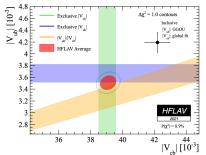
Semileptonic $b \rightarrow c$ transitions and V_{cb}

Martin Jung

LHCb Implications Workshop 2022 CERN, 19th of October 2022

INEN


UNIVERSITÀ DEGLI STUDI DI TORINO

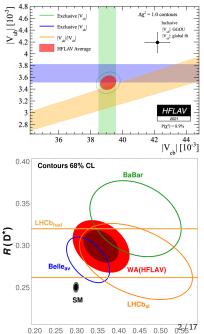
Istituto Nazionale di Fisica Nucleare Sezione di tornen

Puzzling $b \rightarrow c$ results

The V_{cb} puzzle, around for 20+ years...

- → $\sim 3\sigma$ between exclusive $(B \rightarrow D^{(*)}\ell\nu)$ and inclusive V_{cb} $(B \rightarrow X_c\ell\nu)$
- Difficult to explain with NP
- Both methods considered reliable
 Ongoing effort, later...

Puzzling $b \rightarrow c$ results


The V_{cb} puzzle, around for 20+ years...

- → $\sim 3\sigma$ between exclusive $(B \rightarrow D^{(*)}\ell\nu)$ and inclusive V_{cb} $(B \rightarrow X_c\ell\nu)$
- Difficult to explain with NP
- Both methods considered reliable
 Ongoing effort, later...

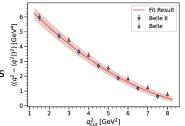
LFNU in $b \rightarrow c \tau \nu$, just updated...

 $R(X) \equiv \frac{\operatorname{Br}(B \to X \tau \nu)}{\operatorname{Br}(B \to X \ell \nu)}$

- Partial cancellation of uncertainties
- Precise predictions (and measurements)
- Measured by BaBar, Belle, LHCb
 ▶ average ~ 3 − 4σ from SM

Inclusive determination of V_{cb}

Consider $B \rightarrow X_c \ell \nu$, X_c any final state w/ charm:


- Allows for systematic expansion in $1/m_b, \alpha_s \ (
 ightarrow OPE)$
- Includes $\mathcal{O}(1/m_b^3, \alpha_s/m_b^2, \alpha_s^3)$

Excellent theoretical control, $|V_{cb}| = (42.2 \pm 0.5) \times 10^{-3}$ [Bordone+'21,Fael+'20,'21]

Inclusive determination of V_{cb}

Consider $B \rightarrow X_c \ell \nu$, X_c any final state w/ charm:

- Allows for systematic expansion in $1/m_b, lpha_s \ (
 ightarrow OPE)$
- Includes $\mathcal{O}(1/m_b^3, \alpha_s/m_b^2, \alpha_s^3)$
- Excellent theoretical control, $|V_{cb}| = (42.2 \pm 0.5) \times 10^{-3}$ [Bordone+'21,Fael+'20,'21]
- Problem: Proliferation of parameters at higher orders in 1/m
- Use of Reparametrization invariance Links different orders in 1/m
 fewer parameters [Mannel,Vos'18]
 Restricted set of observables
 Belle(II) measurements of q² moments V_{cb} = (41.7 ± 0.6) × 10⁻³ [Vos+'21]
 Difference: inputs on Γ. ρ_D?
- Confirms stability of the method

Exclusive decays: Form factors

In exclusive decays, hadronic information encoded in Form Factors They parametrize fundamental mismatch:

> Theory (e.g. SM) for partons (quarks) vs. Experiment with hadrons

$$\left\langle D_q^{(*)}(p') | \bar{c} \gamma^{\mu} b | \bar{B}_q(p) \right\rangle = (p + p')^{\mu} f_+^q(q^2) + (p - p')^{\mu} f_-^q(q^2), \ q^2 = (p - p')^2$$

Most general matrix element parametrization, given symmetries: Lorentz symmetry plus P- and T-symmetry of QCD $f_{\pm}(q^2)$: real, scalar functions of one kinematic variable

How to obtain these functions?

- Calculable w/ non-perturbative methods (Lattice, LCSR,...) Precision?
- Measurable e.g. in semileptonic transitions Normalization? Suppressed FFs? NP?

q^2 dependence

- q^2 range can be large, e.g. $q^2 \in [0,12]~{
 m GeV}^2$ in B o D
- Calculations give usually one or few points
- Knowledge of functional dependence on q^2 crucial
- This is where discussions start...

