Systematics of U-spin Amplitude Sum Rules

Margarita Gavrilova

Based on MG, Y. Grossman and S. Schacht JHEP, 2022, 278 (2022) arXiv:2205.12975

LHCb Implications Workshop, October 2022

Challenge: who can do better with U-spin?

U-spin symmetry

- $S U(3)$ flavor is an approximate symmetry of light quarks u, d, s
- U-spin is an $S U(2)$ subgroup of $S U(3)$ flavor that relates d and s quarks
- Fundamental doublets under U-spin are:

$$
\left[\begin{array}{l}
d \\
s
\end{array}\right]=\left[\begin{array}{l}
|1 / 2,+1 / 2\rangle \\
|1 / 2,-1 / 2\rangle
\end{array}\right], \quad\left[\begin{array}{c}
\bar{s} \\
-\bar{d}
\end{array}\right]=\left[\begin{array}{l}
|1 / 2,+1 / 2\rangle \\
|1 / 2,-1 / 2\rangle
\end{array}\right]
$$

- $S U(3)$ flavor is broken by $\epsilon=O(30 \%)$
- The breaking comes from quark mass differences and electromagnetism

U-spin is a "simpler" symmetry since it is broken only by quark masses

Image from arXiv:1502.07089

Example: $D^{0} \rightarrow P^{+} P^{-}$

Initial and final state multiplets:

$$
\begin{aligned}
& D^{0}=|c \bar{u}\rangle=|0,0\rangle, \quad P^{+}=\left[\begin{array}{c}
K^{+} \\
\pi^{+}
\end{array}\right]= {\left[\begin{array}{c}
|u \bar{s}\rangle \\
-|u \bar{d}\rangle
\end{array}\right]=\left[\begin{array}{c}
|1 / 2,+1 / 2\rangle \\
|1 / 2,-1 / 2\rangle
\end{array}\right], \quad P^{-}=\left[\begin{array}{c}
\pi^{-} \\
K^{-}
\end{array}\right]=\left[\begin{array}{l}
|d \bar{u}\rangle \\
|s \bar{u}\rangle
\end{array}\right]=\left[\begin{array}{l}
|1 / 2,+1 / 2\rangle \\
|1 / 2,-1 / 2\rangle
\end{array}\right] } \\
& \text { U-spin set of processes: } \\
& D^{0} \rightarrow \pi^{+} K^{-}, \quad D^{0} \rightarrow K^{+} \pi^{-}, \quad D^{0} \rightarrow \pi^{+} \pi^{-}, \quad D^{0} \rightarrow K^{+} K^{-}
\end{aligned}
$$

Example: $D^{0} \rightarrow P^{+} P^{-}$

Initial and final state multiplets:

$$
\begin{aligned}
& D^{0}=|c \bar{u}\rangle=|0,0\rangle, \quad P^{+}=\left[\begin{array}{c}
K^{+} \\
\pi^{+}
\end{array}\right]= {\left[\begin{array}{c}
|u \bar{s}\rangle \\
-|u \bar{d}\rangle
\end{array}\right]=\left[\begin{array}{c}
|1 / 2,+1 / 2\rangle \\
|1 / 2,-1 / 2\rangle
\end{array}\right], \quad P^{-}=\left[\begin{array}{c}
\pi^{-} \\
K^{-}
\end{array}\right]=\left[\begin{array}{c}
|d \bar{u}\rangle \\
|s \bar{u}\rangle
\end{array}\right]=\left[\begin{array}{l}
|1 / 2,+1 / 2\rangle \\
|1 / 2,-1 / 2\rangle
\end{array}\right] } \\
& \text { U-spin set of processes: } \\
& D^{0} \rightarrow \pi^{+} K^{-}, \quad D^{0} \rightarrow K^{+} \pi^{-}, \quad D^{0} \rightarrow \pi^{+} \pi^{-}, \quad D^{0} \rightarrow K^{+} K^{-}
\end{aligned}
$$

One of the U-spin limit predictions: $\quad \frac{\mathcal{B}\left(D^{0} \rightarrow K^{+} K^{-}\right)}{\mathcal{B}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)}=1$

Example: $D^{0} \rightarrow P^{+} P^{-}$

Initial and final state multiplets:

One of the U-spin limit predictions:

$$
\frac{\mathcal{B}\left(D^{0} \rightarrow K^{+} K^{-}\right)}{\mathcal{B}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)}=1
$$

Data:

$$
\frac{\mathcal{B}\left(D^{0} \rightarrow K^{+} K^{-}\right)}{\mathcal{B}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)}=2.8 \pm 0.1
$$

$$
\frac{(1+\epsilon)^{2}}{(1-\epsilon)^{2}} \sim 3 \text { is consistent with } \epsilon \sim 30 \%
$$

R.L. Workman et al. (PDG), Prog. Theor. Exp. Phys. 2022, $083 C 01$ (2022)

$$
\begin{aligned}
& D^{0}=|c \bar{u}\rangle=|0,0\rangle, \quad P^{+}=\left[\begin{array}{c}
K^{+} \\
\pi^{+}
\end{array}\right]=\left[\begin{array}{c}
|u \bar{s}\rangle \\
-|u \bar{d}\rangle
\end{array}\right]=\left[\begin{array}{c}
|1 / 2,+1 / 2\rangle \\
|1 / 2,-1 / 2\rangle
\end{array}\right], \quad P^{-}=\left[\begin{array}{c}
\pi^{-} \\
K^{-}
\end{array}\right]=\left[\begin{array}{l}
|d \bar{u}\rangle \\
|s \bar{u}\rangle
\end{array}\right]=\left[\begin{array}{l}
|1 / 2,+1 / 2\rangle \\
|1 / 2,-1 / 2\rangle
\end{array}\right] \\
& \text { U-spin set of processes: } \\
& D^{0} \rightarrow \pi^{+} K^{-}, \quad D^{0} \rightarrow K^{+} \pi^{-}, \quad D^{0} \rightarrow \pi^{+} \pi^{-}, \quad D^{0} \rightarrow K^{+} K^{-}
\end{aligned}
$$

One message to take home:

Systematic expansion in U-spin breaking can be used for precision physics

1
 Multibody decays allow for precision theory predictions

Outline

- Standard approach to U-spin sum rules
- Systematics of U-spin sum rules \longleftarrow - our work

Standard approach to U-spin sum rules

Standard approach to writing sum rules

- The standard approach to writing sum rules is based on the Wigner-Eckart theorem:

$$
\left\langle u_{2} ; m_{2}\right| O(u, m)\left|u_{1} ; m_{1}\right\rangle=C_{u_{1}, m_{1}}^{u_{2}, m_{2}}\left\langle u_{2}\right| O(u)\left|u_{1}\right\rangle
$$

- Then the amplitudes can be written as (under certain assumptions)

