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= Acp(D0 → K+K−) − Acp(D0 → π+π−)
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first
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approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the
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One of the three necessary conditions for baryon asymmetry in the Universe is the nonin-
variance of the fundamental interactions under the simultaneous transformation of the
charge conjugation (C) and parity (P ) operators, referred to as CP violation [1]. The
Cabibbo-Kobayashi-Maskawa (CKM) formalism describes CP violation in the Standard
Model (SM) of particle physics [2,3] through an irreducible phase in the quark-mixing ma-
trix. Over the past sixty years, CP violation has been observed in the K, D, and B-meson
systems by several experiments [4–13]. In the charm quark sector, the recent observation
of CP violation [13] stimulates a wide discussion to understand its nature. Further precise
measurements may resolve the intricate theoretical debate on whether the observed value
is consistent with the SM [14–29]. The discovery measurement of CP violation in neutral
charm meson decays used the di↵erence between two time-integrated CP -violating asym-
metries of Cabibbo-suppressed D0 decays, �ACP = ACP (K�K+)�ACP (⇡�⇡+), found to
be �ACP = (�15.4± 2.9)⇥ 10�4 [13]. The time-integrated CP asymmetry for f = K�K+

and f = ⇡�⇡+ corresponds to

ACP (f) ⌘

R
dt ✏(t)

⇥
�(D0

! f)(t)� �(D0
! f)(t)

⇤
R
dt ✏(t)

⇥
�(D0 ! f)(t) + �(D0 ! f)(t)

⇤ , (1)

where ✏(t) is the reconstruction e�ciency as a function of the D0 decay time and � denotes
the decay rate. This Letter presents measurements of the time-integrated CP asymmetries
in D0

! K�K+ decays. Combining the measurements of ACP (K�K+) and �ACP , it is
possible to quantify the amount of CP violation in the decay amplitude for D0

! K�K+

and D0
! ⇡�⇡+ decays and provide important insight in the breaking of U -spin symmetry.

The mixing in the neutral charm system implies that ACP (f) is the sum of a component
related to the CP violation in the decay amplitude, adf , and a component related to D0–D0

mixing and the interference between mixing and decay, �Yf . Up to first order in the D0

mixing parameters [30–37], the time-integrated CP asymmetry can be written as

ACP (f) ⇡ adf +
htif
⌧D

·�Yf , (2)

where htif is the mean decay time of the D0 mesons in the experimental data sample and
⌧D is the D0 lifetime [38,39].

The neutral charm mesons considered are produced in the strong-interaction decays
D⇤+

! D0⇡+ from D⇤+ mesons created in proton-proton (pp) interactions. The charge of
the accompanying “tagging” pion (⇡+

tag) is used to identify the flavor of the D0 meson at
production. Throughout this Letter, the inclusion of charge conjugation decay modes is
implied, except in the definition of the asymmetries, and D⇤+ and � indicate the D⇤(2010)+

and �(1020) mesons, respectively. The measured asymmetry, A(K�K+), is defined as

A(K�K+) ⌘
N (D⇤+

! D0⇡+)�N
�
D⇤�

! D0⇡��

N (D⇤+ ! D0⇡+) +N
�
D⇤� ! D0⇡�

� , (3)

where N denotes the observed signal yield in the data, and the D0 meson decays into
K�K+. This asymmetry can be approximated as

A(K�K+) ⇡ ACP (K
�K+) + AP(D

⇤+) + AD(⇡
+
tag), (4)

1

motivation

Phys. Rev. Lett.122, 211803 (2019)

Khodjamirian, Petrov,          
Phys. Lett. B 774, 235 (2017)new physics? nonperturbative effects?!

QCD LCSR predictions    (1 order magnitude bellow)ACP ≈ 10−4

CPV on ?D → hhh
searches in many process at LHCb, BESIII, BeleII

is expected soon with LHCb run II
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direct CP violation
  2 amplitudes: SAME final state,  strong (  ) and weak (  ) phases≠ δi ϕi

hf |T |Mi = A1 e
i(�1+�1) +A2 e

i(�2+�2)

hf̄ |T | M̄i = A1 e
i(�1��1) +A2 e

i(�2��2)

weak phase     CKM
strong phase QCD

+

CP violation for charged B decays

➤ Two amplitudes with different weak (φ) and strong (δ) phases

6

q

A(B → f) = A1e
i(δ1+φ1) +A2e

i(δ2+φ2)

A(B̄ → f̄) = A1e
i(δ1−φ1) +A2e

i(δ2−φ2)

|AB→f |2 − |AB̄→f̄ |2 = −4A1A2 sin(δ1 − δ2) sin(φ1 − φ2)

➤ CP violation: interfering amplitudes with different weak and strong phases

φ1
φ2

➤ Weak phases: CKM matrix elements 

➤ Strong phases: penguin diagrams and hadronic final state interactions such as 
ππ → KK rescattering 
Not well described in literature

B → ! ! !
 BSS model Bander Silverman & Soni PRL 43 (1979) 242

CP violation for charged B decays

➤ Two amplitudes with different weak (φ) and strong (δ) phases

6

q

A(B → f) = A1e
i(δ1+φ1) +A2e

i(δ2+φ2)

A(B̄ → f̄) = A1e
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φ1
φ2

➤ Weak phases: CKM matrix elements 

➤ Strong phases: penguin diagrams and hadronic final state interactions such as 
ππ → KK rescattering 
Not well described in literature

B → ! ! !

+

not enough for CPV 

hadronic interactions are natural sources of strong phase!

ACP =
�(M ! f)� �(M̄ ! f̄)

�(M ! f) + �(M̄ ! f̄)

�(M ! f)� �(M̄ ! f̄) = |hf |T |Mi|2 � |hf̄ |T | M̄i|2 = �4A1A2 sin(�1 � �2) sin(�1 � �2)��CP =
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CPV on heavy meson decays
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represented by a single exponential, and partially-reconstructed B ! J/ K⇤(892)±,0

decay, described by an ARGUS function. The B± ! J/ K± model is parameterised with
the same function used for the B±! h±h0+h0� channels. Systematic uncertainties of the
raw asymmetry are obtained by varying the signal fit model, leaving the background
asymmetry to vary in the fit, and looking at variations from di↵erent trigger samples
of the data. The total systematic uncertainty is taken as the sum in quadrature of the
individual uncertainties. The raw asymmetry of the control channel is measured to be
Araw(B± ! J/ K±) = �0.0118± 0.0008 +0.0007

�0.0008, where the first uncertainty is statistical
and the second systematic.

To obtain the B± production asymmetry, this raw asymmetry is corrected by its
e�ciency ratio, calculated using a sample of simulated events produced without any B±

production asymmetry, to obtain Acorr
raw as before, and the world average value of the

B± ! J/ K± CP asymmetry, 0.0018± 0.0030 [25], is subtracted

AP = Acorr
raw (B

± ! J/ K±)� ACP (B
± ! J/ K±). (5)

The measured B meson production asymmetry is AP = �0.0070± 0.0008 +0.0007
�0.0008 ± 0.0030,

where the last uncertainty is due to the CP asymmetry of B± ! J/ K± decays [25].
Finally, the CP asymmetries of the four B±! h±h0+h0� modes are measured to be

ACP (B
± ! K±⇡+⇡�) = +0.011± 0.002,

ACP (B
± ! K±K+K�) = �0.037± 0.002,

ACP (B
± ! ⇡±⇡+⇡�) = +0.080± 0.004,

ACP (B
± ! ⇡±K+K�) = �0.114± 0.007,

where the statistical uncertainties are obtained from propagation of Eq. 4, assuming no
correlation term.

6 Systematic uncertainties and results

Several sources of systematic uncertainties are considered and can be broadly divided
into three groups: potential mismodelling of the invariant mass distributions, phase-space
e�ciency corrections and knowledge of the B± production asymmetry. The systematic
uncertainties due to the mass fit models are quantified by taking the di↵erence in the
CP asymmetry resulting from variations of the model. The alternative fits have good
quality and describe the data accurately. To estimate the uncertainty due to the choice
of the signal mass function, the initial model is replaced by an alternative empirical
distribution [27].

The contribution associated with the peaking background fractions reflects the uncer-
tainties in the expected yields determined from simulation and it is evaluated by varying
the fractions within their statistical uncertainties. In addition, the systematic uncertainty
associated to the fact that the peaking background asymmetry is fixed to zero is estimated
by setting it to the value obtained in the previous analysis [6], within the corresponding
uncertainties. The uncertainty due to the choice of an exponential function to model the
combinatorial component is estimated by repeating the fit using a second order polynomial
function.

6

CPV in  B± ! h±h�h+

 arXiv:2206.07622 PRD 2022 XX

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-EP-2016-176
LHCb-PAPER-2016-022

July 20, 2016

Study of B+
c decays to the K+K�⇡+

final state and evidence for the decay

B+
c ! �c0⇡

+

The LHCb collaboration†

Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.

Submitted to Phys. Rev. Lett.

c� CERN on behalf of the LHCb collaboration, license CC-BY-4.0.

†Authors are listed at the end of this article.
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rescattering as a CPV mechanism

CPT must be preserved

CPV in one channel should be compensated by 
another,  same quantum #,  with opposite sign

X
��CP = 0

⇡⇡ ! KK   rescattering 

Frederico, Bediaga, Lourenço 
PRD89(2014)094013 

   CPV at [1 -1.6] GeV
  

CPT Invariance
CPT invariance  ⇒ Same lifetime and same mass to particle and anti-particle. 

Г
total 

=   Г
1 
+  Г

2
 
 
+   Г

3 
+   Г
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+  Г

5 
+  Г
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+ .................

Г
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2
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+ .................

_            _       _          _         _       _        _     

Lifetime     τ = 1 / Г
total

 = 1 / Г
total

 

 CP   violation  ⇒ Г
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  >  Г

1
.

 CPT conservation:
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+ .......... <  Г
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In a exact proportion. 

 It  is necessary to include  fnal state interaction in the CP violation calculation. 

 _         _         _        _       _ LHCb run 1 projections

Kππ KKK

πππ KKπ
implemented in LHCb 
amplitude analysis:
B± ! ⇡�⇡+⇡±

<latexit sha1_base64="QT/dTZRtQntEL7/VXtJkJregYMw=">AAACBHicbVDLSgMxFM34rPU16rKbYBEEscxUQVdSdOOygn1AZ1oyaaYNTWZCkhHK0IUbf8WNC0Xc+hHu/Bsz7Sy09UAuh3Pu5eaeQDCqtON8W0vLK6tr64WN4ubW9s6uvbffVHEiMWngmMWyHSBFGI1IQ1PNSFtIgnjASCsY3WR+64FIRePoXo8F8TkaRDSkGGkj9ezSddcTHHo6hp6g3dOsnGTFqD277FScKeAicXNSBjnqPfvL68c44STSmCGlOq4jtJ8iqSlmZFL0EkUEwiM0IB1DI8SJ8tPpERN4ZJQ+DGNpXqThVP09kSKu1JgHppMjPVTzXib+53USHV76KY1EokmEZ4vChEFzcpYI7FNJsGZjQxCW1PwV4iGSCGuTW9GE4M6fvEia1Yp7VqnenZdrV3kcBVACh+AYuOAC1MAtqIMGwOARPINX8GY9WS/Wu/Uxa12y8pkD8AfW5w9/jZdb</latexit>

B± ! ⇡±K�K+
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PRL 123 (2019) 231802

PRD101 (2020) 012006;  
PRL 124 (2020) 031801
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FSI as source of CP asymmetry in D decays

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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D0 ! K+K�

FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

single cabibbo suppressed decays 2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
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FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =
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B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·
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CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
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pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the
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Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first
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approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

= Acp(D0 → K+K−) − Acp(D0 → π+π−)

how to explain the CPV in charm?

what about strong phases if not from penguin? hadronic FSI
Grossman, Schacht JHEP07 20 (2019); Schacht, Soni PLB825 136855 (2022).
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first
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approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

known from 80’s 
experiment

  and  can decay to  and KKD D̄ ππ

CPT invariance relates channels with same quantum numbers

Watson theorem relates the  strong phase from the rescattering 
process to the decay amplitudes

the unitarity of the strong S-matrix.

build amplitudes decays implying three constraints:

X
��CP = 0

arxiv 2203.04056v2
Bediaga, Frederico, PCM

https://arxiv.org/abs/2203.04056v2


Patricia MagalhãesFSI to enhance  CPV in charm

8

LHCb implications 2022

FSI and CPT 
FSI in                      and                        can include multiple mesons

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

general S-matrix can mix many FSI states

CPT constraint restricted to the two-channels:

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

two pions cannot go to three pions due to G-parity

ignore four pion coupling to the 2M channel based on 1/Nc counting

ignore  channel once their coupling to the  channel are suppressed 
with respect to  .

ηη ππ
KK̄

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:
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where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
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one of them is the relative sign between the ACP ’s in
these two decay channels.
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suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
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explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
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reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
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perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.
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Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

assume only 2 coupled-channels to FSI: ππ, KK̄

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =
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where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
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ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.
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0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
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1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡
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SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =
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S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·
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CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.
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(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =
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SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and
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SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:
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where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
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sider only S2M,2M restricted to (⇡⇡, KK) channels. The
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constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.
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suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
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explicitly illustrated in Fig. 1.
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So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
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decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

dressing the weak tree topology with FSI

  D0 → KK

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

+

u d

c
Vcd d

_

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

+
V ⇤

us

u
s

c
s
_

Vcs

u
D0 ! ⇡+⇡�

D0

D0

_

D0 ! K+K�

FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

 KK → KK +

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

 ππ → KK⊗ ⊗

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2
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where �0

0
= �⇡⇡ + �KK , q⇡ = 1
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p
s � 4m2

⇡ and qK =
1
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p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
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where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:
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where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio
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ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
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D0 → ππ

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

 ππ → ππ +
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

 KK → ππ⊗ ⊗
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we can use CERN-Munich data from 80’s

 ,  and  are the same independent of the initial processδππ δKK δππ→KK
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FIG. 1. Comparison of solutions I, II and III (Tables I,
II, III) versus data. The gray, blue and green bands corre-
spond to the uncertainty of solutions I, II and III, respectively.
Above 1.4 GeV, solution I fits the data of [5, 64] (solid circles)
and [2, 3] (solid squares), solution II fits [4] (solid diamonds)
and solution III fits the updated (- + -) data from [58] (hol-
low diamonds). The data coming from [9] (empty squares)
and [65] (empty circles) for the phase shift and [66] (solid tri-
angle up), [67](solid triangle down), [6] (empty squares), [65]
(empty circles), [68] (empty triangle up) and [69] (empty tri-
angle down) for the elasticity are just shown for comparison.
The red-dashed vertical line separates the region where the
fits describe both data and dispersion relation results, from
the region above, where the parameterization is just fitted to
data. The blue-dotted vertical line stands at the energy of
the last data point of solutions II and III.

nance.