Give as much information as possible independently of this choice!

q^2 dependence

- q^2 range can be large, e.g. $q^2 \in [0,12]~{
 m GeV}^2$ in B o D
- Calculations give usually one or few points
- Knowledge of functional dependence on q^2 crucial
- This is where discussions start...

Give as much information as possible independently of this choice!

In the following: discuss BGL and HQE (\rightarrow CLN) parametrizations

 q^2 dependence usually rewritten via conformal transformation:

$$z\left(t=q^{2},t_{0}
ight)=rac{\sqrt{t_{+}-t}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-t}+\sqrt{t_{+}-t_{0}}}$$

 $t_+ = (M_{B_q} + M_{D_q^{(*)}})^2$: pair-production threshold $t_0 < t_+$: free parameter for which $z(t_0, t_0) = 0$ Usually $|z| \ll 1$, e.g. $|z| \le 0.06$ for semileptonic $B \to D$ decays Good expansion parameter The BGL parametrization [Boyd/Grinstein/Lebed, 90's] FFs are parametrized by a few coefficients the following way:

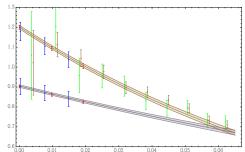
- 1. Consider analytical structure, make poles and cuts explicit
- 2. Without poles or cuts, the rest can be Taylor-expanded in z
- Apply QCD symmetries (unitarity, crossing)
 dispersion relation
- 4. Calculate partonic part (mostly) perturbatively

The BGL parametrization [Boyd/Grinstein/Lebed, 90's] FFs are parametrized by a few coefficients the following way:

- 1. Consider analytical structure, make poles and cuts explicit
- 2. Without poles or cuts, the rest can be Taylor-expanded in z
- Apply QCD symmetries (unitarity, crossing)
 dispersion relation
- 4. Calculate partonic part (mostly) perturbatively

Result: Model-independent parametrization $F(t) = \frac{1}{P(t)\phi(t)} \sum_{n=0}^{\infty} a_n [z(t, t_0)]^n.$

- *a_n*: real coefficients, the only unknowns
- P(t): Blaschke factor(s), information on poles below t_+
- $\phi(t)$: Outer function, chosen such that $\sum_{n=0}^{\infty} a_n^2 \leq 1$

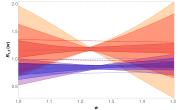

Series in z with bounded coefficients (each $|a_n| \le 1$)! Uncertainty related to truncation is calculable!

$B \to D\ell\nu$

- $B
 ightarrow D\ell
 u$, aka "The teacher's pet":
 - Excellent agreement between experiments [BaBar'09,Belle'16]
 - Excellent agreement between two lattice determinations [FNAL/MILC'15,HPQCD'16]
 - Lattice data inconsistent with CLN parametrization! (but consistent w/ HQE@1/m, discussed later)
 - BGL fit [Bigi/Gambino'16] :

 $|V_{cb}| = 40.5(10) \times 10^{-3}$ R(D) = 0.299(3).

See also [Jaiswal+,Berlochner+'17,MJ/Straub'18,Bordone/MJ/vanDyk'19]

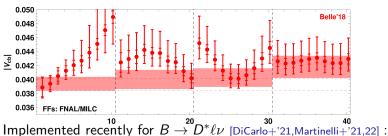

 $f_{+,0}(z)$, inputs:

- FNAL/MILC'15
- HPQCD'16
- BaBar'09
- Belle'16

 $V_{cb} + R(D^*)$ w/ data + lattice + unitarity [Gambino/MJ/Schacht'19]

Belle'18(+'17) provide FF-independent data for 4 single-differential rates BGL analysis:

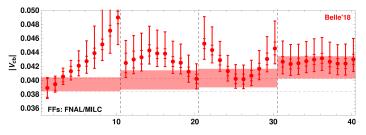
- Datasets compatible
- d'Agostini bias + syst. important
- Expand FFs to z²
 50% increased uncertainties