Reduced matrix element, α is a multiindex that contains

$$
\xrightarrow{\mathcal{A}_{j}}=f_{u, m} \sum_{\alpha} C_{j \alpha} X_{\alpha}
$$


```
number of amplitudes in physical basis > number of RME }->\mathrm{ Sum Rules
```

$$
\mathcal{A}_{j}=f_{u, m} \sum_{\alpha} C_{j \alpha} X_{\alpha} \quad \begin{aligned}
& X_{\alpha} \text { is a short } \\
& \text { notation for reduced } \\
& \text { matrix elements }
\end{aligned}
$$

Example: $C_{b} \rightarrow L_{b} P^{+} P^{-}$

- Below is the matrix $C_{j \alpha}$ up to $b=2$
- To find the sum rules one needs to find the null space of the matrix $C_{j \alpha}^{T}$

Decay amplitude	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}	χ_{9}	X_{10}	X_{11}	X_{12}	X_{13}	X_{14}	X_{15}	X_{16}	X_{17}	X_{18}	X_{19}	X_{20}
$A\left(\Lambda_{c}^{+} \rightarrow \Sigma^{+} K^{-} K^{+}\right)$	${ }^{\frac{1}{3}}$	--2	0	$\frac{1}{\sqrt{10}}$	$-\frac{1}{3 \sqrt{2}}$	$\frac{\sqrt{2}}{3}$	0	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$\frac{1}{\sqrt{15}}$	0	$-\frac{1}{2 \sqrt{5}}$	${ }^{\frac{1}{6}}$	${ }^{-\frac{1}{3}}$	0	0	0	0
$A\left(\Xi_{c}^{+} \rightarrow p \pi^{-\pi^{+}}\right)$	$\frac{1}{3}$	$-\frac{2}{3}$	0	$-\frac{1}{\sqrt{10}}$	$\frac{1}{3 \sqrt{2}}$	$-\frac{\sqrt{2}}{3}$	0	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$\frac{1}{\sqrt{15}}$	0	$-\frac{1}{2 \sqrt{5}}$	${ }^{\frac{1}{6}}$	$-\frac{1}{3}$	0	0	0	0
$A\left(\Lambda_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} \pi^{+}\right)$	$\frac{1}{3}$	${ }^{\frac{1}{3}}$	$-\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{10}}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$\frac{1}{2 \sqrt{5}}$	$-\frac{1}{2 \sqrt{5}}$	${ }^{\frac{1}{6}}$	${ }^{\frac{1}{6}}$	$-\frac{1}{2 \sqrt{3}}$	0	0	0
$A\left(\Xi_{c}^{+} \rightarrow p K^{-} K^{+}\right)$	$\frac{1}{3}$	${ }^{\frac{1}{3}}$	$-\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{10}}$	$\frac{1}{3 \sqrt{2}}$	$\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$\frac{1}{2 \sqrt{5}}$	$-\frac{1}{2 \sqrt{5}}$	${ }^{\frac{1}{6}}$	${ }^{\frac{1}{6}}$	$-\frac{1}{2 \sqrt{3}}$	${ }^{0}$	${ }^{0}$	0
$A\left(\Lambda_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} K^{+}\right)$	$\frac{\sqrt{2}}{3}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	$\frac{2}{3 \sqrt{5}}$	0	0	0	$\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{5}}$	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{3 \sqrt{6}}$	$\frac{1}{3 \sqrt{2}}$
$A\left(\Xi_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)$	$\frac{\sqrt{2}}{3}$	$\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	$-\frac{2}{3 \sqrt{5}}$	0	0	0	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3} \sqrt{2}$	$\frac{1}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{5}}$	0	${ }^{0}$	${ }^{0}$	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{3 \sqrt{6}}$	$\frac{1}{3 \sqrt{2}}$
$A\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)$	$\frac{1}{3}$	${ }^{\frac{1}{3}}$	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{10}}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{5}}$	$-\frac{1}{2 \sqrt{5}}$	${ }^{\frac{1}{6}}$	${ }^{\frac{1}{6}}$	$\frac{1}{2 \sqrt{3}}$	0	0	0
$A\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} K^{+}\right)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{10}}$	$\frac{1}{3 \sqrt{2}}$	$\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	0	$\frac{\sqrt{2 \sqrt{15}}}{}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{5}}$	$-\frac{1}{2 \sqrt{5}}$	${ }^{\frac{1}{6}}$	${ }^{\frac{1}{6}}$	$\frac{1}{2 \sqrt{3}}$	${ }^{0}$	${ }^{0}$	0
$A\left(\Lambda_{c}^{+} \rightarrow p K^{-} K^{+}\right)$	$\frac{\sqrt{2}}{3}$	$-\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	$\frac{2}{3 \sqrt{5}}$	0	0	0	$\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{15}}$	$-\frac{1}{3} \sqrt{\frac{2}{5}}$	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{3 \sqrt{6}}$	$-\frac{1}{3 \sqrt{2}}$
$A\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} \pi^{+}\right)$	$\frac{\sqrt{2}}{3}$	- $\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	$-\frac{2}{3 \sqrt{5}}$	0	0	0	$-\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{15}}$	$-\frac{1}{3} \sqrt{\frac{2}{5}}$	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{3 \sqrt{6}}$	- $\frac{1}{3 \sqrt{2}}$
$A\left(\Lambda_{c}^{+} \rightarrow p \pi^{-\pi^{+}}\right)$	$\frac{\sqrt{2}}{3}$	$\frac{\sqrt{2}}{3}$,	$\frac{2}{3 \sqrt{5}}$	0	0	0	$-\frac{\sqrt{2}}{3}$	0	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	0	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	
$A\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} K^{-} K^{+}\right)$	$\frac{\sqrt{2}}{3}$	$\frac{\sqrt{2}}{3}$	0	$-\frac{2}{3 \sqrt{5}}$	0	0	0	$\frac{\sqrt{2}}{3}$	0	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	0	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	0
$A\left(\Lambda_{c}^{+} \rightarrow p \pi^{-} K^{+}\right)$	1	0	0	$\frac{1}{\sqrt{10}}$	$\frac{1}{\sqrt{2}}$	0	0	0	0	$\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2} \sqrt{\frac{3}{5}}$		0	$\frac{1}{2 \sqrt{5}}$	${ }^{\frac{1}{2}}$	0	0			0
${ }^{\text {A }\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} K^{-} \pi^{+}\right)}$	1	0	0	$-\frac{1}{\sqrt{10}}$	$-\frac{1}{\sqrt{2}}$	0	0	0	0	$\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2} \sqrt{\frac{3}{5}}$	0	0	$\frac{1}{2 \sqrt{5}}$	$\frac{1}{2}$	0	0	0	0	0
Note, CKM-free amplitudes																				

Standard approach to writing sum rules

- Going to higher orders is hard
- Each U-spin system needs to be treated individually
- Symmetries are obscure
- Doesn't predict numbers of sum rules at different orders of breaking

Systematics of U-spin Sum Rules

Disclaimer: no proofs, only results. For proofs see arxiv:2205.12975.
*some simplifications and some"-" signs are flowing around. Everything is completely generic in the paper.