Concerning the compatibility with the dispersive re-
sults in [28], we show in Fig. 2 the comparison between
the CFD analysis of [28] and our solution I. Up to 1.4
GeV it is enough to refer to solution I as the global so-
lution, because it is the simplest and all them are al-
most indistinguishable below 1.4 GeV. The relevant ob-
servation from Fig. 2 is that the piecewise CFD and our
new parameterization look almost the same below the
KK̄ threshold and are also very similar and compatible
above it. The sharp structure in the region between the
two vertical lines in Fig. 2 is dominated by the f0(980)

TABLE I. Fit parameters of the global parameterization for
the S0-wave solution I. sp is the f0(980) pole position from
the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.2±0.3 K0 5.25±0.28 d0 -5.4±3.7
B1 -0.9±1.1 K1 -4.40±0.16 d1 ≡ 0
B2 15.9±2.7 K2 0.175±0.155 d2 ≡ 0
B3 -5.7±3.1 K3 -0.28±0.06 ε2 10.3±4.0
B4 -22.5±3.7 ε3 ≡ 0
B5 6.9±4.8 Re

√
sp 0.996±7 GeV ε4 ≡ 0

z0 0.137±0.028 GeV Im
√
sp -0.025±8 GeV

TABLE II. Fit parameters of the global parameterization for
the S0-wave solution II. sp is the f0(980) pole position from
the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.2±0.3 K0 4.97±0.08 d0 -16.5±6.2
B1 -1.2±0.8 K1 -4.72±0.08 d1 ≡ 0
B2 15.5±1.5 K2 -0.04±0.18 d2 ≡ 0
B3 -6.0±1.5 K3 -0.31±0.04 ε2 160.8±2.4
B4 -21.4±1.3 ε3 -715.5±8.5
B5 6.3±4.5 Re

√
sp 0.996±7 GeV ε4 -937.3±25.0

z0 0.135±0.031 GeV Im
√
sp -0.025±8 GeV

TABLE III. Fit parameters of the global parameterization
for the S0-wave solution III. sp is the f0(980) pole position
from the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.3±0.3 K0 5.26±0.08 d0 73.4±1.5
B1 -1.0±0.9 K1 -4.64±0.04 d1 27.3±0.4
B2 15.7±1.7 K2 0.10±0.07 d2 -0.3±0.2
B3 -6.0±1.6 K3 -0.29±0.04 ε2 171.6±2.0
B4 -22.1±1.2 ε3 -1038.8±8.3
B5 7.1±2.8 Re

√
sp 0.996±7 GeV ε4 1704.7±30.8

z0 0.136±0.035 GeV Im
√
sp -0.025±8 GeV

contribution that we have factored out explicitly in our
global parameterization.
All in all, this new parameterization is consistent with

the GKPY dispersive data analysis, its output in the
complex plane, as well as with the threshold parame-
ters, the Adler zero, the positions of both σ/f0(500) and
f0(980) poles, and the inelastic region up to 1.43 GeV,
which was consistent with Forward Dispersion Relations.
This consistency is illustrated in Table IV where we show
the χ2/d.o.f. ≡ χ̂2 of our fit with the new parameteriza-
tion in different regions: χ̂2

1 from ππ to KK̄ threshold,
χ̂2
2 from KK̄ threshold to 1.4 GeV, χ̂2

C
in the complex

plane within the applicability region, χ̂2
δ for the phase

above 1.4 GeV and χ̂2
η for the elasticity above 1.4 GeV.

All of them are smaller or equal to one for any of our
three solutions.
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Concerning the compatibility with the dispersive re-
sults in [28], we show in Fig. 2 the comparison between
the CFD analysis of [28] and our solution I. Up to 1.4
GeV it is enough to refer to solution I as the global so-
lution, because it is the simplest and all them are al-
most indistinguishable below 1.4 GeV. The relevant ob-
servation from Fig. 2 is that the piecewise CFD and our
new parameterization look almost the same below the
KK̄ threshold and are also very similar and compatible
above it. The sharp structure in the region between the
two vertical lines in Fig. 2 is dominated by the f0(980)

TABLE I. Fit parameters of the global parameterization for
the S0-wave solution I. sp is the f0(980) pole position from
the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.2±0.3 K0 5.25±0.28 d0 -5.4±3.7
B1 -0.9±1.1 K1 -4.40±0.16 d1 ≡ 0
B2 15.9±2.7 K2 0.175±0.155 d2 ≡ 0
B3 -5.7±3.1 K3 -0.28±0.06 ε2 10.3±4.0
B4 -22.5±3.7 ε3 ≡ 0
B5 6.9±4.8 Re

√
sp 0.996±7 GeV ε4 ≡ 0
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TABLE II. Fit parameters of the global parameterization for
the S0-wave solution II. sp is the f0(980) pole position from
the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.2±0.3 K0 4.97±0.08 d0 -16.5±6.2
B1 -1.2±0.8 K1 -4.72±0.08 d1 ≡ 0
B2 15.5±1.5 K2 -0.04±0.18 d2 ≡ 0
B3 -6.0±1.5 K3 -0.31±0.04 ε2 160.8±2.4
B4 -21.4±1.3 ε3 -715.5±8.5
B5 6.3±4.5 Re

√
sp 0.996±7 GeV ε4 -937.3±25.0

z0 0.135±0.031 GeV Im
√
sp -0.025±8 GeV

TABLE III. Fit parameters of the global parameterization
for the S0-wave solution III. sp is the f0(980) pole position
from the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.3±0.3 K0 5.26±0.08 d0 73.4±1.5
B1 -1.0±0.9 K1 -4.64±0.04 d1 27.3±0.4
B2 15.7±1.7 K2 0.10±0.07 d2 -0.3±0.2
B3 -6.0±1.6 K3 -0.29±0.04 ε2 171.6±2.0
B4 -22.1±1.2 ε3 -1038.8±8.3
B5 7.1±2.8 Re

√
sp 0.996±7 GeV ε4 1704.7±30.8

z0 0.136±0.035 GeV Im
√
sp -0.025±8 GeV

contribution that we have factored out explicitly in our
global parameterization.
All in all, this new parameterization is consistent with

the GKPY dispersive data analysis, its output in the
complex plane, as well as with the threshold parame-
ters, the Adler zero, the positions of both σ/f0(500) and
f0(980) poles, and the inelastic region up to 1.43 GeV,
which was consistent with Forward Dispersion Relations.
This consistency is illustrated in Table IV where we show
the χ2/d.o.f. ≡ χ̂2 of our fit with the new parameteriza-
tion in different regions: χ̂2

1 from ππ to KK̄ threshold,
χ̂2
2 from KK̄ threshold to 1.4 GeV, χ̂2

C
in the complex

plane within the applicability region, χ̂2
δ for the phase

above 1.4 GeV and χ̂2
η for the elasticity above 1.4 GeV.

All of them are smaller or equal to one for any of our
three solutions.
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sets of phase shifts for the S0 wave, leaving only a few
solutions which are consistent with dispersion relations
(and, as it turns out, very similar one to the other, as
discussed in Sec. IV).

When dealing with different data sets one has to weigh
not only the data on a single experiment but one has to take
into account the reliability of the experiments themselves.
So we have done for many waves, where some clearly
faulty experimental data have only been considered to
conservatively enlarge the uncertainties. Concerning the
most controversial S0 wave, we have used the very reliable
data coming from Kl4 and K ! !! decays; to this we add
the results from other experimental analyses of !! scat-
tering available in the literature, either separately or com-
bined in a global fit. We then use forward dispersion
relations to test consistency of the several sets of data.

The present study should therefore be considered, in
particular, as a guideline to the consistency (especially
with forward dispersion relations) of the various data sets.

Next, we use these dispersion relations to improve the
central values of the parameters of the fits given in Sec. II.
The result of such analysis (Sec. IV) is that one can get a
precise description for all waves, consistent with forward
dispersion relations up to s1=2 ! 0:95 GeV and a bit less so
( & 1:5" level) in the whole energy range, 2M! " s1=2 "
1:42 GeV, and even below threshold, down to s1=2 #
!!!

2
p
M!. The greater uncertainties affect the S0 wave for

s1=2 > 0:95 GeV, a not unexpected feature, and, to a lesser
extent, the P wave above 1:15 GeV.

In Sec. V we verify that the scattering amplitudes we
have obtained, which were shown to satisfy s$ u crossing
(by checking the dispersion relations), also verify s$ t
crossing, in that they satisfy two typical crossing sum rules.
In Sec. VI we use the scattering amplitudes we have
determined and the method of the Froissart-Gribov repre-
sentation to calculate a number of low energy parameters
for P, D and some higher waves which, in particular,
provides further consistency tests. We also evaluate, in
Sec. VII, the important quantities %a&0'0 $ a&2'0 (2 and
#&0'
0 &m2

K' $ #&2'
0 &m2

K' for which we find

%a&0'0 $ a&2'0 (2 # &0:077) 0:008'M$2
! ;

#&0'
0 &m2

K' $ #&2'0 &m2
K' # 52:9) 1:6o:

Also in Sec. VII we compare our results with those ob-
tained by other authors using Roy equations and ch.p.t.
However, in the present paper we will not address our-
selves to the question of the chiral perturbation theory
analysis of our !! amplitudes.

Our paper is finished in Sec. VIII with a brief summary,
as well as with a few appendixes. In Appendix A, we
collect the formulas obtained with our best fits. In
Appendix B we give a brief discussion of the Regge for-
mulas used; in particular, we present an improved evalu-
ation of the parameters for rho exchange. Appendix C is

devoted to a discussion of the shortcomings of experimen-
tal phase shift analyses above !1:4 GeV, which justifies
our preference for using Regge formulas in this energy
region.

We end this introduction with a few words on notation
and normalization conventions. We will here denote am-
plitudes with a fixed value of isospin, say I, in channel s,
simply byF&I', f&I'l ; we will specify the channel, F&Is', when
there is danger of confusion. For amplitudes with fixed
isospin in channel t, we write explicitly F&It'.

For scattering amplitudes with well-defined isospin in
channel s, Is, we write

F&Is'&s; t' # 2*
X

l#even

&2l+ 1'Pl&cos$'f&Is'l &s'; Is # even;

F&Is'&s; t' # 2*
X

l#odd

&2l+ 1'Pl&cos$'f&Is'l &s'; Is# odd;

f&I'l &s' # 2s1=2

!k
f̂&I'l ; f̂&I'l # sin#&I'l &s'ei#&I'l &s': (1.1a)

The last formula is only valid when only the elastic channel
is open. When inelastic channels open this equation is no
more valid, but one can still write

f̂ l&s' #
"
%le2i#l $ 1

2i

#

: (1.1b)

The factor 2 in the first formulas in (1.1a) is due to Bose
statistics. Because of this, even waves only exist with
isospin I # 0; 2 and odd waves must necessarily have
isospin I # 1. For this reason, we will often omit the
isospin index for odd waves, writing e.g. f1, f3 instead
of f&1'1 , f&1'3 . Another convenient simplification that we use
here is to denote the!! partial waves by S0, S2, P, D0, D2,
F, etc., in self-explanatory notation.

The quantity %l, called the inelasticity parameter for
wave l, is positive and smaller than or equal to unity. The
elastic and inelastic cross sections, for a given wave, are
given in terms of #l and %l by

"el
l # 1

2

$
1+ %2

l

2
$ % cos2#l

%

; "inel
l # 1$ %2

l

4
;

(1.2)

"el
l ;"

inel
l are defined so that, for collision of particles A, B

(assumed distinguishable),

"tot #
4!2

&1=2&s;mA;mB'
2s1=2

!k

X

l

&2l+ 1'%"el
l + "inel

l (:

(1.3)

When neglecting isospin violations (which we do
unless explicitly stated otherwise) we will take the con-
vention of approximating the pion mass by M! # m!) ’
139:57 MeV. We also define scattering lengths, a&I'l , and
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amplitude

ππ → ππ

Longacre et al., Phys. Lett. B 177, 223 (1986). 
 Hyams et al., Nucl. Phys. B 100, 205 (1975) , 

Ochs, J. Phys. G 40, 043001 (2013) 

elasticity drops dramatically near      strongly couple KK̄
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Watson theorem

  ππ → KK

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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D0 ! ⇡+⇡�
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_

D0 ! K+K�

FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

 Cohen et al., Phys. Rev. D 22, 2595 (1980) 
Etkin et al., Phys. Rev. D 25, 1786 (1982)
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and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:
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f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.
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real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
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In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
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from the amplitudes given in Eq. (8). By taking into
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obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
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process, all the hadronic FSI comes from S-matrix ele-
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Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
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(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

+

u d

c
Vcd d

_

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

+
V ⇤

us

u
s

c
s
_

Vcs

u
D0 ! ⇡+⇡�

D0

D0

_

D0 ! K+K�

FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

Pelaez and Rodas, Eur. Phys. J. C 78, 897 (2018)  
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TABLE I. Values of cos� extracted from updated CERN-
Munich data for �⇡⇡ [32] and using � = �0

0 � 2�⇡⇡ with
�0
0 = �KK + �⇡⇡ from [27]. At

p
s = 1.846 GeV, �⇡⇡ comes

from the extrapolation given in [28] (Solution II, which is
consistent with the data [26] and [32]).

p
s [GeV] cos�

1.58 0.989 ± 0.149

1.62 0.994 ± 0.105

1.66 0.999 ± 0.040

1.70 0.987 ± 0.160

1.74 0.999 ± 0.048

1.78 0.999 ± 0.037

1.846 0.987 ± 0.175

data set as proposed in [28]. Note that at this energy the
parametrization have a large error bar.