- Belle'18: no parametrization dependence
- Belle'17 never published ightarrow Belle recommends to omit it
- Tension w/ inclusive reduced, but not removed

$$egin{array}{rcl} |V_{cb}^{D^*}| &= & \left(39.2^{+1.4}_{-1.2}
ight) imes 10^{-3} & \left(\Delta V_{cb}^{
m Belle} = 0.9
ight) \ R(D^*) &= & 0.253^{+0.007}_{-0.006} & ({
m including LCSR point}) \end{array}$$

The Dispersive Matrix (DM) Method

Alternative implementation of unitarity [Bourrely+'81,Lellouch'95] :


- Identical starting point as BGL: dispersion relation
- Known information in a matrix with positive determinant
 Form-factor bounds

Enables parametrization-free analysis

- Use DM w/ new FNAL/MILC data to obtain FF bands
- Calculate V_{cb} bin-wise, combine dΓ/dx bins (x = q², cos θ, ...) (including experimental and theoretical correlations)
 2 × 4 V_{cb} values. Claim: 0.5σ to V^{incl}_{cb}, 1.3σ to R(D*)

The Dispersive Matrix (DM) Method

Differences between DM and GJS $[{\tt Gambino}/{\tt MJ}/{\tt Schacht'19}]$:

- GJS: Combined fit of lattice and experiment, imposing unitarity
- DM: Unweighted, uncorrelated average of the 4 V_{cb} values:

$$\mu = \frac{1}{N} \sum_{k=1}^{N} x_k, \quad \sigma_x^2 = \frac{1}{N} \sum_{k=1}^{N} \sigma_k^2 + \frac{1}{N} \sum_{k=1}^{N} (x_k - \mu_x)^2$$

$$V_{cb}^{
m GJS} = (39.2^{+1.4}_{-1.2}) imes 10^{-3}$$
, $V_{cb}^{
m DM} = (40.8 \pm 1.7) imes 10^{-3}$

HQE parametrization

Heavy-Quark Expansion (HQE) employs additional information:

- $m_{b,c} \to \infty$: all $B \to D^{(*)}$ FFs given by 1 Isgur-Wise function
- Systematic expansion in $1/m_{b,c}$ and α_s
- Higher orders in $1/m_{b,c}$: FFs remain related
 - Parameter reduction, necessary for NP analyses!

HQE parametrization

Heavy-Quark Expansion (HQE) employs additional information:

- $m_{b,c} \to \infty$: all $B \to D^{(*)}$ FFs given by 1 lsgur-Wise function
- Systematic expansion in $1/m_{b,c}$ and α_s
- Higher orders in $1/m_{b,c}$: FFs remain related
 - Parameter reduction, necessary for NP analyses!

CLN parametrization [Caprini+'97] :

HQE to order $1/m_{b,c}$, α_s plus (approx.) constraints from unitarity [Bernlochner/Ligeti/Papucci/Robinson'17] : identical approach, updated and consistent treatment of correlations

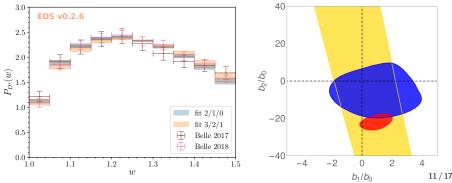
Problem: Contradicts Lattice QCD (both in $B \to D$ and $B \to D^*$) Dealt with by varying calculable $(@1/m_{b,c})$ parameters, e.g. $h_{A_1}(1)$ Not a systematic expansion in $1/m_{b,c}$ anymore! Related uncertainty remains $\mathcal{O}[\Lambda^2/(2m_c)^2] \sim 5\%$, insufficient

HQE parametrization

Heavy-Quark Expansion (HQE) employs additional information:

- $m_{b,c} \to \infty$: all $B \to D^{(*)}$ FFs given by 1 lsgur-Wise function
- Systematic expansion in $1/m_{b,c}$ and α_s
- Higher orders in $1/m_{b,c}$: FFs remain related
 - Parameter reduction, necessary for NP analyses!