Systematics of U-spin sum rules

1) Any U-spin system can be constructed from doublets
2) The movement of irreps between initial/final state and the Hamiltonian doesn't change the structure of sum rules ("crossing symmetry")

We consider a system with the following U-spin structure:

$$
\underbrace{0 \rightarrow\left(\frac{1}{2}\right)^{\otimes n}, \quad u=0}_{(\text {note }, n \text { is even) }}
$$

$$
0 \rightarrow\left(\frac{1}{2}\right)^{\otimes n}, \quad u=0
$$

U-spin pairs

$$
0 \rightarrow\left(\frac{1}{2}\right)^{\otimes n}, \quad u=0
$$

a- and s-type amplitudes

$$
\begin{aligned}
& A_{j}=\sum_{\alpha} C_{j \alpha} X_{\alpha} \\
& \bar{A}_{j}=\sum_{\alpha}(-1)^{b} C_{j \alpha} X_{o}
\end{aligned}
$$

$$
a_{j} \equiv A_{j}-\bar{A}_{j}, \quad s_{j} \equiv A_{j}+\bar{A}_{j}
$$

- all sum rules of the system can be written in terms of a- and s-type amplitudes
- $\boldsymbol{a}_{\boldsymbol{j}}$ contain only the terms that are odd in breaking \boldsymbol{b}
- $\boldsymbol{s}_{\boldsymbol{j}}$ contain only the terms that are even in breaking \boldsymbol{b}

Decoupling!

- a-type sum rules that are valid up to odd order \boldsymbol{b} also hold at $\boldsymbol{b}+\mathbf{1}$
- s-type sum rules that are valid up to even order \boldsymbol{b} also hold at $\boldsymbol{b}+\mathbf{1}$
- for any system there are $n / 2$ trivial a-type sum rules at $b=0: a_{j}=0$ [Gronau, arXiv: hep-ph/0008292]
- all sum rules at any order b have the form:

$$
\sum a_{j}=0 \quad \text { and } \quad \sum s_{j}=0
$$

Diagrammatic approach: $n=6$ example

$$
d=\frac{n}{2}-1=2
$$

- each node corresponds to a U-spin pair
- each node is a trivial a-type sum rule valid up to $b=0$
- the sums of nodes in lines are s-type sum rules valid up to $b=1$
- the sum of all nodes of the lattice is an a-type sum rule valid up to $b=2$

$$
\sum a_{j}=0 \quad \text { and } \quad \sum s_{j}=0
$$

$$
C_{b}=\left[\begin{array}{c}
\Lambda_{c}^{+} \\
\Xi_{c}^{+}
\end{array}\right]=\left[\begin{array}{l}
|c u d\rangle \\
|c u s\rangle
\end{array}\right]=\left[\begin{array}{l}
\left|\frac{1}{2},+\frac{1}{2}\right\rangle \\
\left.\frac{1}{2},-\frac{1}{2}\right\rangle
\end{array}\right], \quad L_{b}=\left[\begin{array}{c}
p \\
\Sigma^{+}
\end{array}\right]=\left[\begin{array}{l}
|u u d\rangle\rangle \\
|u u s\rangle
\end{array}\right]=\left[\begin{array}{l}
\left|\frac{1}{2},+\frac{1}{2}\right\rangle \\
\left.\frac{1}{2},-\frac{1}{2}\right\rangle
\end{array}\right]
$$

Example: $C_{b} \rightarrow L_{b} P^{+} P^{-}$

 $P^{+}=\left[\begin{array}{c}K^{+} \\ \pi^{+}\end{array}\right]=\left[\begin{array}{c}|u \bar{s}\rangle \\ -|u \bar{d}\rangle\end{array}\right]=\left[\begin{array}{c}\left|\frac{1}{2},+\frac{1}{2}\right\rangle \\ \left.\frac{1}{2},-\frac{1}{2}\right\rangle\end{array}\right], \quad P^{-}=\left[\begin{array}{c}\pi^{-} \\ K^{-}\end{array}\right]=\left[\begin{array}{c}|d \bar{u}\rangle \\ |s \bar{u}\rangle\end{array}\right]=\left[\begin{array}{c}\left|\frac{1}{2},+\frac{1}{2}\right\rangle \\ \left.\frac{1}{2},-\frac{1}{2}\right\rangle\end{array}\right]$ $\mathcal{H}_{\text {eff }}^{(0)}=\sum_{m=-1}^{1} f_{1, m} H_{m}^{1}$- Sum rules valid up to $b=0$

$$
a_{(1,2)}=a_{(1,3)}=a_{(1,4)}=a_{(2,3)}=a_{(2,4)}=a_{(3,4)}=a_{(4,4)}=0
$$

- Sum rules valid up to $b=1$

$$
\begin{aligned}
s_{(1,2)}+s_{(1,3)}+\sqrt{2} s_{(1,4)} & =0 \\
s_{(1,2)}+s_{(2,3)}+\sqrt{2} s_{(2,4)} & =0 \\
s_{(1,3)}+s_{(2,3)}+\sqrt{2} s_{(3,4)} & =0 \\
s_{(1,4)}+s_{(2,4)}+s_{(3,4)}+\sqrt{2} s_{(4,4)} & =0
\end{aligned}
$$

- Sum rules valid up to $b=2$

$a_{(1,2)}+a_{(1,3)}+a_{(2,3)}+a_{(4,4)}+\sqrt{2} a_{(1,4)}+\sqrt{2} a_{(2,4)}+\sqrt{2} a_{(3,4)}=0$

Summary

- Systematic expansion in U-spin breaking can allow for precision theory predictions
- Our novel approach makes going to higher orders easy
- It implies that "larger systems" (multibody decays) are fundamentally different from two body decays in terms of U-spin and allow for precise predictions
- We are still at the amplitude level, going to observables is a non-trivial step that we are to take next.

Invitation to discussion: what are some interesting multibody decays that we should look at?