The CP asymmetries are estimated from Eq. (12),
using the values from The Review of Particle Physics
(2021) [25] for the CKM parameters: � = 0.22650 ±
0.00048, � = 1.196+0.045

�0.043, and the branching fractions:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(14)

Furthermore, for the parameters of the o↵-diagonal ⇡⇡ !
KK S-matrix element at the D0 mass we used: ⌘ ⇡
0.973 [27], as argued before, which results in

ACP (⇡⇡) = (1.90 ± 0.53) ⇥ 10�3 ,

ACP (KK) = �(0.68 ± 0.19) ⇥ 10�3 .
(15)

With the above values we find the present theoretical
value for the di↵erence between the ACP ’s to be:

�Ath
CP = �(2.58 ± 0.72) ⇥ 10�3 . (16)

The agreement between our theoretical estimate (16),
the recent experimental value from the LHCb collabo-
ration (1) and the world average (2) leaves little room to
new physics contributions to �ACP in charm.

As a matter of fact, relying only on the CPT constraint
restricted to two channels and given in Eq. (9), one can
easily obtain the CP asymmetries as:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(17)

which is also valid for the ACP ’s from Eq. (12). There-
fore, using only experimental inputs for �ACP and Br’s
we can access the ACP ’s for the individual channels:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 ,
(18)

which is within the interval of our theory based re-
sults (15). These values are compatible with other recent
calculations [33, 34] based on di↵erent methods.
Summary. We predict the ACP ’s for the D0 ! ⇡�⇡+

and D̄0 ! K�K+, resulting in a �ACP compatible with
the recently observed LHCb value [6], relying absolutely
in SM physics and at this level no BSM e↵ects should
be called to explain the experimental result. The key in-
gredient to produce the CP violation is the coupling be-
tween the ⇡+⇡� and K+K� channels as the source of the
strong phase introduced in a CPT invariant framework.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements for these decays.

It is expected that ACP (D0 ! ⇡�⇡+) and ACP (D0 !
K�K+) will be soon measured by the LHCb collabora-
tion, which will put a straight constraint to the validity
of the CPT condition for only these two channels:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

On the other side, if our predictions are verified, the
forthcoming data could constrain the phase-shift di↵er-
ence in the elastic ⇡+⇡� and K+K� channels at the D0

mass.
Furthermore, the same rescattering mechanism can

contribute to CPV in three-body SCS D decays. In
fact, one expect that the CP asymmetry must be en-
hanced looking to the three-body D+ ! ⇡+⇡�⇡+ and
D+ ! K+K�⇡+ phase-space distribution [35], where
the ⇡+⇡� ! K+K� rescattering is relevant in a large
amount of the phase space available to K+K�, as seen
in Fig. 3. This is left for a future study.

In conclusion, we found that there is no much room to
observe BSM physics in the singly Cabibbo suppressed
channels D0 ! ⇡�⇡+ and D0 ! K�K+. However, as it
was pointed out several times [1, 4], the SM gives almost
no contribution to CPV in double Cabibbo suppressed
(DCS) decays. If CPV is observed in DCS modes this
will establish the intervention of New Physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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tion in accordance with the Watson theorem, besides the
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In conclusion, we found that there is no much room to
observe BSM physics in the singly Cabibbo suppressed
channels D0 ! ⇡�⇡+ and D0 ! K�K+. However, as it
was pointed out several times [1, 4], the SM gives almost
no contribution to CPV in double Cabibbo suppressed
(DCS) decays. If CPV is observed in DCS modes this
will establish the intervention of New Physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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 Partial decay widths 
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and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

=    ΔΓf /2Γf
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and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1
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p
s � 4m2

⇡ and qK =
1
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p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:
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ud]
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1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:
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cdVud|2 a2
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(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
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Br(D0 ! K+K�)
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(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)
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,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

the sign of  is determined by the CKM elements and the S-wave phase-shiftsΔΓf

3

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡ and
�KK the elastic phase-shifts, and 0  ⌘  1 the absorp-
tion parameter. To quantify ⌘, we used the parametriza-
tion of the o↵-diagonal S-matrix element from [36, 37]:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�

0
0(s) ⇥(s � 4m2

K
) , (6)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡
and qK =

1

2

p
s � 4m2

K
. From Fig. 3 one finds that, at the D0 mass

|g0

0
(M2

D
)| = 0.125 ± 0.025, which from [36, 37] givesp

1 � ⌘2 = 0.229 ± 0.046 and ⌘ = 0.973 ± 0.011. Also,
we have �0

0
(M2

D
) = 343o ± 8o.

Summarizing our assumptions up to this point, we: i)
ignored the sub-leading diagrams of the amplitude de-
cay; ii) considered the dominant FSI in ⇡⇡ to be the KK
channel; and iii) used a data driven approach to extract
both ⇡⇡ and ⇡⇡ ! KK magnitude and phases at the D0

mass energy. With these assumptions, the total D0 de-
cay amplitudes produced by the tree diagrams of Fig. 2
are dressed by the hadronic FSI and receive contribu-
tion from both diagonal and o↵-diagonal S-matrix ele-
ments from Eq. (5). The resulting amplitude is denoted
by AD0!f , with f labeling the 0+ final states restricted
to the f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
cs

Vus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cd

Vud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cd

Vud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cs

Vus aKK .

(7)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements are their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any strong
or weak phases, due to the tree level nature of the decay
process. All of the hadronic FSI comes from S-matrix
elements that has been factor out and included in the D0

and D̄0 decay amplitudes. Eq. (7) is equivalent to the
leading order amplitudes due to the strong interaction
derived in [24] and based on Refs. [5, 20].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (8)

which is fulfilled by the proposed decay amplitudes of
Eq. (7) and their charge conjugate ones. It is worth
noting that the essential ingredients to derive the re-
sult shown in (8) are the unitarity of the S-matrix of the
two-channel model and the weak phase assigned by the
products of the CKM matrix elements. One could write
the analogous of Eq. (8) including more strongly coupled
channels. However, as we argued before, we want to in-
vestigate the main mechanism and so we keep only the
dominant (⇡⇡, KK) channels.

The identity expressed by (8) illustrates how the so
called “compound” CP asymmetry [38, 39], including the

e↵ects of the weak and strong phases, has the important
property of the two terms cancelling one other, when
summed over all final states, in order to satisfy the CPT
condition.
CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.

The CPV di↵erence in the partial decay widths of D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes in Eq. (7) and those for
the charge conjugate state, we get the following:

��⇡⇡ = ���KK = 4 Im[VcsV
⇤
us

V ⇤
cd

Vud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(9)

where � = �KK � �⇡⇡, remembering that a⇡⇡ and aKK

are real and have the same sign. Note that the sign of
��f is determined by the elements of the CKM matrix
and the elastic S-wave phase-shifts in the two final state
channels.

In order to obtain the ACP ’s, one has to estimate a⇡⇡

and aKK , which can be done using the partial widths of
the decays D0 ! ⇡+⇡� and D0 ! K+K�, extracted
from the amplitudes given in Eq. (7). Assuming thatp

1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK . (10)

If we used the branching fraction information Br(D0 !
⇡⇡) and Br(D0 ! KK), we can determine a⇡⇡ and
aKK with Eq. (10). The CP asymmetries are then, from
Eqs. (9) and (3), given by:

ACP (f) ⇡ ±2
Im[VcsV ⇤

us
V ⇤

cd
Vud]

|VcsV ⇤
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Vud|

⇥ ⌘�1
p

1 � ⌘2 cos �

"
Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,

(11)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively, and the CKM factors ratio reads [33]

Im[VcsV ⇤
us

V ⇤
cd

Vud]

|VcsV ⇤
us

V ⇤
cd

Vud|
= (6.02 ± 0.32) ⇥ 10�4 . (12)

Estimation of the CP asymmetries. Inspecting the CP
asymmetry in Eq. (11), the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could directly
inspect the phase data at this point. However, di↵er-
ently from ⇡⇡, there is no KK̄ scattering data from
meson-nucleon interactions. Without precise knowledge
of the KK̄ phase, we use �KK � �⇡⇡ = (�KK + �⇡⇡) �
2�⇡⇡ = �0

0
� 2�⇡⇡. From ⇡⇡ scattering data [35, 40]

and the ⇡⇡ ! KK phase, given in Fig. 3, we obtained
cos(�KK � �⇡⇡) . 1 in the high mass region. This can
be verified from 1.58 to 1.78 GeV, the upper limit of
the data [35]. The cos �’s extracted from the updated
CERN-Munich data for �⇡⇡ [40] and �0

0
= �KK + �⇡⇡

from [36] are very close to 1. At MD0 energy, �⇡⇡

comes from the extrapolation given in [37] (Solution II,

need to quantify  and : aππ aKK

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
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0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �
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where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

at  massD0

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
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s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:
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For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
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By considering the amplitudes (8) and the ones for the
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where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that
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1 � ⌘2 << 1 at the D0 mass, we have:
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In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:
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where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio
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obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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S-matrix elements from Eq. (6). The resulting ampli-
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For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:
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f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.
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where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
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from the amplitudes given in Eq. (8). By taking into
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In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:
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where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio
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obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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TABLE I. Values of cos� extracted from updated CERN-
Munich data for �⇡⇡ [32] and using � = �0

0 � 2�⇡⇡ with
�0
0 = �KK + �⇡⇡ from [27]. At

p
s = 1.846 GeV, �⇡⇡ comes

from the extrapolation given in [28] (Solution II, which is
consistent with the data [26] and [32]).

p
s [GeV] cos�

1.58 0.989 ± 0.149

1.62 0.994 ± 0.105

1.66 0.999 ± 0.040

1.70 0.987 ± 0.160

1.74 0.999 ± 0.048

1.78 0.999 ± 0.037

1.846 0.987 ± 0.175

data set as proposed in [28]. Note that at this energy the
parametrization have a large error bar.

The CP asymmetries are estimated from Eq. (12),
using the values from The Review of Particle Physics
(2021) [25] for the CKM parameters: � = 0.22650 ±
0.00048, � = 1.196+0.045

�0.043, and the branching fractions:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(14)

Furthermore, for the parameters of the o↵-diagonal ⇡⇡ !
KK S-matrix element at the D0 mass we used: ⌘ ⇡
0.973 [27], as argued before, which results in

ACP (⇡⇡) = (1.90 ± 0.53) ⇥ 10�3 ,

ACP (KK) = �(0.68 ± 0.19) ⇥ 10�3 .
(15)

With the above values we find the present theoretical
value for the di↵erence between the ACP ’s to be:

�Ath
CP = �(2.58 ± 0.72) ⇥ 10�3 . (16)

The agreement between our theoretical estimate (16),
the recent experimental value from the LHCb collabo-
ration (1) and the world average (2) leaves little room to
new physics contributions to �ACP in charm.

As a matter of fact, relying only on the CPT constraint
restricted to two channels and given in Eq. (9), one can
easily obtain the CP asymmetries as:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(17)

which is also valid for the ACP ’s from Eq. (12). There-
fore, using only experimental inputs for �ACP and Br’s
we can access the ACP ’s for the individual channels:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 ,
(18)

which is within the interval of our theory based re-
sults (15). These values are compatible with other recent
calculations [33, 34] based on di↵erent methods.
Summary. We predict the ACP ’s for the D0 ! ⇡�⇡+

and D̄0 ! K�K+, resulting in a �ACP compatible with
the recently observed LHCb value [6], relying absolutely
in SM physics and at this level no BSM e↵ects should
be called to explain the experimental result. The key in-
gredient to produce the CP violation is the coupling be-
tween the ⇡+⇡� and K+K� channels as the source of the
strong phase introduced in a CPT invariant framework.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements for these decays.

It is expected that ACP (D0 ! ⇡�⇡+) and ACP (D0 !
K�K+) will be soon measured by the LHCb collabora-
tion, which will put a straight constraint to the validity
of the CPT condition for only these two channels:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

On the other side, if our predictions are verified, the
forthcoming data could constrain the phase-shift di↵er-
ence in the elastic ⇡+⇡� and K+K� channels at the D0

mass.
Furthermore, the same rescattering mechanism can

contribute to CPV in three-body SCS D decays. In
fact, one expect that the CP asymmetry must be en-
hanced looking to the three-body D+ ! ⇡+⇡�⇡+ and
D+ ! K+K�⇡+ phase-space distribution [35], where
the ⇡+⇡� ! K+K� rescattering is relevant in a large
amount of the phase space available to K+K�, as seen
in Fig. 3. This is left for a future study.

In conclusion, we found that there is no much room to
observe BSM physics in the singly Cabibbo suppressed
channels D0 ! ⇡�⇡+ and D0 ! K�K+. However, as it
was pointed out several times [1, 4], the SM gives almost
no contribution to CPV in double Cabibbo suppressed
(DCS) decays. If CPV is observed in DCS modes this
will establish the intervention of New Physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡ and
�KK the elastic phase-shifts, and 0  ⌘  1 the absorp-
tion parameter. To quantify ⌘, we used the parametriza-
tion of the o↵-diagonal S-matrix element from [36, 37]:

S⇡⇡,KK(s) = i 4
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q⇡qK
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(s)| ei�
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K
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where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡
and qK =

1

2

p
s � 4m2

K
. From Fig. 3 one finds that, at the D0 mass

|g0

0
(M2

D
)| = 0.125 ± 0.025, which from [36, 37] givesp

1 � ⌘2 = 0.229 ± 0.046 and ⌘ = 0.973 ± 0.011. Also,
we have �0

0
(M2

D
) = 343o ± 8o.