CLN parametrization [Caprini+'97] : HQE to order $1/m_{b,c}$, α_s plus (approx.) constraints from unitarity [Bernlochner/Ligeti/Papucci/Robinson'17] : identical approach, updated and consistent treatment of correlations

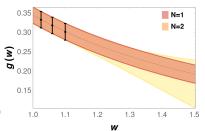

Problem: Contradicts Lattice QCD (both in $B \to D$ and $B \to D^*$) Dealt with by varying calculable ($(@1/m_{b,c})$) parameters, e.g. $h_{A_1}(1)$ Not a systematic expansion in $1/m_{b,c}$ anymore! Related uncertainty remains $\mathcal{O}[\Lambda^2/(2m_c)^2] \sim 5\%$, insufficient Solution: Include systematically $1/m_c^2$ corrections [Bordone/MJ/vDyk'19,Bordone/Gubernari/MJ/vDyk'20], using [Falk/Neubert'92] [Bernlochner+'22] : model for $1/m_c^2$ corrections \rightarrow fewer parameters

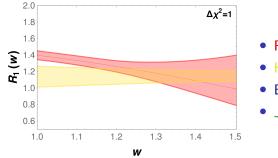
Theory determination of $b \rightarrow c$ Form Factors

[Bordone/MJ/vanDyk'19,Bordone/Gubernari/MJ/vanDyk'20]

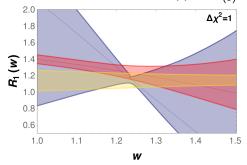
For general NP analysis, FF shapes needed from theory! Fit to all $B \rightarrow D^{(*)}$ FFs, using lattice, LCSR, QCDSR and unitarity [CLN,BGL,HPQCD'15'17,FNAL/MILC'14'15,Gubernari+'18,Ligeti+'92'93] k/l/m: order in z for leading/subleading/subsubleading IW functions 2/1/0 works, but only 3/2/1 captures uncertainties Consistent V_{cb} value from Belle'17+'18

Predictions for diff. rates, perfectly confirmed by data

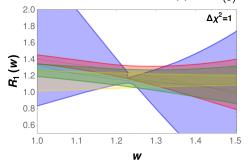

Comparison to Bernlochner+'22


Bernlochner et al. also perform HQE analysis $@1/m_c^2$. Differences:

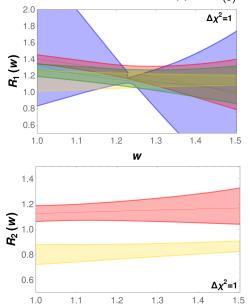
- Postulate different counting within HQET
 Highly constraining model for higher-order corrections
- Avoid use of LCSR (and mostly QCDSR) results
- Include partial α_s^2 corrections
- Include FNAL/MILC results partially
- Expansion in z: 2/1/0 (justified in [Bernlochner+'19])


Observations:

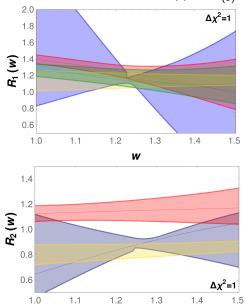
- $1/m_c^2$ corrections necessary
- Overall small uncertainties
- $V_{cb} = (38.7 \pm 0.6) \times 10^{-3}$ • smaller due to larger $\mathcal{F}(1)$
- $R(D^*)$: agreement w/ BGJvD
- *R*(*D*) ~ 3σ from GJS + BGJvD
 In my opinion due to model



- FNAL/MILC'21
- HQE $@1/m_c^2$
- Exp (BGL)
- JLQCD prel



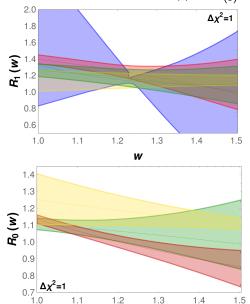
- FNAL/MILC'21
- HQE $@1/m_c^2$
- Exp (BGL)
- JLQCD prel


- FNAL/MILC'21
- HQE $@1/m_c^2$
- Exp (BGL)
- JLQCD prel
- Compatible. Slope?

Major improvement: $B_{(s)} \rightarrow D^*_{(s)}$ FFs@w > 1! (B_s : [Harrison+'22])

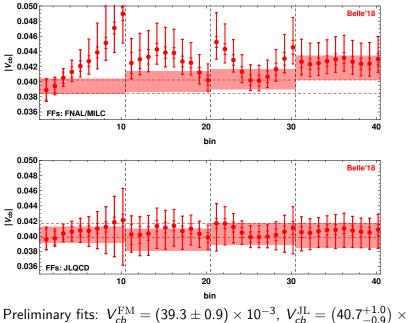
- FNAL/MILC'21
- HQE $@1/m_c^2$
- Exp (BGL)
- JLQCD prel
- Compatible. Slope?