Backup

Number of theory parameters < number of observables

Goal of Flavor Physics: overconstrain CKM

This is challenging. Due to QCD there are often more theory parameters than observables

Number of theory parameters number of observables

Goal of Flavor Physics: overconstrain CKM

This is challenging. Due to QCD there are often more theory parameters than observables

Number of theory parameters number of observables

Ways to approach the problem:

- Calculate the parameters (Iattice)
- Measure the parameters
- Use symmetries to reduce the number of parameters

SU(3) flavor

- $\operatorname{SU}(3)$ flavor is an approximate symmetry of light quarks u, d, s
- Generators of $S U(3)$ are given by Gell-Mann matrices λ_{i}
- $S U(3)$ flavor contains three $S U(2)$ subgroups

Isospin $(u, d):$	λ_{1}	λ_{2}	λ_{3}
U-spin $(d, s):$	λ_{6}	λ_{7}	$\sqrt{3} \lambda_{8}-\lambda_{3}$
V-spin $(u, s):$	λ_{4}	λ_{5}	$\sqrt{3} \lambda_{8}+\lambda_{3}$

- Can construct rising and lowering operators for each subgroup $\hat{I}_{ \pm}, \widehat{U}_{ \pm}, \widehat{V}_{ \pm}$
- $S U(3)$ flavor is useful, but broken by $O(30 \%)$,
* ϵ is used to parametrize the breaking

$$
\begin{aligned}
& \lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda_{4}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \\
& \lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \quad \lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad \lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right) \quad \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
\end{aligned}
$$

Image from arXiv:1502.07089

SU(3) breaking

- $S U(3)$ flavor is very useful, but broken by $O(30 \%)$ corrections
- The breaking comes from quark mass differences and electromagnetism
- In this talk we focus on U-spin, the symmetry between d and s

Example: $\bar{D}^{0} \rightarrow P^{+} P^{-}$

Example: $\bar{D} \rightarrow P^{+} P^{-}$

$$
\begin{aligned}
& \epsilon^{0}: \quad \frac{\mathcal{A}\left(\bar{D}^{0} \rightarrow \pi^{+} K^{-}\right)}{V_{c d} V_{u s}^{*}}=\frac{\mathcal{A}\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)}{-V_{c s} V_{u d}^{*}}=\frac{\mathcal{A}\left(\bar{D}^{0} \rightarrow \pi^{+} \pi^{-}\right)}{V_{c s} V_{u s}^{*}}=\frac{\mathcal{A}\left(\bar{D}^{0} \rightarrow K^{+} K^{-}\right)}{V_{c s} V_{u s}^{*}} \\
& \epsilon^{1}: \quad \frac{\mathcal{A}\left(\bar{D}^{0} \rightarrow \pi^{+} K^{-}\right)}{V_{c d} V_{u s}^{*}}+\frac{\mathcal{A}\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)}{-V_{c s} V_{u d}^{*}}=\frac{\mathcal{A}\left(\bar{D}^{0} \rightarrow \pi^{+} \pi^{-}\right)}{V_{c s} V_{u s}^{*}}+\frac{\mathcal{A}\left(\bar{D}^{0} \rightarrow K^{+} K^{-}\right)}{V_{c s} V_{u s}^{*}}
\end{aligned}
$$

Summary

- One of the main goals of FP is to overconstrain CKM matrix
- This is challenging due to non-perturbative QCD
- One way to approach the challenge is to use approximate symmetries of QCD to reduce the number of unknown theory parameters
- However, the symmetries at our disposal are approximate and are broken by $O(30 \%)$ corrections, so symmetry limit relations are not good enough anymore

Higher order Sum Rules are the way to go!

Status before our work:

- It is mostly understood how to construct the higher order relations, but no well-established PT
- Going to higher orders is hard
- Not clear how to go from amplitudes to observables

Outline

- Definitions and assumptions
- Standard approach to U-spin sum rules
- Systematics of U-spin sum rules
- Concluding remarks

DISCLAIMER: the discussion to follow is about mathematics of U-spin amplitude sum rules

Definitions and assumptions

U-spin set

- Fundamental doublets under U-spin are:

$$
\left[\begin{array}{c}
d \\
s
\end{array}\right]=\left[\begin{array}{c}
\left|\frac{1}{2},+\frac{1}{2}\right\rangle \\
\left.\frac{1}{2},-\frac{1}{2}\right\rangle
\end{array}\right], \quad\left[\begin{array}{c}
\bar{s} \\
-\bar{d}
\end{array}\right]=\left[\begin{array}{c}
\left|\frac{1}{2},+\frac{1}{2}\right\rangle \\
\left.\frac{1}{2},-\frac{1}{2}\right\rangle
\end{array}\right]
$$

- U-spin set is a set of amplitudes (processes) that are related by U-spin
- U-spin set is defined via listing the U-spin properties of:
- initial/final state
- and the Hamiltonian
- U-spin limit Hamiltonian:

$$
\mathcal{H}_{\mathrm{eff}}^{(0)}=\sum_{m} f_{u, m} H_{m}^{u}
$$

U-spin set

- Fundamental doublets under U-spin are:

$$
\left[\begin{array}{c}
d \\
s
\end{array}\right]=\left[\begin{array}{c}
\left|\frac{1}{2},+\frac{1}{2}\right\rangle \\
\left.\frac{1}{2},-\frac{1}{2}\right\rangle
\end{array}\right], \quad\left[\begin{array}{c}
\bar{s} \\
-\bar{d}
\end{array}\right]=\left[\begin{array}{c}
\left|\frac{1}{2},+\frac{1}{2}\right\rangle \\
\left.\frac{1}{2},-\frac{1}{2}\right\rangle
\end{array}\right]
$$

- U-spin set is a set of amplitudes (processes) that are related by U-spin
- U-spin set is defined via listing the U-spin properties of: assumption: initial/final state
- initial/final state particles are in pure multiplets
- and the Hamiltonian
assumption: only one
- U-spin limit Hamiltonian:
u is present!

$$
\mathcal{H}_{\mathrm{eff}}^{(0)}=\sum_{m} f_{u, m} H_{m}^{@}
$$

Effective Hamiltonian for $\bar{D}^{0} \rightarrow P^{+} P^{-}$

- Operators with definite values of U-spin and m_{u}
- Integrating out W, we obtain the following operators: $\left(\bar{u} q_{1}\right)\left(\bar{q}_{2} c\right)$, where $q_{1,2}=d, s$
- since $q_{1,2}=d, s$ are components of U-spin doublets, the possible values of U-spin are 0 and 1

$$
\frac{1}{2} \otimes \frac{1}{2}=0 \oplus 1
$$

$$
\begin{array}{ll}
H_{1}^{1}=(\bar{u} s)(\bar{d} c), \quad H_{-1}^{1}=-(\bar{u} d)(\bar{s} c), & H_{0}^{1}=\frac{(\bar{u} s)(\bar{s} c)-(\bar{u} d)(\bar{d} c)}{\sqrt{2}} \\
H_{0}^{0}=\frac{(\bar{u} s)(\bar{s} c)+(\bar{u} d)(\bar{d} c)}{\sqrt{2}}
\end{array}
$$

$$
f_{1,1}=V_{c d}^{*} V_{u s}, \quad f_{1,-1}=-V_{c s}^{*} V_{u d}, \quad f_{1,0}=\frac{V_{c s}^{*} V_{u s}-V_{c d}^{*} V_{u d}}{\sqrt{2}} \approx \sqrt{2}\left(V_{c s}^{*} V_{u s}\right)
$$

$$
f_{0,0}=\frac{V_{c S}^{*} V_{u s}+V_{c d}^{*} V_{u d}}{2} \approx 0 \longleftarrow \quad \begin{aligned}
& \text { Approximations hold } \\
& \text { up to } 0\left(\lambda^{4}\right), \lambda \approx 0.22
\end{aligned}
$$