Summarizing our assumptions up to this point, we: i)
ignored the sub-leading diagrams of the amplitude de-
cay; ii) considered the dominant FSI in ⇡⇡ to be the KK
channel; and iii) used a data driven approach to extract
both ⇡⇡ and ⇡⇡ ! KK magnitude and phases at the D0

mass energy. With these assumptions, the total D0 de-
cay amplitudes produced by the tree diagrams of Fig. 2
are dressed by the hadronic FSI and receive contribu-
tion from both diagonal and o↵-diagonal S-matrix ele-
ments from Eq. (5). The resulting amplitude is denoted
by AD0!f , with f labeling the 0+ final states restricted
to the f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
cs

Vus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cd

Vud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cd

Vud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cs

Vus aKK .

(7)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements are their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any strong
or weak phases, due to the tree level nature of the decay
process. All of the hadronic FSI comes from S-matrix
elements that has been factor out and included in the D0

and D̄0 decay amplitudes. Eq. (7) is equivalent to the
leading order amplitudes due to the strong interaction
derived in [24] and based on Refs. [5, 20].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (8)

which is fulfilled by the proposed decay amplitudes of
Eq. (7) and their charge conjugate ones. It is worth
noting that the essential ingredients to derive the re-
sult shown in (8) are the unitarity of the S-matrix of the
two-channel model and the weak phase assigned by the
products of the CKM matrix elements. One could write
the analogous of Eq. (8) including more strongly coupled
channels. However, as we argued before, we want to in-
vestigate the main mechanism and so we keep only the
dominant (⇡⇡, KK) channels.

The identity expressed by (8) illustrates how the so
called “compound” CP asymmetry [38, 39], including the

e↵ects of the weak and strong phases, has the important
property of the two terms cancelling one other, when
summed over all final states, in order to satisfy the CPT
condition.
CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.

The CPV di↵erence in the partial decay widths of D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes in Eq. (7) and those for
the charge conjugate state, we get the following:
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where � = �KK � �⇡⇡, remembering that a⇡⇡ and aKK

are real and have the same sign. Note that the sign of
��f is determined by the elements of the CKM matrix
and the elastic S-wave phase-shifts in the two final state
channels.

In order to obtain the ACP ’s, one has to estimate a⇡⇡

and aKK , which can be done using the partial widths of
the decays D0 ! ⇡+⇡� and D0 ! K+K�, extracted
from the amplitudes given in Eq. (7). Assuming thatp

1 � ⌘2 << 1 at the D0 mass, we have:
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If we used the branching fraction information Br(D0 !
⇡⇡) and Br(D0 ! KK), we can determine a⇡⇡ and
aKK with Eq. (10). The CP asymmetries are then, from
Eqs. (9) and (3), given by:
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where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively, and the CKM factors ratio reads [33]

Im[VcsV ⇤
us

V ⇤
cd

Vud]

|VcsV ⇤
us

V ⇤
cd

Vud|
= (6.02 ± 0.32) ⇥ 10�4 . (12)

Estimation of the CP asymmetries. Inspecting the CP
asymmetry in Eq. (11), the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could directly
inspect the phase data at this point. However, di↵er-
ently from ⇡⇡, there is no KK̄ scattering data from
meson-nucleon interactions. Without precise knowledge
of the KK̄ phase, we use �KK � �⇡⇡ = (�KK + �⇡⇡) �
2�⇡⇡ = �0

0
� 2�⇡⇡. From ⇡⇡ scattering data [35, 40]

and the ⇡⇡ ! KK phase, given in Fig. 3, we obtained
cos(�KK � �⇡⇡) . 1 in the high mass region. This can
be verified from 1.58 to 1.78 GeV, the upper limit of
the data [35]. The cos �’s extracted from the updated
CERN-Munich data for �⇡⇡ [40] and �0

0
= �KK + �⇡⇡

from [36] are very close to 1. At MD0 energy, �⇡⇡
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Eq. (7) and their charge conjugate ones. It is worth
noting that the essential ingredients to derive the re-
sult shown in (8) are the unitarity of the S-matrix of the
two-channel model and the weak phase assigned by the
products of the CKM matrix elements. One could write
the analogous of Eq. (8) including more strongly coupled
channels. However, as we argued before, we want to in-
vestigate the main mechanism and so we keep only the
dominant (⇡⇡, KK) channels.

The identity expressed by (8) illustrates how the so
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the decays D0 ! ⇡+⇡� and D0 ! K+K�, extracted
from the amplitudes given in Eq. (7). Assuming thatp

1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK . (10)

If we used the branching fraction information Br(D0 !
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asymmetry in Eq. (11), the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could directly
inspect the phase data at this point. However, di↵er-
ently from ⇡⇡, there is no KK̄ scattering data from
meson-nucleon interactions. Without precise knowledge
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� 2�⇡⇡. From ⇡⇡ scattering data [35, 40]

and the ⇡⇡ ! KK phase, given in Fig. 3, we obtained
cos(�KK � �⇡⇡) . 1 in the high mass region. This can
be verified from 1.58 to 1.78 GeV, the upper limit of
the data [35]. The cos �’s extracted from the updated
CERN-Munich data for �⇡⇡ [40] and �0
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from [36] are very close to 1. At MD0 energy, �⇡⇡

comes from the extrapolation given in [37] (Solution II,
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which is consistent with the data [35] and [40]), result-
ing in cos � = 0.99 ± 0.18. Note that at this energy the
parametrization [37] has a large error bar.

Given the branching fraction values [33]:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(13)

all parameters for calculating the CP asymmetries, of
Eq. (11), are well defined, except for ⌘. So we factorize
its dependence as:

ACP (⇡⇡) = (1.99 ± 0.37) ⇥ 10�3
p

⌘�2 � 1 ,

ACP (KK) = �(0.71 ± 0.13) ⇥ 10�3
p

⌘�2 � 1 ,
(14)

and from that:

�Ath

CP
= �(2.70 ± 0.50) ⇥ 10�3

p
⌘�2 � 1 . (15)

As we pointed out earlier in Fig. 3, there is only one
datum for ⇡⇡ ! KK with center mass energy above
1.8 GeV, needed to reach the D0 mass. The solution
gives ⌘ ⇡ 0.973 ± 0.011 [36], which implies

�Ath

CP
= �(0.64 ± 0.18) ⇥ 10�3 . (16)

The result we found for �Ath

CP
clearly shows the relevant

enhancement of FSI for this quantity, arriving at the sign
and bulk value of the LHCb observation. This indeed
is the largest theoretical prediction within SM without
relying on fitting parameters [3].

Although the systematic uncertainties are absent in
|g0

0
| seen in Fig. 3, the experimental study used to ex-

tract these values at high energies [22], reported high
systematic uncertainties in their estimate of other exper-
imental parameters obtained in that analysis. Therefore
the quoted error in ⌘ in this case is underestimated, which
impacts the error in Eq. (16).

In order to explore other possible values of the inelas-
ticity, if instead of using the ⇡⇡ ! KK data, one uses
⇡⇡ ! ⇡⇡ from Grayer et al. [34], one finds ⌘ = 0.78±0.08.
In this case, we obtain

�Ath

CP
= �(2.17 ± 0.70) ⇥ 10�3 . (17)

This value is compatible with the LHCb experimental
results within 1�, and relies on our assumption that the
KK̄ channel saturates the inelasticity in ⇡⇡ scattering at
the D0 mass.

Independently of the value for ⌘, we can make a pre-
diction for future experimental results of the ratio:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

In fact, relying only on the CPT constraint for two
channels, given by Eq. (8), one can easily obtain the CP
asymmetries as follows:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(18)

which are also valid for the ACP ’s from Eq. (11). Using
experimental inputs for �ACP and Br’s we predict the
values for the ACP ’s:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 .
(19)

Returning to Eq. (14), these imply ⌘ ⇡ 0.87, which is in
between the two quoted values for the inelasticity at the
MD0 energy.
Summary. We predict an enhancement of the ACP ’s

and �ACP for the SCS decays D0(D̄0) ! ⇡�⇡+ and
D0(D̄0) ! K�K+, relying solely on SM physics. The
enhancement is a consequence of ⇡+⇡� and K+K� cou-
pling via the FSI, whose strong phase contribute to both
amplitudes with opposite sign, due to CPT invariance.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements. If our prediction for
the ACP ’s ratio is confirmed, the forthcoming data could
constrain the S-wave phase-shift di↵erence in the ⇡+⇡�

and K+K� elastic channels at the D0 mass, as well as
the magnitude of the o↵-diagonal S-matrix.

Very recently, during the revision process of this
work, the LHCb collaboration presented new results for
D0(D̄0) ! ⇡�⇡+ and D0(D̄0) ! K�K+ [23] which con-
firms our prediction that |ACP (⇡⇡)| > |ACP (KK)|:

ALHCb

CP
(⇡⇡) = (2.32 ± 0.61) ⇥ 10�3 ,

ALHCb

CP
(KK) = (0.77 ± 0.57) ⇥ 10�3 ,

(20)

with the result for ⇡⇡ channel being the first evidence of
an individual charm decay asymmetry. Note that both
LHCb new ACP values are statistically compatible with
ours results. From Eq. (14), with ⌘ = 0.78 ± 0.08 [34] we
find ACP (⇡⇡) = (1.60±0.51)⇥10�3, which is within 1�;
and ACP (KK) = �(0.57 ± 0.18) ⇥ 10�3, within 2�. In
another approach, given by Eq. (18), using �ALHCb

CP
and

the experimental branching ratios, our results (Eq. (19))
are also consistent with the LHCb results within 2�.

The same rescattering mechanism can contribute to
CPV in three-body SCS D decays. In fact, one expects
that the CP asymmetry must be enhanced in the three-
body D+ ! ⇡+⇡�⇡+ and D+ ! K+K�⇡+ phase-space
distribution [41], where the ⇡+⇡� ! K+K� rescattering
is relevant in a large fraction of the phase space available
to K+K�, as seen in Fig. 3. This is left for future study.

Furthermore, as pointed out several times [1, 4], the
SM gives almost no contribution to CPV in double
Cabibbo suppressed (DCS) decays. If CPV is observed
in DCS modes, this will point to new physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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ing in cos � = 0.99 ± 0.18. Note that at this energy the
parametrization [37] has a large error bar.
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ACP (⇡⇡) = (1.99 ± 0.37) ⇥ 10�3
p

⌘�2 � 1 ,

ACP (KK) = �(0.71 ± 0.13) ⇥ 10�3
p

⌘�2 � 1 ,
(14)

and from that:

�Ath

CP
= �(2.70 ± 0.50) ⇥ 10�3

p
⌘�2 � 1 . (15)

As we pointed out earlier in Fig. 3, there is only one
datum for ⇡⇡ ! KK with center mass energy above
1.8 GeV, needed to reach the D0 mass. The solution
gives ⌘ ⇡ 0.973 ± 0.011 [36], which implies

�Ath

CP
= �(0.64 ± 0.18) ⇥ 10�3 . (16)

The result we found for �Ath

CP
clearly shows the relevant

enhancement of FSI for this quantity, arriving at the sign
and bulk value of the LHCb observation. This indeed
is the largest theoretical prediction within SM without
relying on fitting parameters [3].

Although the systematic uncertainties are absent in
|g0

0
| seen in Fig. 3, the experimental study used to ex-

tract these values at high energies [22], reported high
systematic uncertainties in their estimate of other exper-
imental parameters obtained in that analysis. Therefore
the quoted error in ⌘ in this case is underestimated, which
impacts the error in Eq. (16).

In order to explore other possible values of the inelas-
ticity, if instead of using the ⇡⇡ ! KK data, one uses
⇡⇡ ! ⇡⇡ from Grayer et al. [34], one finds ⌘ = 0.78±0.08.
In this case, we obtain

�Ath

CP
= �(2.17 ± 0.70) ⇥ 10�3 . (17)

This value is compatible with the LHCb experimental
results within 1�, and relies on our assumption that the
KK̄ channel saturates the inelasticity in ⇡⇡ scattering at
the D0 mass.

Independently of the value for ⌘, we can make a pre-
diction for future experimental results of the ratio:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

In fact, relying only on the CPT constraint for two
channels, given by Eq. (8), one can easily obtain the CP
asymmetries as follows:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(18)

which are also valid for the ACP ’s from Eq. (11). Using
experimental inputs for �ACP and Br’s we predict the
values for the ACP ’s:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 .
(19)

Returning to Eq. (14), these imply ⌘ ⇡ 0.87, which is in
between the two quoted values for the inelasticity at the
MD0 energy.
Summary. We predict an enhancement of the ACP ’s

and �ACP for the SCS decays D0(D̄0) ! ⇡�⇡+ and
D0(D̄0) ! K�K+, relying solely on SM physics. The
enhancement is a consequence of ⇡+⇡� and K+K� cou-
pling via the FSI, whose strong phase contribute to both
amplitudes with opposite sign, due to CPT invariance.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements. If our prediction for
the ACP ’s ratio is confirmed, the forthcoming data could
constrain the S-wave phase-shift di↵erence in the ⇡+⇡�

and K+K� elastic channels at the D0 mass, as well as
the magnitude of the o↵-diagonal S-matrix.