Deviation wrt previous FFs


- FNAL/MILC'21
- HQE $@1/m_c^2$
- Exp (BGL)
- JLQCD prel
- Compatible. Slope?

- Deviation wrt previous FFs
- Deviation wrt experiment

- FNAL/MILC'21
- HQE $@1/m_c^2$
- Exp (BGL)
- JLQCD prel
- Compatible. Slope?


- Deviation wrt previous FFs
- Deviation wrt experiment
- JLQCD "diplomatic"
- Requires further investigation!

- FNAL/MILC'21
- HQE $@1/m_c^2$
- Exp (BGL)
- JLQCD prel
- Compatible. Slope?

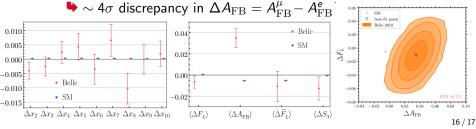
- Also in R₀ deviation wrt previous FFs
- JLQCD again "diplomatic"
- Requires further investigation!

Binned V_{cb} from Belle'18 data: FNAL/MILC vs JLQCD

14 / 17

Overview over predictions for $R(D^*)$

Value	Method	Input Theo	Input Exp	Reference
·	BGL	Lattice, HQET	Belle'17'18	Gambino et al.'19
—	BGL	Lattice, HQET	Belle'18	Jaiswal et al.'20
	HQET@1/ m_c^2, α_s	Lattice, LCSR, QCDSR	Belle'17'18	Bordone et al.'20
—	"Average"			HFLAV'21
—	$HQET_{RC}@1/m^2, \alpha_s^{(2)}$	Belle'17'18	Lattice	Bernlochner et al.'22
I	BGL	Lattice	Belle'18, Babar'19	Vaquero et al.'21v2
н	BGL	Lattice	Belle'18	JLQCD prel. (MJ)
i	HQET@1/ m_c^2, α_s	Lattice, LCSR, QCDSR		Bordone et al.'20
·	→BGL	Lattice		Vaquero et al.'21v2
·	DM	Lattice		Martinelli et al.
	BGL	Lattice		JLQCD prel. (MJ)
0.24 0.26 0.	28 R _{D*}			


Lattice $B \rightarrow D^*$: $h_{A_1}(w = 1)$ [FNAL/MILC'14,HPQCD'17], [FNAL/MILC'21] Other lattice: $f^{B \rightarrow D}_{+,0}(q^2)$ [FNAL/MILC,HPQCD'15] QCDSR: [Ligeti/Neubert/Nir'93,'94], LCSR: [Gubernari/Kokulu/vDyk'18]

Overall consistent SM predictions! "Explaining" $R(D^*)$ by FNAL/MILC \rightarrow NP in $B \rightarrow D^*(e, \mu)\nu$!

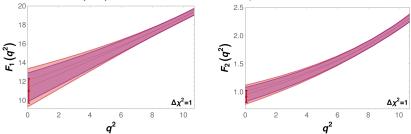
Application: Flavour universality in $B \rightarrow D^*(e, \mu)\nu$ [Bobeth/Bordone/Gubernari/MJ/vDyk'21]

So far: Belle'18 data used in SM fits, flavour-averaged However: Bins 40 × 40 covariances given separately for $\ell = e, \mu$ Belle'18: $R_{e/\mu}(D^*) = 1.01 \pm 0.01 \pm 0.03$

- **b** What can we learn about flavour-non-universality? \rightarrow 2 issues:
 - 1. $e \mu$ correlations not given, but constructible from Belle'18
- 2. 3 bins linearly dependent, but covariances not singular Two-step analysis:
 - 2 × 4 angular observables suffice for 2 × 30 angular bins
 Model-independent description including NP!
 - 2. Compare with SM predictions, using FFs@1/ m_c^2 [Bordone+'19]

Conclusions

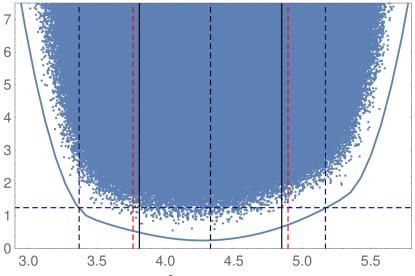
Semileptonic $b \rightarrow c$ transitions remain exciting!