Example: $\bar{D}^{0} \rightarrow P^{+} P^{-}$

Initial and final state multiplets:

$$
\begin{gathered}
\bar{D}^{0}=|u \bar{c}\rangle=|0,0\rangle, \quad P^{+}=\left[\begin{array}{c}
K^{+} \\
\pi^{+}
\end{array}\right]=\left[\begin{array}{c}
|u \bar{s}\rangle \\
-|u \bar{d}\rangle
\end{array}\right]=\left[\begin{array}{c}
{\left[\frac{1}{2},+\frac{1}{2}\right\rangle} \\
\left.\frac{1}{2},-\frac{1}{2}\right\rangle
\end{array}\right], \quad P^{-}=\left[\begin{array}{c}
\pi^{-} \\
K^{-}
\end{array}\right]=\left[\begin{array}{l}
|d \bar{u}\rangle \\
|s \bar{u}\rangle
\end{array}\right]=\left[\begin{array}{c}
\left.\frac{1}{2},+\frac{1}{2}\right\rangle \\
\left.\frac{1}{2},-\frac{1}{2}\right\rangle
\end{array}\right] \\
\\
\text { U-spin set of processes: } \\
\bar{D}^{0} \rightarrow \pi^{+} K^{-}, \quad \bar{D}^{0} \rightarrow K^{+} \pi^{-}, \quad \bar{D}^{0} \rightarrow \pi^{+} \pi^{-}, \quad \bar{D}^{0} \rightarrow K^{+} K^{-}
\end{gathered}
$$

Hamiltonian:

$$
\mathcal{H}_{\mathrm{eff}}^{(0)}=\sum_{m=-1}^{1} f_{1, m} H_{m}^{® \odot u=1} \quad f_{0,0}=\frac{V_{c c}^{*} V_{u s}+V_{c d}^{*} V_{u d}}{2} \approx 0
$$

$$
H_{1}^{1}=(\bar{u} s)(\bar{d} c), \quad H_{-1}^{1}=-(\bar{u} d)(\bar{s} c), \quad H_{0}^{1}=\frac{(\bar{u} s)(\bar{s} c)-(\bar{u} d)(\bar{d} c)}{\sqrt{2}}, \begin{gathered}
\text { Approximations } \\
\text { hold up to } 0\left(\lambda^{4}\right), \\
\lambda \approx 0.22
\end{gathered}
$$

$$
f_{1,1}=V_{c d}^{*} V_{u s}, \quad f_{1,-1}=-V_{c s}^{*} V_{u d}, \quad f_{1,0}=\frac{V_{c s}^{*} V_{u s}-V_{c d}^{*} V_{u d}}{\sqrt{2}} \approx \sqrt{2}\left(V_{c s}^{*} V_{u s}\right)
$$

Expansion in the U-spin breaking

- On the fundamental level the U-spin breaking comes from the mass difference between strange and down quarks
- The small parameter is $\epsilon=\frac{m_{s}-m_{d}}{\Lambda_{Q C D}} \sim 0.3$
- The breaking is realized via spurion $H_{\epsilon} \propto \Delta m(s \bar{s}-d \bar{d})$ with $u=1, m=0$

$$
\begin{gathered}
\mathcal{H}_{\mathrm{eff}}^{(0)}=\sum_{m} f_{u, m} H_{m}^{u} \longrightarrow \mathcal{H}_{\mathrm{eff}}=\sum_{m, b} f_{u, m}\left(H_{m}^{u} \otimes H_{\epsilon}^{\otimes b}\right) \quad \text { U-spin breaking } \\
H_{\varepsilon}^{\otimes b} \equiv \underbrace{H_{\varepsilon} \otimes \cdots \otimes H_{\varepsilon}}_{b}
\end{gathered}
$$

Standard approach to U-spin sum rules

Standard approach to writing sum rules

1) Basis rotation: from physical to U-spin basis
2) Wigner-Eckart theorem

Physical and U-spin bases

- Physical basis is the basis in which each particle in the initial/final state is represented by a component of a U-spin multiplet with definite value of U-spin, and the Hamiltonian operators are written as tensor products of operators from U-spin limit Hamiltonian and possibly several insertions of U-spin breaking spurion.

$$
\left.\left.\begin{array}{l}
\mid \text { in }\rangle, \mid \text { out }\rangle \text { and } H_{\text {eff }} \text { are written } \\
\text { as tensor products of U-spin reps }
\end{array} \quad \mathcal{A}_{j}=\langle\text { out }| \mathcal{H}_{\text {eff }} \right\rvert\, \text { in }\right\rangle_{j} \quad \text { information about m-QN of initial, } \quad \text { final state and the Hamiltonian }
$$

j is a multiindex that contains

- U-spin basis is a basis in which initial state, final state and all terms in the Hamiltonian have definite values of total U-spin.

$$
\mathcal{A}_{j}=f_{u, m} A_{j}^{(\text {phys })}=f_{u, m} \sum c_{j i} A_{i}^{(U-\text { spin })}
$$

CKM-free amplitudes in physical basis, often denote as A_{j}

Rotational matrix between
physical and U-spin bases

Amplitudes in U-spin
basis

Wigner-Eckart theorem

Theorem. Matrix elements of spherical tensor operators in the basis of angular momentum eigenstates can be always written as a product of two constants: one that is independent on the orientation of angular momentum and one that is dependent.

Mathematically this statement can be written as follows:


```
number of amplitudes in phys basis > number of RME }->\mathrm{ sum rules
```


Standard approach to writing sum rules

1) Basis rotation: from physical to U-spin basis
2) Wigner-Eckart theorem

Amplitude in the physical basis (states and the Hamiltonian are given by tensor products):

Wigner-Eckart theorem:

$$
\left.\mathcal{A}_{j}=\langle\text { out }| \mathcal{H}_{\text {eff }} \mid \text { in }\right\rangle_{j}
$$

$$
\left\langle u_{2} ; m_{2}\right| O(u, m)\left|u_{1} ; m_{1}\right\rangle=C_{\substack{u_{1}, m_{1} \\ u, m}}^{u_{2}, m_{2}}\left\langle u_{2}\right| O(u)\left|u_{1}\right\rangle
$$

$$
\mathcal{A}_{j}=f_{u, m} \sum_{\alpha} C_{j \alpha} X_{\alpha}
$$

[^0]\[

\mathcal{A}_{j}=f_{u, m} \sum_{\alpha} C_{j \alpha} X_{\alpha} \quad $$
\begin{aligned}
& X_{\alpha} \text { is a short } \\
& \text { notation for reduced } \\
& \text { matrix elements }
\end{aligned}
$$
\]