Very recently, during the revision process of this
work, the LHCb collaboration presented new results for
D0(D̄0) ! ⇡�⇡+ and D0(D̄0) ! K�K+ [23] which con-
firms our prediction that |ACP (⇡⇡)| > |ACP (KK)|:

ALHCb

CP
(⇡⇡) = (2.32 ± 0.61) ⇥ 10�3 ,

ALHCb

CP
(KK) = (0.77 ± 0.57) ⇥ 10�3 ,

(20)

with the result for ⇡⇡ channel being the first evidence of
an individual charm decay asymmetry. Note that both
LHCb new ACP values are statistically compatible with
ours results. From Eq. (14), with ⌘ = 0.78 ± 0.08 [34] we
find ACP (⇡⇡) = (1.60±0.51)⇥10�3, which is within 1�;
and ACP (KK) = �(0.57 ± 0.18) ⇥ 10�3, within 2�. In
another approach, given by Eq. (18), using �ALHCb

CP
and

the experimental branching ratios, our results (Eq. (19))
are also consistent with the LHCb results within 2�.

The same rescattering mechanism can contribute to
CPV in three-body SCS D decays. In fact, one expects
that the CP asymmetry must be enhanced in the three-
body D+ ! ⇡+⇡�⇡+ and D+ ! K+K�⇡+ phase-space
distribution [41], where the ⇡+⇡� ! K+K� rescattering
is relevant in a large fraction of the phase space available
to K+K�, as seen in Fig. 3. This is left for future study.

Furthermore, as pointed out several times [1, 4], the
SM gives almost no contribution to CPV in double
Cabibbo suppressed (DCS) decays. If CPV is observed
in DCS modes, this will point to new physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the
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Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first
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approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

Alternatively one can assume all inelasticity in  is due to KKππ → ππ

4

which is consistent with the data [35] and [40]), result-
ing in cos � = 0.99 ± 0.18. Note that at this energy the
parametrization [37] has a large error bar.

Given the branching fraction values [33]:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(13)

all parameters for calculating the CP asymmetries, of
Eq. (11), are well defined, except for ⌘. So we factorize
its dependence as:

ACP (⇡⇡) = (1.99 ± 0.37) ⇥ 10�3
p

⌘�2 � 1 ,

ACP (KK) = �(0.71 ± 0.13) ⇥ 10�3
p

⌘�2 � 1 ,
(14)

and from that:

�Ath

CP
= �(2.70 ± 0.50) ⇥ 10�3

p
⌘�2 � 1 . (15)

As we pointed out earlier in Fig. 3, there is only one
datum for ⇡⇡ ! KK with center mass energy above
1.8 GeV, needed to reach the D0 mass. The solution
gives ⌘ ⇡ 0.973 ± 0.011 [36], which implies

�Ath

CP
= �(0.64 ± 0.18) ⇥ 10�3 . (16)

The result we found for �Ath

CP
clearly shows the relevant

enhancement of FSI for this quantity, arriving at the sign
and bulk value of the LHCb observation. This indeed
is the largest theoretical prediction within SM without
relying on fitting parameters [3].

Although the systematic uncertainties are absent in
|g0

0
| seen in Fig. 3, the experimental study used to ex-

tract these values at high energies [22], reported high
systematic uncertainties in their estimate of other exper-
imental parameters obtained in that analysis. Therefore
the quoted error in ⌘ in this case is underestimated, which
impacts the error in Eq. (16).

In order to explore other possible values of the inelas-
ticity, if instead of using the ⇡⇡ ! KK data, one uses
⇡⇡ ! ⇡⇡ from Grayer et al. [34], one finds ⌘ = 0.78±0.08.
In this case, we obtain

�Ath

CP
= �(2.17 ± 0.70) ⇥ 10�3 . (17)

This value is compatible with the LHCb experimental
results within 1�, and relies on our assumption that the
KK̄ channel saturates the inelasticity in ⇡⇡ scattering at
the D0 mass.

Independently of the value for ⌘, we can make a pre-
diction for future experimental results of the ratio:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

In fact, relying only on the CPT constraint for two
channels, given by Eq. (8), one can easily obtain the CP
asymmetries as follows:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(18)

which are also valid for the ACP ’s from Eq. (11). Using
experimental inputs for �ACP and Br’s we predict the
values for the ACP ’s:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 .
(19)

Returning to Eq. (14), these imply ⌘ ⇡ 0.87, which is in
between the two quoted values for the inelasticity at the
MD0 energy.
Summary. We predict an enhancement of the ACP ’s

and �ACP for the SCS decays D0(D̄0) ! ⇡�⇡+ and
D0(D̄0) ! K�K+, relying solely on SM physics. The
enhancement is a consequence of ⇡+⇡� and K+K� cou-
pling via the FSI, whose strong phase contribute to both
amplitudes with opposite sign, due to CPT invariance.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements. If our prediction for
the ACP ’s ratio is confirmed, the forthcoming data could
constrain the S-wave phase-shift di↵erence in the ⇡+⇡�

and K+K� elastic channels at the D0 mass, as well as
the magnitude of the o↵-diagonal S-matrix.

Very recently, during the revision process of this
work, the LHCb collaboration presented new results for
D0(D̄0) ! ⇡�⇡+ and D0(D̄0) ! K�K+ [23] which con-
firms our prediction that |ACP (⇡⇡)| > |ACP (KK)|:

ALHCb

CP
(⇡⇡) = (2.32 ± 0.61) ⇥ 10�3 ,

ALHCb

CP
(KK) = (0.77 ± 0.57) ⇥ 10�3 ,

(20)

with the result for ⇡⇡ channel being the first evidence of
an individual charm decay asymmetry. Note that both
LHCb new ACP values are statistically compatible with
ours results. From Eq. (14), with ⌘ = 0.78 ± 0.08 [34] we
find ACP (⇡⇡) = (1.60±0.51)⇥10�3, which is within 1�;
and ACP (KK) = �(0.57 ± 0.18) ⇥ 10�3, within 2�. In
another approach, given by Eq. (18), using �ALHCb

CP
and

the experimental branching ratios, our results (Eq. (19))
are also consistent with the LHCb results within 2�.

The same rescattering mechanism can contribute to
CPV in three-body SCS D decays. In fact, one expects
that the CP asymmetry must be enhanced in the three-
body D+ ! ⇡+⇡�⇡+ and D+ ! K+K�⇡+ phase-space
distribution [41], where the ⇡+⇡� ! K+K� rescattering
is relevant in a large fraction of the phase space available
to K+K�, as seen in Fig. 3. This is left for future study.

Furthermore, as pointed out several times [1, 4], the
SM gives almost no contribution to CPV in double
Cabibbo suppressed (DCS) decays. If CPV is observed
in DCS modes, this will point to new physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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which is consistent with the data [35] and [40]), result-
ing in cos � = 0.99 ± 0.18. Note that at this energy the
parametrization [37] has a large error bar.

Given the branching fraction values [33]:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(13)

all parameters for calculating the CP asymmetries, of
Eq. (11), are well defined, except for ⌘. So we factorize
its dependence as:

ACP (⇡⇡) = (1.99 ± 0.37) ⇥ 10�3
p

⌘�2 � 1 ,

ACP (KK) = �(0.71 ± 0.13) ⇥ 10�3
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and from that:
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As we pointed out earlier in Fig. 3, there is only one
datum for ⇡⇡ ! KK with center mass energy above
1.8 GeV, needed to reach the D0 mass. The solution
gives ⌘ ⇡ 0.973 ± 0.011 [36], which implies
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= �(0.64 ± 0.18) ⇥ 10�3 . (16)

The result we found for �Ath

CP
clearly shows the relevant

enhancement of FSI for this quantity, arriving at the sign
and bulk value of the LHCb observation. This indeed
is the largest theoretical prediction within SM without
relying on fitting parameters [3].

Although the systematic uncertainties are absent in
|g0

0
| seen in Fig. 3, the experimental study used to ex-

tract these values at high energies [22], reported high
systematic uncertainties in their estimate of other exper-
imental parameters obtained in that analysis. Therefore
the quoted error in ⌘ in this case is underestimated, which
impacts the error in Eq. (16).

In order to explore other possible values of the inelas-
ticity, if instead of using the ⇡⇡ ! KK data, one uses
⇡⇡ ! ⇡⇡ from Grayer et al. [34], one finds ⌘ = 0.78±0.08.
In this case, we obtain

�Ath

CP
= �(2.17 ± 0.70) ⇥ 10�3 . (17)

This value is compatible with the LHCb experimental
results within 1�, and relies on our assumption that the
KK̄ channel saturates the inelasticity in ⇡⇡ scattering at
the D0 mass.

Independently of the value for ⌘, we can make a pre-
diction for future experimental results of the ratio:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

In fact, relying only on the CPT constraint for two
channels, given by Eq. (8), one can easily obtain the CP
asymmetries as follows:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(18)

which are also valid for the ACP ’s from Eq. (11). Using
experimental inputs for �ACP and Br’s we predict the
values for the ACP ’s:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 .
(19)

Returning to Eq. (14), these imply ⌘ ⇡ 0.87, which is in
between the two quoted values for the inelasticity at the
MD0 energy.
Summary. We predict an enhancement of the ACP ’s

and �ACP for the SCS decays D0(D̄0) ! ⇡�⇡+ and
D0(D̄0) ! K�K+, relying solely on SM physics. The
enhancement is a consequence of ⇡+⇡� and K+K� cou-
pling via the FSI, whose strong phase contribute to both
amplitudes with opposite sign, due to CPT invariance.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements. If our prediction for
the ACP ’s ratio is confirmed, the forthcoming data could
constrain the S-wave phase-shift di↵erence in the ⇡+⇡�

and K+K� elastic channels at the D0 mass, as well as
the magnitude of the o↵-diagonal S-matrix.

Very recently, during the revision process of this
work, the LHCb collaboration presented new results for
D0(D̄0) ! ⇡�⇡+ and D0(D̄0) ! K�K+ [23] which con-
firms our prediction that |ACP (⇡⇡)| > |ACP (KK)|:

ALHCb

CP
(⇡⇡) = (2.32 ± 0.61) ⇥ 10�3 ,

ALHCb

CP
(KK) = (0.77 ± 0.57) ⇥ 10�3 ,

(20)

with the result for ⇡⇡ channel being the first evidence of
an individual charm decay asymmetry. Note that both
LHCb new ACP values are statistically compatible with
ours results. From Eq. (14), with ⌘ = 0.78 ± 0.08 [34] we
find ACP (⇡⇡) = (1.60±0.51)⇥10�3, which is within 1�;
and ACP (KK) = �(0.57 ± 0.18) ⇥ 10�3, within 2�. In
another approach, given by Eq. (18), using �ALHCb

CP
and

the experimental branching ratios, our results (Eq. (19))
are also consistent with the LHCb results within 2�.

The same rescattering mechanism can contribute to
CPV in three-body SCS D decays. In fact, one expects
that the CP asymmetry must be enhanced in the three-
body D+ ! ⇡+⇡�⇡+ and D+ ! K+K�⇡+ phase-space
distribution [41], where the ⇡+⇡� ! K+K� rescattering
is relevant in a large fraction of the phase space available
to K+K�, as seen in Fig. 3. This is left for future study.

Furthermore, as pointed out several times [1, 4], the
SM gives almost no contribution to CPV in double
Cabibbo suppressed (DCS) decays. If CPV is observed
in DCS modes, this will point to new physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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which is consistent with the data [35] and [40]), result-
ing in cos � = 0.99 ± 0.18. Note that at this energy the
parametrization [37] has a large error bar.

Given the branching fraction values [33]:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(13)

all parameters for calculating the CP asymmetries, of
Eq. (11), are well defined, except for ⌘. So we factorize
its dependence as:

ACP (⇡⇡) = (1.99 ± 0.37) ⇥ 10�3
p

⌘�2 � 1 ,

ACP (KK) = �(0.71 ± 0.13) ⇥ 10�3
p

⌘�2 � 1 ,
(14)

and from that:
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= �(2.70 ± 0.50) ⇥ 10�3

p
⌘�2 � 1 . (15)

As we pointed out earlier in Fig. 3, there is only one
datum for ⇡⇡ ! KK with center mass energy above
1.8 GeV, needed to reach the D0 mass. The solution
gives ⌘ ⇡ 0.973 ± 0.011 [36], which implies

�Ath

CP
= �(0.64 ± 0.18) ⇥ 10�3 . (16)

The result we found for �Ath

CP
clearly shows the relevant

enhancement of FSI for this quantity, arriving at the sign
and bulk value of the LHCb observation. This indeed
is the largest theoretical prediction within SM without
relying on fitting parameters [3].

Although the systematic uncertainties are absent in
|g0

0
| seen in Fig. 3, the experimental study used to ex-

tract these values at high energies [22], reported high
systematic uncertainties in their estimate of other exper-
imental parameters obtained in that analysis. Therefore
the quoted error in ⌘ in this case is underestimated, which
impacts the error in Eq. (16).

In order to explore other possible values of the inelas-
ticity, if instead of using the ⇡⇡ ! KK data, one uses
⇡⇡ ! ⇡⇡ from Grayer et al. [34], one finds ⌘ = 0.78±0.08.
In this case, we obtain

�Ath

CP
= �(2.17 ± 0.70) ⇥ 10�3 . (17)

This value is compatible with the LHCb experimental
results within 1�, and relies on our assumption that the
KK̄ channel saturates the inelasticity in ⇡⇡ scattering at
the D0 mass.

Independently of the value for ⌘, we can make a pre-
diction for future experimental results of the ratio:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

In fact, relying only on the CPT constraint for two
channels, given by Eq. (8), one can easily obtain the CP
asymmetries as follows:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(18)

which are also valid for the ACP ’s from Eq. (11). Using
experimental inputs for �ACP and Br’s we predict the
values for the ACP ’s:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 .
(19)

Returning to Eq. (14), these imply ⌘ ⇡ 0.87, which is in
between the two quoted values for the inelasticity at the
MD0 energy.
Summary. We predict an enhancement of the ACP ’s

and �ACP for the SCS decays D0(D̄0) ! ⇡�⇡+ and
D0(D̄0) ! K�K+, relying solely on SM physics. The
enhancement is a consequence of ⇡+⇡� and K+K� cou-
pling via the FSI, whose strong phase contribute to both
amplitudes with opposite sign, due to CPT invariance.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements. If our prediction for
the ACP ’s ratio is confirmed, the forthcoming data could
constrain the S-wave phase-shift di↵erence in the ⇡+⇡�

and K+K� elastic channels at the D0 mass, as well as
the magnitude of the o↵-diagonal S-matrix.

