langle g_{t_{n}} \mid g_{t}\right\rangle & \left\langle g_{t_{n}} \mid g_{t_{1}}\right\rangle & \cdots & \left\langle g_{t_{n}} \mid g_{t_{n}}\right\rangle
\end{array}\right)
$$

Two advantages:

$$
\begin{aligned}
z(t) & =\frac{\sqrt{\frac{t_{+}-t}{t_{+}-t_{-}}}-1}{\sqrt{\frac{t_{+}-t}{t_{+}-t_{-}}}+1} \\
t_{ \pm} & \equiv\left(m_{B} \pm m_{D}\right)^{2}
\end{aligned}
$$

1. z is real
2. 1-to-1 correspondence:

$$
\left[0, t_{\max }=t_{-}\right] \Rightarrow\left[z_{\text {max }} 0\right]
$$

A lot of work in the past:

L. Lellouch, NPB, 479 (1996), p. 353-391

C. Bourrely, B. Machet, and E. de Rafael, NPB, 189 (1981), pp. 157-181
E. de Rafael and J. Taron, PRD, 50 (1994), p. 373-380
L. Vittorio (LAPTh \& CNRS, Annecy)

The DM method

We also have to define the kinematical functions

$\phi_{0}\left(z, Q^{2}\right)=\sqrt{\frac{2 n_{I}}{3}} \sqrt{\frac{3 t_{+} t_{-}}{4 \pi}} \frac{1}{t_{+}-t_{-}} \frac{1+z}{(1-z)^{5 / 2}}\left(\beta(0)+\frac{1+z}{1-z}\right)^{-2}\left(\beta\left(-Q^{2}\right)+\frac{1+z}{1-z}\right)^{-2}$,
$\phi_{+}\left(z, Q^{2}\right)=\sqrt{\frac{2 n_{I}}{3}} \sqrt{\frac{1}{\pi\left(t_{+}-t_{-}\right)}} \frac{(1+z)^{2}}{(1-z)^{9 / 2}}\left(\beta(0)+\frac{1+z}{1-z}\right)^{-2}\left(\beta\left(-Q^{2}\right)+\frac{1+z}{1-z}\right)^{-3}, \beta(t) \equiv \sqrt{\frac{t_{+}}{t_{+}-t_{-}}}$
Thus, we need these external inputs to implement our method:

- estimates of the FFs, computed on the lattice, @ \{t $\left.t_{1}, \ldots, t_{n}\right\}$: from Cauchy's theorem (for generic m)

$$
\left\langle g_{t_{m}} \mid \phi f\right\rangle=\phi\left(t_{m}, Q^{2}\right) f\left(t_{m}\right)
$$

$$
\left\langle g_{t_{m}} \mid g_{t_{l}}\right\rangle=\frac{1}{1-\bar{z}\left(t_{l}\right) z\left(t_{m}\right)}
$$

- non-perturbative values of the susceptibilities, since from the dispersion relations (calling Q^{2} the Euclidean quadratic momentum)

$$
\chi\left(Q^{2}\right) \geq\langle\phi f \mid \phi f\rangle
$$

L. Vittorio (LAPTh \& CNRS, Annecy)

Since the susceptibilities are computed on the lattice, we can in principle use whatever value of Q^{2} !

The DM method

In the presence of poles @ $t_{P 1}, t_{P 2}, \cdots \ldots, t_{P N}$:

$$
\phi\left(z, q^{2}\right) \rightarrow \phi_{P}\left(z, q^{2}\right) \equiv \phi\left(z, q^{2}\right) \times \frac{z-z\left(t_{P 1}\right)}{1-\bar{z}\left(t_{P 1}\right) z} \times \cdots \times \frac{z-z\left(t_{P N}\right)}{1-\bar{z}\left(t_{P N}\right) z}
$$

Thus, we need these external inputs to implement our method:

- estimates of the FFs, computed on the lattice, @ \{t $\left.t_{1}, \ldots, t_{n}\right\}$: from Cauchy's theorem (for generic m)

$$
\left\langle g_{t_{m}} \mid \phi f\right\rangle=\phi\left(t_{m}, Q^{2}\right) f\left(t_{m}\right) \quad \quad\left\langle g_{t_{m}} \mid g_{t_{l}}\right\rangle=\frac{1}{1-\bar{z}\left(t_{l}\right) z\left(t_{m}\right)}
$$

- non-perturbative values of the susceptibilities, since from the dispersion relations (calling Q^{2} the Euclidean quadratic momentum)

$$
\chi\left(Q^{2}\right) \geq\langle\phi f \mid \phi f\rangle
$$

L. Vittorio (LAPTh \& CNRS, Annecy)

The DM method

The positivity of the original inner products guarantee that $\operatorname{det} \mathbf{M} \geq 0$: the solution of this inequality can be computed analitically, bringing to

$$
\begin{gathered}
\begin{array}{c}
\text { LOWER } \\
\text { bound }
\end{array} \beta-\sqrt{\gamma} \leq f(z) \leq \beta+\sqrt{\gamma} \\
\beta=\frac{1}{d(z) \phi(z)} \sum_{j=1}^{N} f_{j} \phi_{j} d_{j} \frac{1-z_{j}^{2}}{z-z_{f}} \quad \gamma=\frac{1}{d^{2}(z) \phi^{2}(z)} \frac{1}{1-z^{2}}\left[\chi-\sum_{i, j=1}^{N} f_{i} f_{j} \phi_{i} \phi_{j} d_{i} d_{j} \frac{\left(1-z_{i}^{2}\right)\left(1-z_{j}^{2}\right)}{1-z_{i} z_{j}}\right]
\end{gathered}
$$