Example: $C_{b} \rightarrow L_{b} P^{+} P^{-}$

- Below is the matrix $C_{j \alpha}$ up to $b=2$
- To find the sum rules one needs to find the null space of the matrix $C_{j \alpha}^{T}$

Decay amplitude	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}	X_{9}	X_{10}	X_{11}	X_{12}	X_{13}	X_{14}	X_{15}	X_{16}	X_{17}	X_{18}	X_{19}	X_{20}
$A\left(\Lambda_{c}^{+} \rightarrow \Sigma^{+} K^{-} K^{+}\right)$	${ }^{\frac{1}{3}}$	-2	0	$\frac{1}{\sqrt{10}}$	- 1	$\frac{\sqrt{2}}{3}$	0	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$\frac{1}{\sqrt{15}}$	0	$-\frac{1}{2 \sqrt{5}}$	${ }^{\frac{1}{6}}$	${ }^{-\frac{1}{3}}$	0	0	0	0
$A\left(\Xi_{c}^{+} \rightarrow p \pi^{-} \pi^{+}\right)$	${ }^{\frac{1}{3}}$	$-\frac{2}{3}$	0	$-\frac{1}{\sqrt{10}}$	$\frac{1}{3 \sqrt{2}}$	$-\frac{\sqrt{2}}{3}$	0	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$\frac{1}{\sqrt{15}}$	0	$-\frac{1}{2 \sqrt{5}}$	${ }^{\frac{1}{6}}$	$-\frac{1}{3}$	0	0	0	0
$A\left(\Lambda_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} \pi^{+}\right)$	$\frac{1}{3}$	${ }^{\frac{1}{3}}$	$-\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{10}}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$\frac{1}{2 \sqrt{5}}$	$-\frac{1}{2 \sqrt{5}}$	${ }^{\frac{1}{6}}$	${ }^{6}$	$-\frac{1}{2 \sqrt{3}}$	0	0	0
$A\left(\Xi_{c}^{+} \rightarrow p K^{-} K^{+}\right)$	$\frac{1}{3}$	${ }^{\frac{1}{3}}$	$-\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{10}}$	$\frac{1}{3 \sqrt{2}}$	$\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$\frac{1}{2 \sqrt{5}}$	$-\frac{1}{2 \sqrt{5}}$	${ }^{\frac{1}{6}}$	${ }^{\frac{1}{6}}$	$-\frac{1}{2 \sqrt{3}}$	${ }^{0}$	${ }^{0}$	0
$A\left(\Lambda_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} K^{+}\right)$	$\frac{\sqrt{2}}{3}$	$\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	$\frac{2}{3 \sqrt{5}}$	0	0	0	$\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{5}}$	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{3 \sqrt{6}}$	$\frac{1}{3 \sqrt{2}}$
$A\left(\Xi_{c}^{+} \rightarrow p K^{-\pi^{+}}\right)$	$\frac{\sqrt{2}}{3}$	- $3 \sqrt{2}$	$-\frac{1}{\sqrt{6}}$	$-\frac{2}{3 \sqrt{5}}$	0	0	0	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{5}}$	${ }^{0}$	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{3 \sqrt{6}}$	$\frac{1}{3 \sqrt{2}}$
$A\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)$	${ }^{\frac{1}{3}}$	$\frac{1}{3}$	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{10}}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{5}}$	$-\frac{1}{2 \sqrt{5}}$	${ }^{\frac{1}{6}}$	${ }^{\frac{1}{6}}$	$\frac{1}{2 \sqrt{3}}$	0	0	${ }^{0}$
$A\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} K^{+}\right)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{10}}$	$\frac{1}{3 \sqrt{2}}$	$\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{5}}$	$-\frac{1}{2 \sqrt{5}}$	${ }^{\frac{1}{6}}$	${ }^{\frac{1}{6}}$	$\frac{1}{2 \sqrt{3}}$	0	0	0
$A\left(\Lambda_{c}^{+} \rightarrow p K^{-} K^{+}\right)$	$\frac{\sqrt{2}}{3}$	$-\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	$\frac{2}{3 \sqrt{5}}$	0	0	0	$\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{15}}$	$-\frac{1}{3} \sqrt{\frac{2}{5}}$	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{3 \sqrt{6}}$	$-\frac{1}{3 \sqrt{2}}$
$A\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} \pi^{+}\right)$	$\frac{\sqrt{2}}{3}$	-31	$\frac{1}{\sqrt{6}}$	$-\frac{2}{3 \sqrt{5}}$	0	0	0	$-\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{15}}$	$-\frac{1}{3} \sqrt{\frac{2}{5}}$	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{3 \sqrt{6}}$	- $\frac{1}{3 \sqrt{2}}$
$A\left(\Lambda_{c}^{+} \rightarrow p \pi^{-} \pi^{+}\right)$	$\frac{\sqrt{2}}{3}$	$\frac{\sqrt{2}}{3}$,	$\frac{2}{3 \sqrt{5}}$	0	0	0	$-\frac{\sqrt{2}}{3}$	0	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	0	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	0
$A\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} K^{-} K^{+}\right)$	$\frac{\sqrt{2}}{3}$	$\frac{\sqrt{2}}{3}$	0	$-\frac{2}{3 \sqrt{5}}$	0	0	0	$\frac{\sqrt{2}}{3}$	0	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	0	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	0
$A\left(\Lambda_{c}^{+} \rightarrow p \pi^{-} K^{+}\right)$	1	0	0	$\frac{1}{\sqrt{10}}$	$\frac{1}{\sqrt{2}}$	0	0	0	0	$\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2} \sqrt{\frac{3}{5}}$	0	0	$\frac{1}{2 \sqrt{5}}$	$\frac{1}{2}$	0	0			0
${ }^{\text {A }\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} K^{-} \pi^{+}\right)}$	1	0	0	$-\frac{1}{\sqrt{10}}$	$-\frac{1}{\sqrt{2}}$	0	0	0	0	$\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2} \sqrt{\frac{3}{5}}$	0	0	$\frac{1}{2 \sqrt{5}}$	$\frac{1}{2}$	0	0	0	0	0
Note, CKM-free amplitudes																				

Systematics of U-spin Sum Rules

Disclaimer: no proofs, only results. For proofs see arxiv:2205.12975.
*some simplifications and some"-"signs are flowing around. Everything is completely generic in the paper.

$$
0 \rightarrow\left(\frac{1}{2}\right)^{\otimes n}, \quad u=0
$$

U-spin pairs

$$
\begin{aligned}
A_{j} & =\sum_{\alpha} C_{j \alpha} X_{\alpha} \\
\bar{A}_{j} & =\sum_{\alpha}(-1)^{b} C_{j \alpha} X_{o}
\end{aligned}
$$

- amplitude and its U-spin conjugate form a U-spin pair

Note, only n-tuples with the same numbers of " + " and "-" are meaningful

a- and s-type amplitudes

$$
\begin{aligned}
& A_{j}=\sum_{\alpha} C_{j \alpha} X_{\alpha} \\
& \bar{A}_{j}=\sum_{\alpha}(-1)^{b} C_{j \alpha} X_{o}
\end{aligned}
$$

$$
a_{j} \equiv A_{j}-\bar{A}_{j}, \quad s_{j} \equiv A_{j}+\bar{A}_{j}
$$

- all sum rules of the system can be written in terms of a- and s-type amplitudes
- $\boldsymbol{a}_{\boldsymbol{j}}$ contain only the terms that are odd in breaking \boldsymbol{b}
- $\boldsymbol{s}_{\boldsymbol{j}}$ contain only the terms that are even in breaking \boldsymbol{b}

Decoupling!