Very recently, during the revision process of this
work, the LHCb collaboration presented new results for
D0(D̄0) ! ⇡�⇡+ and D0(D̄0) ! K�K+ [23] which con-
firms our prediction that |ACP (⇡⇡)| > |ACP (KK)|:
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(⇡⇡) = (2.32 ± 0.61) ⇥ 10�3 ,

ALHCb

CP
(KK) = (0.77 ± 0.57) ⇥ 10�3 ,

(20)

with the result for ⇡⇡ channel being the first evidence of
an individual charm decay asymmetry. Note that both
LHCb new ACP values are statistically compatible with
ours results. From Eq. (14), with ⌘ = 0.78 ± 0.08 [34] we
find ACP (⇡⇡) = (1.60±0.51)⇥10�3, which is within 1�;
and ACP (KK) = �(0.57 ± 0.18) ⇥ 10�3, within 2�. In
another approach, given by Eq. (18), using �ALHCb

CP
and

the experimental branching ratios, our results (Eq. (19))
are also consistent with the LHCb results within 2�.

The same rescattering mechanism can contribute to
CPV in three-body SCS D decays. In fact, one expects
that the CP asymmetry must be enhanced in the three-
body D+ ! ⇡+⇡�⇡+ and D+ ! K+K�⇡+ phase-space
distribution [41], where the ⇡+⇡� ! K+K� rescattering
is relevant in a large fraction of the phase space available
to K+K�, as seen in Fig. 3. This is left for future study.

Furthermore, as pointed out several times [1, 4], the
SM gives almost no contribution to CPV in double
Cabibbo suppressed (DCS) decays. If CPV is observed
in DCS modes, this will point to new physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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all parameters for calculating the CP asymmetries, of
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relying on fitting parameters [3].
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tract these values at high energies [22], reported high
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impacts the error in Eq. (16).

In order to explore other possible values of the inelas-
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⇡⇡ ! ⇡⇡ from Grayer et al. [34], one finds ⌘ = 0.78±0.08.
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This value is compatible with the LHCb experimental
results within 1�, and relies on our assumption that the
KK̄ channel saturates the inelasticity in ⇡⇡ scattering at
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Independently of the value for ⌘, we can make a pre-
diction for future experimental results of the ratio:
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(19)

Returning to Eq. (14), these imply ⌘ ⇡ 0.87, which is in
between the two quoted values for the inelasticity at the
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pling via the FSI, whose strong phase contribute to both
amplitudes with opposite sign, due to CPT invariance.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements. If our prediction for
the ACP ’s ratio is confirmed, the forthcoming data could
constrain the S-wave phase-shift di↵erence in the ⇡+⇡�

and K+K� elastic channels at the D0 mass, as well as
the magnitude of the o↵-diagonal S-matrix.
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work, the LHCb collaboration presented new results for
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with the result for ⇡⇡ channel being the first evidence of
an individual charm decay asymmetry. Note that both
LHCb new ACP values are statistically compatible with
ours results. From Eq. (14), with ⌘ = 0.78 ± 0.08 [34] we
find ACP (⇡⇡) = (1.60±0.51)⇥10�3, which is within 1�;
and ACP (KK) = �(0.57 ± 0.18) ⇥ 10�3, within 2�. In
another approach, given by Eq. (18), using �ALHCb
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and

the experimental branching ratios, our results (Eq. (19))
are also consistent with the LHCb results within 2�.

The same rescattering mechanism can contribute to
CPV in three-body SCS D decays. In fact, one expects
that the CP asymmetry must be enhanced in the three-
body D+ ! ⇡+⇡�⇡+ and D+ ! K+K�⇡+ phase-space
distribution [41], where the ⇡+⇡� ! K+K� rescattering
is relevant in a large fraction of the phase space available
to K+K�, as seen in Fig. 3. This is left for future study.

Furthermore, as pointed out several times [1, 4], the
SM gives almost no contribution to CPV in double
Cabibbo suppressed (DCS) decays. If CPV is observed
in DCS modes, this will point to new physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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which is consistent with the data [35] and [40]), result-
ing in cos � = 0.99 ± 0.18. Note that at this energy the
parametrization [37] has a large error bar.

Given the branching fraction values [33]:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(13)

all parameters for calculating the CP asymmetries, of
Eq. (11), are well defined, except for ⌘. So we factorize
its dependence as:

ACP (⇡⇡) = (1.99 ± 0.37) ⇥ 10�3
p

⌘�2 � 1 ,

ACP (KK) = �(0.71 ± 0.13) ⇥ 10�3
p

⌘�2 � 1 ,
(14)

and from that:

�Ath

CP
= �(2.70 ± 0.50) ⇥ 10�3

p
⌘�2 � 1 . (15)

As we pointed out earlier in Fig. 3, there is only one
datum for ⇡⇡ ! KK with center mass energy above
1.8 GeV, needed to reach the D0 mass. The solution
gives ⌘ ⇡ 0.973 ± 0.011 [36], which implies

�Ath

CP
= �(0.64 ± 0.18) ⇥ 10�3 . (16)

The result we found for �Ath

CP
clearly shows the relevant

enhancement of FSI for this quantity, arriving at the sign
and bulk value of the LHCb observation. This indeed
is the largest theoretical prediction within SM without
relying on fitting parameters [3].

Although the systematic uncertainties are absent in
|g0

0
| seen in Fig. 3, the experimental study used to ex-

tract these values at high energies [22], reported high
systematic uncertainties in their estimate of other exper-
imental parameters obtained in that analysis. Therefore
the quoted error in ⌘ in this case is underestimated, which
impacts the error in Eq. (16).

In order to explore other possible values of the inelas-
ticity, if instead of using the ⇡⇡ ! KK data, one uses
⇡⇡ ! ⇡⇡ from Grayer et al. [34], one finds ⌘ = 0.78±0.08.
In this case, we obtain

�Ath

CP
= �(2.17 ± 0.70) ⇥ 10�3 . (17)

This value is compatible with the LHCb experimental
results within 1�, and relies on our assumption that the
KK̄ channel saturates the inelasticity in ⇡⇡ scattering at
the D0 mass.

Independently of the value for ⌘, we can make a pre-
diction for future experimental results of the ratio:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

In fact, relying only on the CPT constraint for two
channels, given by Eq. (8), one can easily obtain the CP
asymmetries as follows:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(18)

which are also valid for the ACP ’s from Eq. (11). Using
experimental inputs for �ACP and Br’s we predict the
values for the ACP ’s:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 .
(19)

Returning to Eq. (14), these imply ⌘ ⇡ 0.87, which is in
between the two quoted values for the inelasticity at the
MD0 energy.
Summary. We predict an enhancement of the ACP ’s

and �ACP for the SCS decays D0(D̄0) ! ⇡�⇡+ and
D0(D̄0) ! K�K+, relying solely on SM physics. The
enhancement is a consequence of ⇡+⇡� and K+K� cou-
pling via the FSI, whose strong phase contribute to both
amplitudes with opposite sign, due to CPT invariance.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements. If our prediction for
the ACP ’s ratio is confirmed, the forthcoming data could
constrain the S-wave phase-shift di↵erence in the ⇡+⇡�

and K+K� elastic channels at the D0 mass, as well as
the magnitude of the o↵-diagonal S-matrix.

Very recently, during the revision process of this
work, the LHCb collaboration presented new results for
D0(D̄0) ! ⇡�⇡+ and D0(D̄0) ! K�K+ [23] which con-
firms our prediction that |ACP (⇡⇡)| > |ACP (KK)|:

ALHCb

CP
(⇡⇡) = (2.32 ± 0.61) ⇥ 10�3 ,

ALHCb

CP
(KK) = (0.77 ± 0.57) ⇥ 10�3 ,

(20)

with the result for ⇡⇡ channel being the first evidence of
an individual charm decay asymmetry. Note that both
LHCb new ACP values are statistically compatible with
ours results. From Eq. (14), with ⌘ = 0.78 ± 0.08 [34] we
find ACP (⇡⇡) = (1.60±0.51)⇥10�3, which is within 1�;
and ACP (KK) = �(0.57 ± 0.18) ⇥ 10�3, within 2�. In
another approach, given by Eq. (18), using �ALHCb

CP
and

the experimental branching ratios, our results (Eq. (19))
are also consistent with the LHCb results within 2�.

The same rescattering mechanism can contribute to
CPV in three-body SCS D decays. In fact, one expects
that the CP asymmetry must be enhanced in the three-
body D+ ! ⇡+⇡�⇡+ and D+ ! K+K�⇡+ phase-space
distribution [41], where the ⇡+⇡� ! K+K� rescattering
is relevant in a large fraction of the phase space available
to K+K�, as seen in Fig. 3. This is left for future study.

Furthermore, as pointed out several times [1, 4], the
SM gives almost no contribution to CPV in double
Cabibbo suppressed (DCS) decays. If CPV is observed
in DCS modes, this will point to new physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.

Acknowledgments. We would like to thank J. R.
Pelaez for clarifying discussion and, along with A. Ro-
das, providing results from their parametrization. We

ACP(KK) = − (0.57 ± 0.18) × 10−3
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

new measurement for  from LHCb ACP(hh)
agrees with our predictions with 2  

 we still need more data to fully understood it

σ

hadronic FSI (and their strong phases)are crucial to explain CP 
violation in B and D decays

 we proposed a mechanism that can explain CPV in D

still room to add 2nd order effects

predicted  which is compatible with LHCb ΔACP
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In 3-body decays this effect will be bigger and phase-space distributed 

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

  and  have exactly the same Weak vertex D+ → π+π−π+ D+ → π+K−K+

stay tuned!

obrigada!!
#forabolsonaro

thank you!

Banksy  

Final remarks

expected CPV in run II analysis
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 Hadron 2020(1) - Brazil 

(a) (b)

(c) (d)

Figure 6: Fit projections of each model (a) in the low mlow region and (b) in the full range
of mhigh, with the corresponding asymmetries shown beneath in (c) and (d). The normalised
residual or pull distribution, defined as the di↵erence between the bin value less the fit value
over the uncertainty on the number of events in that bin, is shown below each fit projection.

indeed this occurs in B+! ⇡+⇡+⇡� decays. The CP asymmetry integrated across the
Dalitz plot is consistent, in all three models, with the value previously determined through
model-independent analysis [12].

7.3 S-wave projections

The squared amplitude and phase motion of the S-wave models as a function of m(⇡+⇡�)
can be seen in Fig. 13(a) and (b) for the isobar approach, Fig. 13(c) and (d) for the
K-matrix approach and Fig. 13(e) and (f) for the QMI approach. A comparison of all
three models, for the CP -averaged S-wave projections, can be seen in Fig. 14. The QMI
S-wave is recorded in Table 18, while the statistical and systematic correlation matrices

28

Table 1: Results for CP -conserving fit fractions, quasi-two-body CP asymmetries, and phases
for each component relative to the ⇢(770)0–!(782) model, given for each S-wave approach. The
first uncertainty is statistical while the second is systematic.

Contribution Fit fraction (10�2) ACP (10�2) B+ phase (�) B� phase (�)

Isobar model

⇢(770)0 55.5 ± 0.6 ± 2.5 +0.7± 1.1± 1.6 — —

!(782) 0.50± 0.03± 0.05 �4.8± 6.5± 3.8 �19± 6± 1 +8± 6± 1

f2(1270) 9.0 ± 0.3 ± 1.5 +46.8± 6.1± 4.7 +5± 3± 12 +53± 2± 12

⇢(1450)0 5.2 ± 0.3 ± 1.9 �12.9± 3.3± 35.9 +127± 4± 21 +154± 4± 6

⇢3(1690)0 0.5 ± 0.1 ± 0.3 �80.1± 11.4± 25.3 �26± 7± 14 �47± 18± 25

S-wave 25.4 ± 0.5 ± 3.6 +14.4± 1.8± 2.1 — —

Rescattering 1.4 ± 0.1 ± 0.5 +44.7± 8.6± 17.3 �35± 6± 10 �4± 4± 25

� 25.2 ± 0.5 ± 5.0 +16.0± 1.7± 2.2 +115± 2± 14 +179± 1± 95

K-matrix

⇢(770)0 56.5 ± 0.7 ± 3.4 +4.2± 1.5± 6.4 — —

!(782) 0.47± 0.04± 0.03 �6.2± 8.4± 9.8 �15± 6± 4 +8± 7± 4

f2(1270) 9.3 ± 0.4 ± 2.5 +42.8± 4.1± 9.1 +19± 4± 18 +80± 3± 17

⇢(1450)0 10.5 ± 0.7 ± 4.6 +9.0± 6.0± 47.0 +155± 5± 29 �166± 4± 51

⇢3(1690)0 1.5 ± 0.1 ± 0.4 �35.7± 10.8± 36.9 +19± 8± 34 +5± 8± 46

S-wave 25.7 ± 0.6 ± 3.0 +15.8± 2.6± 7.2 — —

QMI

⇢(770)0 54.8 ± 1.0 ± 2.2 +4.4± 1.7± 2.8 — —

!(782) 0.57± 0.10± 0.17 �7.9± 16.5± 15.8 �25± 6± 27 �2± 7± 11

f2(1270) 9.6 ± 0.4 ± 4.0 +37.6± 4.4± 8.0 +13± 5± 21 +68± 3± 66

⇢(1450)0 7.4 ± 0.5 ± 4.0 �15.5± 7.3± 35.2 +147± 7± 152 �175± 5± 171

⇢3(1690)0 1.0 ± 0.1 ± 0.5 �93.2± 6.8± 38.9 +8± 10± 24 +36± 26± 46

S-wave 26.8 ± 0.7 ± 2.2 +15.0± 2.7± 8.1 — —

of the behaviour of the S-wave, given in Ref. [29], shows that this CP asymmetry remains
approximately constant up to the inelastic threshold 2mK , where it appears to change
sign; this is seen in all three approaches to the S-wave description. Estimates of the
significance of this CP -violation e↵ect, obtained from the change in negative log-likelihood
between the baseline fit for each S-wave approach and alternative fits where no such CP
violation is allowed, give values in excess of ten Gaussian standard deviations (�) in all
the S-wave models.