- 1. Inclusive V_{cb} confirmed by new method
- 2. q^2 dependence of FFs critical
 - Need parametrization-independent data
- 3. Inclusion of higher-order (theory) uncertainties essential
- 4. BGL model-independent, truncation uncertainty limited
- 5. HQE: systematic expansion in 1/m, α_s, relates FFs
 ▶ O(1/m_c) (→ CLN) not sufficient anymore
- 6. Important first LQCD analyses in $B_{(s)} \rightarrow D^*_{(s)}$ @ finite recoil
- 7. Despite complications: $R(D^{(*)})$ SM prediction robust!
- 8. LFU-violation in $b \rightarrow c \ell \nu @\sim 4\sigma!$
 - Experimental issues? NP?

Central lesson:

Experiment and theory need to work closely together!

Priors and potential biases


Different conclusions starting from identical information **Example:** $R(D^*)$ extraction from FNAL/MILC data

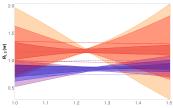
 $R(D^*)$ including kinematical identities and weak unitarity $R(D^*) \stackrel{\text{WU}}{=} 0.269 \stackrel{+0.020}{_{-0.008}} \stackrel{\text{FM}}{=} 0.274 \pm 0.010 \stackrel{\text{Rome}}{=} 0.275 \pm 0.008$. Difference WU-FM: FM apply prior on BGL coefficients Difference WU-Rome (educated guess): iterated "unitarity filter" + different error estimate

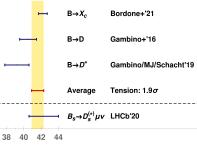
Applying data: $R(D^*) = 0.249 \pm 0.001(!)$ universally.

Uncertainty determination

MC points together with χ^2 profile (minimizing for each FF value) Vertical: CV MC, "1 σ " MC, symmetric 68.3% interval MC, $\Delta \chi^2 = 1$

 $V_{cb} + R(D^*)$ w/ data + lattice + unitarity [Gambino/MJ/Schacht'19] Belle'17+'18 provide FF-independent data for 4 single-differential rates Analysis of these data with BGL form factors:


- Datasets roughly compatible
- d'Agostini bias + syst. important
- All FFs to z² to include uncertainties
 50% increased uncertainties
- 2018: no parametrization dependence


$$\begin{split} |V_{cb}^{D^*}| &= & 39.6^{+1.1}_{-1.0} \left[39.2^{+1.4}_{-1.2} \right] \times 10^{-3} \\ R(D^*) &= & 0.254^{+0.007}_{-0.006} \left[0.253^{+0.007}_{-0.006} \right] \\ \text{In brackets: 2018 only } (\Delta V_{cb}^{\text{Belle}} = 0.9) \end{split}$$

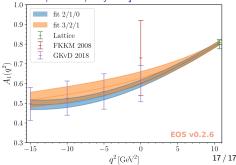
Updating the $|V_{cb}|$ puzzle:

- Tension 1.9 σ (larger $\delta V_{cb}^{B \rightarrow D^*}$)
- $B_s
 ightarrow D_s^{(*)}$ reduces tension further
- $V_{cb}^{B \rightarrow D^*}$ vs. V_{cb}^{incl} still problematic

See also [Bigi+,Bernlocher+,Grinstein+'17,Jaiswal+'17'19,MJ/Straub'18,Bordone+'19/20]

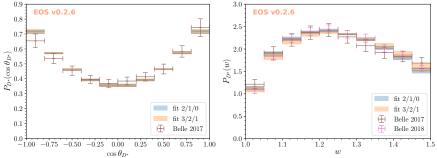
Theory determination of $b \rightarrow c$ Form Factors

SM: BGL fit to data + FF normalization $\rightarrow |V_{cb}|$


NP: can affect the q^2 -dependence, introduces additional FFs

To determine general NP, FF shapes needed from theory

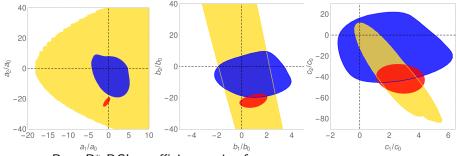
[MJ/Straub'18,Bordone/MJ/vDyk'19] used all available theory input:


- Unitarity bounds (using results from [CLN, BGL])
 non-trivial 1/m vs. z expansions
- LQCD for $f_{+,0}(q^2)$ $(B \to D)$, $h_{A_1}(q^2_{\max})$ $(B \to D^*)$ [HPQCD'15,'17,Fermilab/MILC'14,'15]
- LCSR for all FFs (mod f_T) [Gubernari/Kokulu/vDyk'18]
- QCDSR results for 1/m IW functions [Ligeti+'92'93]
- HQET expansion to $\mathcal{O}(\alpha_s, 1/m_b, 1/m_c^2)$

FFs under control; $R(D^*) = 0.247(6)$ [Bordone/MJ/vDyk'19]

Robustness of the HQE expansion up to $1/m_c^2$ [Bordone/MJ/vDyk'19]

Testing FFs by comparing to data and fits in BGL parametrization:



• Fits 3/2/1 and 2/1/0 are theory-only fits(!)

- k/l/m denotes orders in z at $\mathcal{O}(1, 1/m_c, 1/m_c^2)$
- w-distribution yields information on FF shape $ightarrow V_{cb}$
- Angular distributions more strongly constrained by theory, only
- \blacktriangleright Predicted shapes perfectly confirmed by $B \to D^{(*)} \ell \nu$ data
- V_{cb} from Belle'17 compatible between HQE and BGL!

Robustness of the HQE expansion up to $1/m_c^2$ [Bordone/MJ/vDyk'19]

Testing FFs by comparing to data and fits in BGL parametrization:

• $B \rightarrow D^*$ BGL coefficient ratios from:

- 1. Data (Belle'17+'18) + weak unitarity (yellow)
- 2. HQE theory fit 2/1/0 (red)
- 3. HQE theory fit 3/2/1 (blue)

Again compatibility of theory with data

2/1/0 underestimates the uncertainties massively

For $b_i, c_i \ (\rightarrow f, \mathcal{F}_1)$ data and theory complementary

Including $ar{B}_s
ightarrow D_s^{(*)}$ Form Factors [Bordone/Gubernari/MJ/vDyk'20]

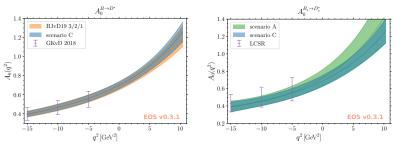
Dispersion relation *sums* over hadronic intermediate states Includes $B_s D_s^{(*)}$, included via SU(3) + conservative breaking Explicit treatment can improve also $\overline{B} \rightarrow D^{(*)} \ell \nu$

Experimental progress in $\bar{B}_s \rightarrow D_s^{(*)} \ell \nu$:

2 new LHCb measurements [2001.03225, 2003.08453]

Improved theory determinations required, especially for NP

We extend our $1/m_c^2$ analysis by including:

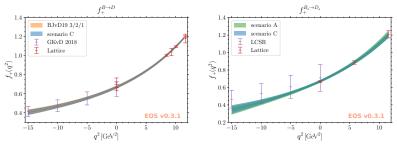

- Available lattice data: (2 $\bar{B}_s
 ightarrow D_s$ FFs (q^2 dependent), 1 $\bar{B}_s
 ightarrow D^*$ FF (only $q^2_{
 m max}$))
- Adaptation of existing QCDSR results [Ligeti/Neubert/Nir'93'94], including SU(3) breaking
- New LCSR results extending [Gubernari+'18] to B_s , including SU(3) breaking
- Fully correlated fit to $\bar{B} \to D^{(*)}, \bar{B}_s \to D^{(*)}_s$ FFs

Including $\bar{B}_s \rightarrow D_s^{(*)}$ Form Factors, Results

We observe the following:

- Theory constraints fitted consistently in an HQE framework
- $\mathcal{O}(1/m_c^2)$ power corrections have $\mathcal{O}(1)$ coefficients
- No indication of sizable SU(3) breaking
- Slight influence of strengthened unitarity bounds

• Improved determination of $ar{B}_{s}
ightarrow D_{s}^{(*)}$ FFs



Including $\bar{B}_s \rightarrow D_s^{(*)}$ Form Factors, Results

We observe the following:

- Theory constraints fitted consistently in an HQE framework
- $\mathcal{O}(1/m_c^2)$ power corrections have $\mathcal{O}(1)$ coefficients
- No indication of sizable SU(3) breaking
- Slight influence of strengthened unitarity bounds