- a-type sum rules that are valid up to odd order \boldsymbol{b} also hold at $\boldsymbol{b}+\mathbf{1}$
- s-type sum rules that are valid up to even order b also hold at $b+1$
- for any system there are $n / 2$ trivial a-type sum rules at $b=0: a_{j}=0$ [Gronau, arXiv: hep-ph/0008292]
- all sum rules at any order b have the form:

$$
\sum a_{j}=0 \quad \text { and } \quad \sum s_{j}=0
$$

Coordinate notation

Amplitude

$$
A_{j}: \quad \underbrace{(-,-,+,-,+, \ldots,+)}_{n}
$$

To write an amplitude pair in coordinate notation:

- enumerate all positions of n-tuple starting with " 0 "
- the first position is always fixed to be "-" according to our convention
- the coordinate notation is a string of $n / 2-1$ numbers, the positions of "-" signs excluding the first one
- amplitudes in coordinate notation can be viewed as nodes of $d=n / 2-1$ dimensional lattice

Example, $n=8: \quad\left(-,-\frac{-}{2},-\underset{3}{+}, \underset{4}{-}, \underset{6}{+}, \underset{7}{+}, \underset{ }{+}\right)=(1,2,4)$

$$
(1,2,4)=(1,4,2)=(2,1,4)=(2,4,1)=(4,1,2)=(4,2,1)
$$

Diagrammatic approach: $n=6$ example

$$
d=\frac{n}{2}-1=2
$$

- each node corresponds to a U-spin pair
- each node is a trivial a-type sum rule valid up to $b=0$
- the sums of nodes in lines are s-type sum rules valid up to $b=1$
- the sum of all nodes of the lattice is an a-type sum rule valid up to $b=2$

$$
\sum a_{j}=0 \quad \text { and } \quad \sum s_{j}=0
$$

Example: $C_{b} \rightarrow L_{b} P^{+} P^{-}$

Initial and final state multiplets:

$C_{b}=\left[\begin{array}{c}\Lambda_{c}^{+} \\ \Xi_{c}^{+}\end{array}\right]=\left[\begin{array}{c}\mid \text { cud }\rangle \\ \mid \text { cus }\rangle\end{array}\right]=\left[\begin{array}{c}\left.\frac{1}{2},+\frac{1}{2}\right\rangle \\ \left.\frac{1}{2},-\frac{1}{2}\right\rangle\end{array}\right], \quad L_{b}=\left[\begin{array}{c}p \\ \Sigma^{+}\end{array}\right]=\left[\begin{array}{c}|u u d\rangle \\ |u u s\rangle\end{array}\right]=\left[\begin{array}{c}\left|\frac{1}{2},+\frac{1}{2}\right\rangle \\ \left.\frac{1}{2},-\frac{1}{2}\right\rangle\end{array}\right]$
$P^{+}=\left[\begin{array}{c}K^{+} \\ \pi^{+}\end{array}\right]=\left[\begin{array}{c}|u \bar{s}\rangle \\ -|u \bar{d}\rangle\end{array}\right]=\left[\begin{array}{c}\left|\frac{1}{2},+\frac{1}{2}\right\rangle \\ \left.\frac{1}{2},-\frac{1}{2}\right\rangle\end{array}\right], \quad P^{-}=\left[\begin{array}{c}\pi^{-} \\ K^{-}\end{array}\right]=\left[\begin{array}{c}|d \bar{u}\rangle \\ |s \bar{u}\rangle\end{array}\right]=\left[\begin{array}{c}\left|\frac{1}{2},+\frac{1}{2}\right\rangle \\ \left.\frac{1}{2},-\frac{1}{2}\right\rangle\end{array}\right]$

What is next?

- generalize coordinate notation
- generalize the lattice algorithm to account for a triplet representation

Hamiltonian:

$\mathcal{H}_{\text {eff }}^{(0)}=\sum_{m=-1}^{1} f_{1, m} H_{m}^{1}$

Generalization

- Recall that all higher U-spin irreps can be build from doublets. For example, for $C_{b} \rightarrow L_{b} P^{+} P^{-}$we need Hamiltonian with $u=1$:

$$
H_{1}^{1}=|++\rangle, \quad H_{-1}^{1}=|--\rangle, \quad H_{0}^{1}=\frac{|+-\rangle+|-+\rangle}{\sqrt{2}}
$$

- Introduce n, the number of "would be doublets", the minimum number of doublets needed to build all the irreps of the system. For example, for $C_{b} \rightarrow L_{b} P^{+} P^{-} n=6$.

Generalize the coordinate notation as follows:

- order irreps of the system in some arbitrary, but fixed order. For example, for $C_{b} \rightarrow L_{b} P^{+} P^{-}$we can choose $u_{0}=u_{1}=u_{2}=u_{3}=1 / 2, u_{4}=1$.
- we label entries of n-tuple by indices of the corresponding irreps.
- the coordinate notation is then given by $\mathrm{n} / 2-1$ numbers, the positions of "-" signs. For example, for $C_{b} \rightarrow L_{b} P^{+} P^{-}$we can have:

$$
(-\underset{0}{-}, \underset{2}{+}, \underset{3}{+},---)=(4,4) \quad\left(-, \underset{4}{+},-\frac{-}{2}, \underset{3}{+}, \underset{4}{-+}\right)=(2,4)
$$