An additional source of CP violation, associated principally with the interference
between S- and P-waves, is clearly visible when inspecting the cos ✓hel distributions
separately in regions above and below the ⇢(770)0 peak (Fig. 3(a) and (b)). Here, ✓hel is
the angle, evaluated in the ⇡+⇡� rest frame, between the pion with opposite charge to
the B and the third pion from the B decay. These asymmetries are modelled well in all
three approaches to the S-wave description. Evaluation of the significance of CP violation
in the interference between S- and P-waves gives values in excess of 25� in all the S-wave
models.

At higher m(⇡+⇡�) values, the f2(1270) component is found to have a CP -averaged

4

Table 1: Results of the Dalitz plot fit, where the first uncertainty is statistical and the second
systematic. The fitted values of ci (c̄i) are expressed in terms of magnitudes |ci| (|c̄i|) and phases
arg(ci) (arg(c̄i)) for each B+ (B�) contribution. The top row corresponds to B+ and the bottom
to B� mesons.

Contribution Fit Fraction(%) ACP (%) Magnitude (B+/B�) Phase[o] (B+/B�)
K⇤(892)0 7.5± 0.6± 0.5 +12.3± 8.7± 4.5 0.94± 0.04± 0.02 0 (fixed)

1.06± 0.04± 0.02 0 (fixed)
K⇤

0(1430)
0 4.5± 0.7± 1.2 +10.4± 14.9± 8.8 0.74± 0.09± 0.09 �176± 10± 16

0.82± 0.09± 0.10 136± 11± 21
Single pole 32.3± 1.5± 4.1 �10.7± 5.3± 3.5 2.19± 0.13± 0.17 �138± 7± 5

1.97± 0.12± 0.20 166± 6± 5
⇢(1450)0 30.7± 1.2± 0.9 �10.9± 4.4± 2.4 2.14± 0.11± 0.07 �175± 10± 15

1.92± 0.10± 0.07 140± 13± 20
f2(1270) 7.5± 0.8± 0.7 +26.7± 10.2± 4.8 0.86± 0.09± 0.07 �106± 11± 10

1.13± 0.08± 0.05 �128± 11± 14
Rescattering 16.4± 0.8± 1.0 �66.4± 3.8± 1.9 1.91± 0.09± 0.06 �56± 12± 18

0.86± 0.07± 0.04 �81± 14± 15
�(1020) 0.3± 0.1± 0.1 +9.8± 43.6± 26.6 0.20± 0.07± 0.02 �52± 23± 32

0.22± 0.06± 0.04 107± 33± 41
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Figure 2: Distribution of m2
⇡±K⌥ . Data are represented by points for B+ and B� candidates

separately, with the result of the fit overlaid.

6

B± ! ⇡±K�K+
<latexit sha1_base64="eUwjRfnBgbL7gOTLjd2CKu5lHaQ=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARBLHMVEFXUnQjdFPBPqAzLZk004ZmMiHJCKXUjb/ixoUibv0Ld/6N6XQWWj0QOJxzLzfnBIJRpR3ny8otLC4tr+RXC2vrG5tb9vZOQ8WJxKSOYxbLVoAUYZSTuqaakZaQBEUBI81geD31m/dEKhrzOz0SxI9Qn9OQYqSN1LX3rjqeiKCnY+gJmvJq56TaOe7aRafkpIB/iZuRIshQ69qfXi/GSUS4xgwp1XYdof0xkppiRiYFL1FEIDxEfdI2lKOIKH+cJpjAQ6P0YBhL87iGqfpzY4wipUZRYCYjpAdq3puK/3ntRIcX/phykWjC8exQmDBo8k7rgD0qCdZsZAjCkpq/QjxAEmFtSiuYEtz5yH9Jo1xyT0vl27Ni5TKrIw/2wQE4Ai44BxVwA2qgDjB4AE/gBbxaj9az9Wa9z0ZzVrazC37B+vgGYJuViQ==</latexit>

PRL 123 (2019) 231802
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Study of B+
c decays to the K+K�⇡+

final state and evidence for the decay

B+
c ! �c0⇡

+

The LHCb collaboration†

Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.

Submitted to Phys. Rev. Lett.

c� CERN on behalf of the LHCb collaboration, license CC-BY-4.0.

†Authors are listed at the end of this article.
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 3 different model:
𝜎 as BW (!) + rescattering;
P-vector K-Matrix;
binned freed lineshape (QMI);

PRD101 (2020) 012006; PRL 124 (2020) 031801
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topological and group symmetry approach

with resonances (fit agrees) 

long distance effect:

Schacht and A. Soni, Phys. Lett. B 825, 136855 (2022). 

FSI with CPT (prediction agrees) 

Y. Grossman and S. Schacht,  JHEP 07, 20 (2019)  

H.-Y. Cheng and C.-W. Chiang, PRD 100, 093002 (2019).   with SU(3) breaking  through FSI 
(fit agrees) F. Buccella, A. Paul and P. Santorelli, PRD 99, 113001 (2019) 

 Theoretical approaches to CPV on charm

QCDF how to calculate penguin contributions?  call BSM effects

LCSR QCD, model independent but predictions are 1 order 
magnitude bellow

Khodjamirian, Petrov,          
Phys. Lett. B 774, 235 (2017)

bediaga, Frederico, PCM 
arxiv 2203.04056v2

 QCD short-distance 

 Chala, Lenz, Rusov, Scholtz, 
JHEP 07, 161 (2019).  

https://arxiv.org/abs/2203.04056
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 coupling to ππηη
coupling of  in D wave is bigger than  in S-waveππ → KK ηη

ignore  channel once their coupling to the  channel are suppressed 
with respect to  .

ηη ππ
KK̄

Volume 274, number 3,4 PHYSICS LETTERS B 16 January 1992 
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Fig. 2. (a ) The  modulus  squared of the  D-wave  in Argand plot units  from the  reaction nn--, KK, je c = 2 ÷ +, I=  0, obta ine d from OPE 
ana lys is  [ 2 ] a s  a  function of mass  in GeV. (b) The  modulus  squared of S-wave  in Argand plot units  from the  reaction nn--,~qrl, je c = 0 ÷ ÷, 
I=  0, obta ine d from OPE ana lys is  [ 5 ] a s  a  function of mass  in Ge V. (c) The  modulus  squared of the  D-wave  in Argand plot units  from 
the  reaction nn--*rlq, j.,,c= 2 + ÷, I=  0, obta ine d from OPE ana lys is  [ 5 ] a s  a  function of mass  in Ge V. The  curve  comes  from the  Bre it- 
Wigner fit described in the  text. 

Ho we ve r,  e xc e p t n e a r  th re s h o ld ,  u n ita r ity  e ffe c ts  a re  
n o t  e xp e c te d  to  b e  im p o r ta n t  e n o u g h  to  c h a n g e  th e  
m a jo r  c o n c lu s io n s  o f th is  p a p e r.  Th e re fo re  a lth o u g h  
p ra c tic a lly a ll c a lc u la tio n s  o f th is  typ e  a re  m o d e l d e - 
p e n d e n t,  we  b e lie ve  o u r m a jo r  c o n c lu s io n s  will n o t  
b e  a ffe c te d  b y th e  m o d e l u s e d .  

Th e  re s o n a n c e  fo (1 5 9 0 )  o f re f. [ 5 ] is  n o t  n e e d e d  
in  o u r a n a lys is  e ve n  th o u g h  we  fit th e  q q  a n d  rlq '  
p h a s e  s h ifts  th a t  we re  u s e d  to  c la im  th e  fo (1 5 9 0 ) in  
th e  firs t p la c e .  In  o u r  fit fo (1 5 9 0 ) is  m a d e  u p  o f a  
s u m  o f th e  fo (1 4 0 0 ) a n d  th e  fo (1 7 2 0 ) wh e re  it is  
kn o wn  fro m  J / ~  ra d ia t ive  d e c a y th a t  th e  fo (1 7 2 0 ) 
d o e s  d e c a y in to  rp l [ 7 ].  In  re f. [ 13 ] we  m a d e  a  fit 
in te rc h a n g in g  fo (1 3 0 0 ) with  th e  fo (1 5 9 0 ) a n d  o b - 
ta in e d  a  s ig n ific a n tly wo rs e  fit.  It h a s  b e e n  a rg u e d  th a t 
th e  fo (1 5 9 0 ) is  a  n e w re s o n a n c e  s in c e  it is  a ls o  s e e n  
in  c e n tra l p ro d u c t io n  [ 17 ]. F irs t  o f a ll re f. [ 17 ] s e e s  
ve ry fe w e ve n ts ,  s e c o n d  o n e  n e e d s  to  d o  a  s im u lta -  
n e o u s  fit to  c e n tra lly p ro d u c e d  n n ,  KI~, qrl a n d  1N' in  
o rd e r  to  m a ke  a  c o n vin c in g  s ta te m e n t  Th ird ,  o n e  
n e e d s  to  e xp la in  wh y th e  to (1 7 2 0 ) is  n o t s e e n  in  a n y 
o f rl~ d a ta  o f re fs . [5 ,1 7 ],  wh ile  it is  kn o wn  th a t 
fo (1 7 2 0 ) d e c a ys  in to  nl] [7 ] a n d  is  p ro d u c e d  b y n n  
s c a tte rin g  [2  ] a n d  in  c e n tra l p ro d u c t io n  [ 18 ] b e - 
c a u s e  o f its  KI(  m o d e .  Th e re  is  a  p o s s ib ility  th a t  th e  
fo (1 7 2 0 ) is  n o t p ro d u c e d  in  c e n tra l p ro d u c t io n ,  b e - 
c a u s e  re f. [ 19 ] c la im s  th e y s e e  a  s tro n g  2 + + s ig n a l in  

th e  fo (1 7 2 0 ) re g io n .  At th e  Ha d ro n  89 C o n fe re n c e  it 
wa s  s ta te d  th a t  o n e  o b s e rve s  a  2 + + b a c kg ro u n d  in  th e  
c o m p le te  m a s s  ra n g e  o f th e  K~K~ d a ta  [ 20  ]. Th is  2 + ÷ 
b a c kg ro u n d  c o u ld  b e  p a rtia lly d u e  to  th e  t"2 (1 2 7 0 ) a n d  
a2 (1 3 2 0 ) .  Ho we ve r,  th e  s p e c tru m  o f re f. [ 20  ] d o e s  
n o t s h o w a  re s o n a n c e  s h a p e  a t 1.3 G e V.  

In  ta b le  1 we  g ive  th e  m a s s ,  to ta l wid th ,  p a rt ia l 
wid th s  a n d  th e  b ra n c h in g  fra c tio n s  (Xj = ~ /F to la  I ) fo r 
e a c h  o f th e  m e s o n  re s o n a n c e s .  F o r  th e  fo (1 3 0 0 ) we  
d o  n o t g ive  th e  p a rt ia l wid th s  b u t  o n ly th e  b ra n c h in g  
fra c tio n s .  F igs .  1 -4  s h o w o u r fit to  th e  d a ta  o f re fs . 
[2 ,5 ,6 ,3 ,7 ].  

3 .  C o n c lu s io n  

We  h a ve  p e r fo rm e d  a  c o u p le d  c h a n n e l a n a lys is  o n  
th e  re a c tio n s : n n --,n n ,  n n ~ K K ,  n n - , w q ,  nn--,'qTl' a n d  
KI(-~  K_K, wh e re  th e  is o s c a la r a m p litu d e s  with  je c =  
0 + + a n d  2 + + we re  fitte d .  Th e  c h a n n e ls  J / W - '  7 n  +n - ,  
J / ~ - - , T K+ K - ,  J /~ --q tK~ I~ ,  J / w - ' 7 ~ q ,  a n d  J /  
~-~71]i]' we re  a ls o  u s e d  in  th e  a n a lys is  b e c a u s e  th e y 
o n ly c o n ta in  is o s c a la r m e s o n s  with  J e C = 0 + +  a n d  
2 + + b e lo w th e  m a s s  o f 2 .0  G e V.  Th e  fits  s h o w th a t  
th e  1"2(1720) o r 0 (1 7 2 0 )  c a n  b e  u n d e rs to o d  in  fo r- 
m a t io n  p s e u d o s c a la r -p s e u d o s c a la r  s c a tte rin g  a n d  
p ro d u c t io n  J / ~  ra d ia t ive  d e c a ys  b y h a vin g  a  s p in  0. 
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C o u p le d  c ha nne l a na lys is  o fje c =  0 + + a nd 2 + + is o s c a la r m e s o n s  
with  ma s s e s  b e lo w  2 . 0  G e V 
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a Brookhave n NationalLaboratory , Upton, N Y  11973, US A 
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A coupled channe l ana lys is  of the  je c = 0 + + a nd 2 + + channe ls  below 2 GeV has be e n performed us ing Bre it-Wigners  cons id- 
e ring nn sca tte ring amplitudes , J /V radia tive  decay, and KI~-,KK. The  main conclus ions  were  tha t a  good fit with a  minimum 
number of meson poles  (four) was obta ined in the  0 + ÷ channe l. In our fit the  fo(1720) was used to describe  the  firs t discovered 
S*' (1720) and the  0 (1720) both of which have  the  same quantum numbers  and parameters  to a  high probability. Unita rity effects  
which require  a  long-te rm effort were  not included, however they are  expected to have  important effects  primarily near thresholds  
a nd thus  not a ffect the  major conclus ions  of this  paper. 