UNITARITY FILTER: unitarity is satisfied if γ is semipositive definite, namely if

$$
\chi \geq \sum_{i, j=1} N f_{i} f_{j} \phi_{i} \phi_{j} d_{i} d_{j} \frac{\left(1-z_{i}^{2}\right)\left(1-z_{j}^{2}\right)}{1-z_{i} z_{j}}
$$

This is a parametrization-independent unitarity test of the LQCD input data
L. Vittorio (LAPTh \& CNRS, Annecy)

Kinematical Constraints (KCs)

REMINDER: after the unitarity filter we were left with $N_{U}<N$ survived events!!!
Let us focus on the pseudoscalar case. Since by construction the following kinematical constraint holds

$$
f_{0}(0)=f_{+}(0)
$$

we will filter only the $N_{K C}<N_{U}$ events for which the two bands of the FFs intersect each other @ $t=0$. Namely, for each of these events we also define

$$
\begin{aligned}
\phi_{l o} & =\max \left[F_{+, l o}(t=0), F_{0, l o}(t=0)\right] \\
\phi_{u p} & =\min \left[F_{+, u p}(t=0), F_{0, u p}(t=0)\right]
\end{aligned}
$$

$$
\left\langle D\left(p_{D}\right)\right| V^{\mu}\left|B\left(p_{B}\right)\right\rangle=f^{+}\left(q^{2}\right)\left(p_{B}^{\mu}+p_{D}^{\mu}-\frac{m_{B}^{2}-m_{D}^{2}}{q^{2}} q^{\mu}\right)+f^{0}\left(q^{2}\right) \frac{m_{B}^{2}-m_{D}^{2}}{q^{2}} q^{\mu}
$$

Kinematical Constraints (KCs)

We then consider a modified matrix

$$
\mathbf{M}_{\mathbf{C}}=\left(\begin{array}{cccccc}
\phi f|\phi f\rangle & \left\langle\phi f \mid g_{t}\right\rangle & \left\langle\phi f \mid g_{t_{1}}\right\rangle & \cdots & \left\langle\phi f \mid g_{t_{n}}\right\rangle & \left\langle\phi f \mid g_{t_{n+1}}\right\rangle \\
\left\langle g_{t} \mid \phi f\right\rangle & \left\langle g_{t} \mid g_{t}\right\rangle & \left\langle g_{t} \mid g_{t_{1}}\right\rangle & \cdots & \left\langle g_{t} \mid g_{t_{n}}\right\rangle & \left\langle g_{t} \mid g_{t_{n+1}}\right\rangle \\
\left\langle g_{t_{1}} \mid \phi f\right\rangle & \left\langle g_{t_{1}} \mid g_{t}\right\rangle & \left\langle g_{t_{1}} \mid g_{t_{1}}\right\rangle & \cdots & \left\langle g_{t_{1}} \mid g_{t_{n}}\right\rangle & \left\langle g_{t_{1}} \mid g_{t_{n+1}}\right\rangle \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\left\langle g_{t_{n}} \mid \phi f\right\rangle & \left\langle g_{t_{n}} \mid g_{t}\right\rangle & \left\langle g_{t_{n}} \mid g_{t_{1}}\right\rangle & \cdots & \left\langle g_{t_{n}} \mid g_{t_{n}}\right\rangle & \left\langle g_{t_{n}} \mid g_{t_{n+1}}\right\rangle \\
\left\langle g_{t_{n+1}} \mid \phi f\right\rangle & \left\langle g_{t_{n+1}} \mid g_{t}\right\rangle & \left\langle g_{t_{n+1}} \mid g_{t_{1}}\right\rangle & \cdots & \left\langle g_{t_{n+1}} \mid g_{t_{n}}\right\rangle & \left\langle g_{t_{n+1}} \mid g_{t_{n+1}}\right\rangle
\end{array}\right)
$$

with $t_{n+1}=0$. Hence, we compute the new lower and upper bounds of the FFs in this way. For each of the $N_{K c}$ events, we extract $N_{K C, 2}$ values of $f_{0}(0)=f_{+}(0) \equiv f(0)$ with uniform distribution defined in the range [$\phi_{l o}, \phi_{u p}$]. Thus, for both the FFs and for each of the $N_{K C}$ events we define

$$
\begin{aligned}
F_{l o}(t) & =\min \left[F_{l o}^{1}(t), F_{l o}^{2}(t), \cdots, F_{l o}^{N_{K C, 2}}(t)\right] \\
F_{u p}(t) & =\max \left[F_{u p}^{1}(t), F_{u p}^{2}(t), \cdots, F_{u p}^{N_{K C, 2}}(t)\right]
\end{aligned}
$$

L. Vittorio (LAPTh \& CNRS, Annecy)