Generalized lattice

Reminder: $C_{b} \rightarrow L_{b} P^{+} P^{-}$

Decay amplitude	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}	X_{9}	X_{10}	X_{11}	X_{12}	X_{13}	X_{14}	X_{15}	X_{16}	X_{17}	X_{18}	X_{19}	X_{20}
$A\left(\Lambda_{c}^{+} \rightarrow \Sigma^{+} K^{-} K^{+}\right)$	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{\sqrt{10}}$	$-\frac{1}{3 \sqrt{2}}$	$\frac{\sqrt{2}}{3}$	0	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$\frac{1}{\sqrt{15}}$	0	$-\frac{1}{2 \sqrt{5}}$	$\frac{1}{6}$	$-\frac{1}{3}$	0	0	0	0
$A\left(\Xi_{c}^{+} \rightarrow p \pi^{-} \pi^{+}\right)$	$\frac{1}{3}$	$-\frac{2}{3}$	0	$-\frac{1}{\sqrt{10}}$	$\frac{1}{3 \sqrt{2}}$	$-\frac{\sqrt{2}}{3}$	0	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$\frac{1}{\sqrt{15}}$	0	$-\frac{1}{2 \sqrt{5}}$	$\frac{1}{6}$	$-\frac{1}{3}$	0	0	0	0
$A\left(\Lambda_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} \pi^{+}\right)$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{10}}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$\frac{1}{2 \sqrt{5}}$	$-\frac{1}{2 \sqrt{5}}$	$\frac{1}{6}$	$\frac{1}{6}$	$-\frac{1}{2 \sqrt{3}}$	0	0	0
$A\left(\Xi_{c}^{+} \rightarrow p K^{-} K^{+}\right)$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{10}}$	$\frac{1}{3 \sqrt{2}}$	$\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$\frac{1}{2 \sqrt{5}}$	$-\frac{1}{2 \sqrt{5}}$	$\frac{1}{6}$	$\frac{1}{6}$	$-\frac{1}{2 \sqrt{3}}$	0	0	0
$A\left(\Lambda_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} K^{+}\right)$	$\frac{\sqrt{2}}{3}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	$\frac{2}{3 \sqrt{5}}$	0	0	0	$\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{5}}$	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{3 \sqrt{6}}$	$\frac{1}{3 \sqrt{2}}$
$A\left(\Xi_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)$	$\frac{\sqrt{2}}{3}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	$-\frac{2}{3 \sqrt{5}}$	0	0	0	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{5}}$	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{3 \sqrt{6}}$	$\frac{1}{3 \sqrt{2}}$
$A\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{10}}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{5}}$	$-\frac{1}{2 \sqrt{5}}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{2 \sqrt{3}}$	0	0	0
$A\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} K^{+}\right)$	$\frac{1}{3}$	$\frac{1}{3}$	1 $\frac{1}{\sqrt{3}}$	- $\begin{gathered}\sqrt{10} \\ \sqrt{10}\end{gathered}$	$\frac{1}{3 \sqrt{2}}$	3 $\frac{1}{3 \sqrt{2}}$	$\frac{1}{6}$ $\frac{1}{6}$	0	0	$-\frac{1}{2 \sqrt{15}}$	- $\frac{1}{2 \sqrt{15}}$	- $\begin{array}{r}2 \sqrt{15} \\ 2 \sqrt{15}\end{array}$	2 $-\frac{1}{2 \sqrt{5}}$	2 $-\frac{1}{2 \sqrt{5}}$	$\frac{1}{6}$	$\frac{1}{6}$	2 $\frac{1}{3 \sqrt{3}}$	0	0	0
$A\left(\Lambda_{c}^{+} \rightarrow p K^{-} K^{+}\right)$	$\frac{\sqrt{2}}{3}$	$-\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	$\frac{2}{3 \sqrt{5}}$	$3 \sqrt{2}$ 0	$3 \sqrt{2}$ 0	1 0	$\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	$2 \sqrt{15}$ 0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{15}}$	$-\frac{1}{3} \sqrt{\frac{2}{5}}$	0	0	0	$2 \sqrt{3}$ 0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{3 \sqrt{6}}$	$-\frac{1}{3 \sqrt{2}}$
$A\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} \pi^{+}\right)$	$\frac{\sqrt{2}}{3}$	$-\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	$-\frac{2}{3 \sqrt{5}}$	0	0	0	$-\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{15}}$	$-\frac{1}{3} \sqrt{\frac{2}{5}}$	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{3 \sqrt{6}}$	$-\frac{1}{3 \sqrt{2}}$
$A\left(\Lambda_{c}^{+} \rightarrow p \pi^{-} \pi^{+}\right)$	$\frac{\sqrt{2}}{3}$	$\frac{\sqrt{2}}{3}$	0	$\frac{2}{3 \sqrt{5}}$	0	0	0	$-\frac{\sqrt{2}}{3}$	0	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	0	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	0
$A\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} K^{-} K^{+}\right)$	$\frac{\sqrt{2}}{3}$	$\frac{\sqrt{2}}{3}$	0	$-\frac{2}{3 \sqrt{5}}$	0	0	0	$\frac{\sqrt{2}}{3}$	0	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	0	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	0
$A\left(\Lambda_{c}^{+} \rightarrow p \pi^{-} K^{+}\right)$	1	0	0	$\frac{1}{\sqrt{10}}$	$\frac{1}{\sqrt{2}}$	0	0	0	0	$\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2} \sqrt{\frac{3}{5}}$	0	0	$\frac{1}{2 \sqrt{5}}$	$\frac{1}{2}$	0	0	0	0	0
$A\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} K^{-} \pi^{+}\right)$	1	0	0	$-\frac{1}{\sqrt{10}}$	$-\frac{1}{\sqrt{2}}$	0	0	0	0	$\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2} \sqrt{\frac{3}{5}}$	0	0	$\frac{1}{2 \sqrt{5}}$	$\frac{1}{2}$	0	0	0	0	0
Note, CKM-free																				」

Example: $C_{b} \rightarrow L_{b} P^{+} P^{-}$

- Sum rules valid up to $b=0$

$$
a_{(1,2)}=a_{(1,3)}=a_{(1,4)}=a_{(2,3)}=a_{(2,4)}=a_{(3,4)}=a_{(4,4)}=0
$$

- Sum rules valid up to $b=1$

$$
\begin{aligned}
s_{(1,2)}+s_{(1,3)}+\sqrt{2} s_{(1,4)} & =0 \\
s_{(1,2)}+s_{(2,3)}+\sqrt{2} s_{(2,4)} & =0 \\
s_{(1,3)}+s_{(2,3)}+\sqrt{2} s_{(3,4)} & =0 \\
s_{(1,4)}+s_{(2,4)}+s_{(3,4)}+\sqrt{2} s_{(4,4)} & =0
\end{aligned}
$$

- Sum rules valid up to $b=2$

$a_{(1,2)}+a_{(1,3)}+a_{(2,3)}+a_{(4,4)}+\sqrt{2} a_{(1,4)}+\sqrt{2} a_{(2,4)}+\sqrt{2} a_{(3,4)}=0$

Conclusions

What did we do?

- Performed systematic study of U-spin amplitude sum rules \& found reach mathematical structure
- We have a way to write all the sum rules to any order of the symmetry breaking \& know the number of sum rules without any calculation
- New method makes going to higher orders easy
- Uniform form of sum rules for any U-spin system
- Results can be also applied to semileptonic decays (both U-spin and Isospin)

We now fully understand how to derive the higher order amplitude sum rules!

What is next?

- Going from amplitude level to observables - not trivial!
- Systematics of $S U(3)$ flavor sum rules
- Breaking in phase space
- Treatment of resonances

[^0]: number of amplitudes in phys basis number of RME \rightarrow sum rules