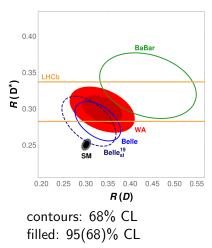
• Improved determination of $ar{B}_s o D_s^{(*)}$ FFs

Including $\bar{B}_s \rightarrow D_s^{(*)}$ Form Factors, Results

We observe the following:

- Theory constraints fitted consistently in an HQE framework
- $\mathcal{O}(1/m_c^2)$ power corrections have $\mathcal{O}(1)$ coefficients
- No indication of sizable SU(3) breaking
- Slight influence of strengthened unitarity bounds
- Improved determination of $ar{B}_{s}
 ightarrow D_{s}^{(*)}$ FFs

Theory-only predictions:


$$R(D) = 0.299(3)$$
 $R(D^*) = 0.247(5)$
 $R(D_s) = 0.297(3)$ $R(D_s^*) = 0.245(8)$

Theory+Experiment (Belle'17) predictions:

R(D) = 0.298(3) $R(D^*) = 0.250(3)$ $R(D_s) = 0.297(3)$ $R(D_s^*) = 0.247(8)$

Lepton-non-Universality in b ightarrow c au u

 $R(X) \equiv \frac{\text{Br}(B \to X\tau\nu)}{\text{Br}(B \to X\ell\nu)} \quad \bullet \text{ Partial cancellation of uncertainties} \\ \bullet \text{ Precise predictions (and measurements)}$

R(D^(*)): BaBar, Belle, LHCb
 average ~ 3 - 4σ from SM
 New BaBar result!?

More flavour $b \rightarrow c \tau \nu$ observables:

- au-polarization (au
 ightarrow had) [1608.06391]
- $B_c
 ightarrow J/\psi au
 u$ [1711.05623] : huge
- Differential rates from Belle, BaBar
- Total width of B_c
- $b
 ightarrow X_c au
 u$ by LEP
- *D*^{*} polarization (Belle)
- $R(\Lambda_c) \rightarrow \text{below SM}$

Note: only 1 result $\geq 3\sigma$ from SM

Generalities regarding this anomaly

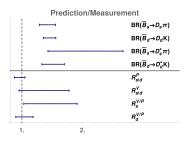
15% of a SM tree decay ~ V_{cb}: This is a huge effect!
 ▶ Need contribution of ~ 5 - 10% (w/ interference) or ≥ 40% (w/o interference) of SM

What do we do about this?

• Check the SM prediction!

 $[\rightarrow \mathsf{Bigi}+,\mathsf{Bordone}+,\mathsf{Gambino}+,\mathsf{Grinstein}+,\mathsf{Bernlochner}+]$

 $\delta R(D^*)$ larger, anomaly remains


- Combined analysis of all b → cτν observables [100+ papers]
 ▶ First model discrimination
- Related indirect bounds (partly model-dependent)
 ➡ High p_T searches, lepton decays, LFV, EDMs, ...
- Analyze flavour structure of potential NP contributions
 ▶ quark flavour structure, e.g. b → u
 - **b** lepton flavour structure, e.g. $b \rightarrow c\ell (= e, \mu)\nu$

A puzzle in non-leptonic $b \rightarrow c$ transitions

[Bordone/Gubernari/Huber/MJ/vDyk'20] FFs also of central importance in non-leptonic decays:

- Complicated in general, $B
 ightarrow M_1 M_2$ dynamics
- Simplest cases: $\bar{B}_d \to D_d^{(*)} \bar{K}$ and $\bar{B}_s \to D_s^{(*)} \pi$ (5 diff. quarks)
 - Scolour-allowed tree, $1/m_b^0 @ \mathcal{O}(lpha_s^2)$ [Huber+'16] , factorizes at $1/m_b$
 - Amplitudes dominantly $\sim ar{B}_q o D_q^{(*)}$ FFs
 - Used to determine f_s/f_d at hadron colliders [Fleischer+'11]

Updated and extended calculation: tension of 4.4σ w.r.t. exp.!

- Large effect, $\sim -30\%$ for BRs
- Ratios of BRs ok
- QCDf uncertainty $\mathcal{O}(1/m_b^2, \alpha_s^3)$
- Data consistent (too few abs. BRs)
- NP? $\Delta_P \sim \Delta_V \sim -20\%$ possible
- We will learn something important!