1. Intro duc tio n 

A c o u p le d  c h a n n e l a n a lys is  is  m u c h  m o re  c o n - 
s tra in e d  a n d  th u s  m o re  like ly to  re ve a l th e  m in im u m  
n u m b e r  o f re a l re s o n a n c e s  re q u ire d  to  e xp la in  the  
c o n s id e ra b le  d a ta  a va ila b le .  Th e re fo re ,  a  c o u p le d  
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Wig n e rs  c o n s id e rin g  th e  n n  s c a tte rin g  a m p litu d e s ,  
J /V ra d ia tive  d e c a y a n d  KI~ -,KI~ .  Th e  s p e c tru m  o f 
is os ca la r m e s o n s  with  J P C =O ++ a n d  2 ++ a re  e x- 
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It is  fo u n d  th a t th re e  m e s o n  po le s  a re  n e c e s s a ry in  
o rd e r to  fit the  2 ++ d a ta  (1"2(1270), f ' ( 1 5 2 5 ) ,  a n d  
f2 ( 1810) ), wh ile  fo u r m e s o n  po le s  a re  n e c e s s a ry in  
o rd e r to  fit the  0 ++ d a ta  (fo (9 7 5 ),  fo (1 3 0 0 ),  
fo (1 4 0 0 ),  a n d  f0 (1 7 2 0 ) ) u p  to  2 .0  Ge V. 

Th is  a n a lys is  us e s  th e  fa c t th a t th e  f2 (1 7 2 0 ) o r 
0 (1 7 2 0 )  th a t is  o b s e rve d  in  th e  J /V ra d ia tive  de ca y 
ha s  s p in  0, n o t s p in  2. Th is  wa s  fo u n d  b y the  MK III 
C o lla b o ra tio n  to  be  h igh ly p ro b a b le  [ 1 ]. E a rlie r fits  
[2 ] (wh ic h  a re  s till a p p lic a b le ) with  the  0 h a vin g  s p in  
2 d id  n o t a gre e  with  the  LAS S  d a ta  [3 ].  A fit wa s  
a c h ie ve d  with o u t the  fo (1 5 9 0 ) wh ile  the  p h a s e  s h ifts  
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wh ic h  le a d  to  the  c la im  for th is  re s o n a n c e  a re  we ll 
d e s c rib e d  u s in g  the  fo (1 3 0 0 ),  fo (1 4 0 0 ),  a n d  the  
fo (1 7 2 0 ).  Th e  1"o(1300) ha s  a  la rge  wid th  a n d  doe s  
n o t s how s u ffic ie n t p h a s e  m o tio n ,  th u s  it c o u ld  pos - 
s ib ly be  d u e  to  a n  u n ita ry e ffe ct a t the  rlq th re s h o ld .  
In  o u r fit the  fo (1 5 9 0 ) is  m a d e  up  o f a  s u m  o f the  
fo (1 4 0 0 ) a n d  the  fo (1 7 2 0 ).  

2 . Co uple d c ha nne l a na lys is  o f jP C =  0 + + a nd 2 ÷ ÷ 

Wh e n  a  p io n  s trike s  a  p ro to n  th e re b y c h a n g in g  it 
in to  a  n e u tro n ,  the  low m o m e n t u m  tra n s fe r It'  I s ca t- 
te rin g  is  d o m in a te d  by o n e  p io n  e xc h a n g e  (O P E ).  
Us in g  th e  s ta n d a rd  O P E  e xtra p o la tio n  [4 ],  o n e  o b - 
ta in s  the  S -m a trix Arg a n d  a m p litu d e s  for e a ch  o f the  
p a rtia l wa ve s . 

Th e  s p e c tru m  o f i s os ca la r m e s o n s  in  the  jp c =  0 + + 
a n d  2 + + c h a n n e ls  is  ve ry im p o rta n t  in  te s tin g  q u a rk-  
g lu o n  a n d  g lu o n -g lu o n  c o n fin e d  Q C D the ory.  Bo th  
qdl a n d  gg s ta te s  c a n  o c c u r in  the s e  c h a n n e ls .  Ho w- 
e ve r, the y c a n  mix,  a n d  th e re fo re  o n ly a  d e ta ile d  
a n a lys is  o f the s e  m e s o n s  in  d iffe re n t p ro d u c tio n  a n d  
d e c a y c h a n n e ls  c a n  d e te rm in e  th e ir n a tu re .  
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we don’t have data from KK scattering !

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

Pelaez parametrization

4

TABLE I. Values of cos� extracted from updated CERN-
Munich data for �⇡⇡ [32] and using � = �0

0 � 2�⇡⇡ with
�0
0 = �KK + �⇡⇡ from [27]. At

p
s = 1.846 GeV, �⇡⇡ comes

from the extrapolation given in [28] (Solution II, which is
consistent with the data [26] and [32]).

p
s [GeV] cos�

1.58 0.989 ± 0.149

1.62 0.994 ± 0.105

1.66 0.999 ± 0.040

1.70 0.987 ± 0.160

1.74 0.999 ± 0.048

1.78 0.999 ± 0.037

1.846 0.987 ± 0.175

data set as proposed in [28]. Note that at this energy the
parametrization have a large error bar.

The CP asymmetries are estimated from Eq. (12),
using the values from The Review of Particle Physics
(2021) [25] for the CKM parameters: � = 0.22650 ±
0.00048, � = 1.196+0.045

�0.043, and the branching fractions:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(14)

Furthermore, for the parameters of the o↵-diagonal ⇡⇡ !
KK S-matrix element at the D0 mass we used: ⌘ ⇡
0.973 [27], as argued before, which results in

ACP (⇡⇡) = (1.90 ± 0.53) ⇥ 10�3 ,

ACP (KK) = �(0.68 ± 0.19) ⇥ 10�3 .
(15)

With the above values we find the present theoretical
value for the di↵erence between the ACP ’s to be:

�Ath
CP = �(2.58 ± 0.72) ⇥ 10�3 . (16)

The agreement between our theoretical estimate (16),
the recent experimental value from the LHCb collabo-
ration (1) and the world average (2) leaves little room to
new physics contributions to �ACP in charm.

As a matter of fact, relying only on the CPT constraint
restricted to two channels and given in Eq. (9), one can
easily obtain the CP asymmetries as:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(17)

which is also valid for the ACP ’s from Eq. (12). There-
fore, using only experimental inputs for �ACP and Br’s
we can access the ACP ’s for the individual channels:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 ,
(18)

which is within the interval of our theory based re-
sults (15). These values are compatible with other recent
calculations [33, 34] based on di↵erent methods.
Summary. We predict the ACP ’s for the D0 ! ⇡�⇡+

and D̄0 ! K�K+, resulting in a �ACP compatible with
the recently observed LHCb value [6], relying absolutely
in SM physics and at this level no BSM e↵ects should
be called to explain the experimental result. The key in-
gredient to produce the CP violation is the coupling be-
tween the ⇡+⇡� and K+K� channels as the source of the
strong phase introduced in a CPT invariant framework.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements for these decays.

It is expected that ACP (D0 ! ⇡�⇡+) and ACP (D0 !
K�K+) will be soon measured by the LHCb collabora-
tion, which will put a straight constraint to the validity
of the CPT condition for only these two channels:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

On the other side, if our predictions are verified, the
forthcoming data could constrain the phase-shift di↵er-
ence in the elastic ⇡+⇡� and K+K� channels at the D0

mass.
Furthermore, the same rescattering mechanism can

contribute to CPV in three-body SCS D decays. In
fact, one expect that the CP asymmetry must be en-
hanced looking to the three-body D+ ! ⇡+⇡�⇡+ and
D+ ! K+K�⇡+ phase-space distribution [35], where
the ⇡+⇡� ! K+K� rescattering is relevant in a large
amount of the phase space available to K+K�, as seen
in Fig. 3. This is left for a future study.

In conclusion, we found that there is no much room to
observe BSM physics in the singly Cabibbo suppressed
channels D0 ! ⇡�⇡+ and D0 ! K�K+. However, as it
was pointed out several times [1, 4], the SM gives almost
no contribution to CPV in double Cabibbo suppressed
(DCS) decays. If CPV is observed in DCS modes this
will establish the intervention of New Physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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Any 3-body decay amplitude

D = 1− (loop×K) . (7)

As discussed in the sequence, 1/D is the post-QCD version of the BW line shape, eq.(2).

A very important feature of this result is that the amplitude A is unitary. This property

is quite general and derives from the structure of the denominator D, which is suitably

complex owing to the well defined imaginary function ΩI in eq.(4). The forms adopted for

both ΩR and K, provided it is real, are irrelevant for this property of A. This justifies the

widespread use of the K-matrix approximation, which is implemented by neglecting ΩR and

writing

K−matrix → loop = 0 + iΩI . (8)
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FIG. 5: (a) Decay amplitude in the 2 + 1 approximation; (b) form factor.

The amplitude A is a key element in the description of heavy-meson decays, for they

are present in the FSIs which supplement the weak process of fig.1. Strong interactions

involving three bodies can be very complicated. The simplest class of FSIs corresponds to

the (2 + 1) approximation, represented in fig.5, in which the first diagram in (a) represents

the non-resonant contribution and the other two include particle interactions with one of the

final mesons as a spectator. Structure (a) represents the heavy meson decay amplitude in

the (2 + 1) approximation and the blob indicated by F is usually called form factor, which

many authors take as the single contribution to the decay [23]. It is isolated in fig.(b) and,

denoting by g the resonance-pseudoscalar coupling constant, the function F can be related

to the meson-meson scattering amplitude by

F = g [1 + (loop× A)] = g
1

D
, (9)

11

meson-meson

D = 1− (loop×K) . (7)

As discussed in the sequence, 1/D is the post-QCD version of the BW line shape, eq.(2).

A very important feature of this result is that the amplitude A is unitary. This property

is quite general and derives from the structure of the denominator D, which is suitably

complex owing to the well defined imaginary function ΩI in eq.(4). The forms adopted for

both ΩR and K, provided it is real, are irrelevant for this property of A. This justifies the

widespread use of the K-matrix approximation, which is implemented by neglecting ΩR and

writing

K−matrix → loop = 0 + iΩI . (8)

+=

+=(b)

(a) +T W WW
F

A

AF

FIG. 5: (a) Decay amplitude in the 2 + 1 approximation; (b) form factor.

The amplitude A is a key element in the description of heavy-meson decays, for they

are present in the FSIs which supplement the weak process of fig.1. Strong interactions

involving three bodies can be very complicated. The simplest class of FSIs corresponds to

the (2 + 1) approximation, represented in fig.5, in which the first diagram in (a) represents

the non-resonant contribution and the other two include particle interactions with one of the

final mesons as a spectator. Structure (a) represents the heavy meson decay amplitude in

the (2 + 1) approximation and the blob indicated by F is usually called form factor, which

many authors take as the single contribution to the decay [23]. It is isolated in fig.(b) and,

denoting by g the resonance-pseudoscalar coupling constant, the function F can be related

to the meson-meson scattering amplitude by

F = g [1 + (loop× A)] = g
1

D
, (9)

11

Form factor

(2+1) approach

in fig.4 (a), and it is a real function because, at this point we are still dealing with a bare

resonance, described by a pole at its mass. The tree amplitude is then given by A0 = K0.
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FIG. 4: Scattering amplitudes T and kernels K: (a) tree level; (b) first perturbative correction; (c)

second perturbative correction; (d) full amplitude.

The single-loop correction is shown in fig.(b) and involves three terms, in s, t and u

channels. The first one involves a two-meson s-channel propagator, whereas the last two do

not and are grouped into a new kernelK1. The case of two loops is shown in fig. (c), whereK2

is a higher order kernel and the s-channel is represented by three successive K0 interactions.

Repeating this indefinitely and adding the results, we obtain a scattering amplitude of the

form

A = K ×
[
1 + (loop×K) + (loop×K)2 + (loop×K)3 + · · ·

]
, (3)

loop = ΩR + iΩI , (4)

K = K0 +K1 +K2 + · · · . (5)

The geometric series in eq.(3) can be summed and one has

A =
K
D

, (6)

10

where D is the denominator given in (7). The imaginary part of D gives rise to a finite

width to the resonance.

In order to go beyond the (2 + 1) approximation, one would need to tackle a rather

complicated three-body problem, which involves both multiple scattering series and proper

three-body interactions, as indicated in Fig.6. It is worth stressing that these FSIs are not a

matter of choice, since they are compulsory contributions to the problem. Part of this sector

can be tackled by means of Fadeev techniques[8] or Khuri-Treiman formalism [10, 34] but

this kind of effort is still incipient to describe the full dynamics of heavy mesons nonleptonic

decays.
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FIG. 6: Decay amplitude: 2 + 1 approximation, supplemented by three-body interactions.

In summary, the decay of a heavy meson into three light mesons involves two distinct

sectors, a weak primary vertex and a structure of final state strong interactions. Although

the former is not simple, the latter may be expected to be much more complicated and

progress in the area depends on the definition of a hierarchy among strong problems. The

simplest subset of problems is provided by the (2 + 1) approximation, which depends on

meson-meson scattering amplitudes and even these two-body interaction are not sufficiently

well known for systems involving pions, kaons and etas, within the phase space provided by

D and B decays.

III. SCATTERING AMPLITUDES

In this work we present a practical model for the inclusion of any number of resonances

in phenomenological meson-meson scattering amplitudes, so that they can be used as trial

functions in more complicated reactions, such as heavy -mesons or τ decays. Instead of
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channels. The first one involves a two-meson s-channel propagator, whereas the last two do

not and are grouped into a new kernelK1. The case of two loops is shown in fig. (c), whereK2

is a higher order kernel and the s-channel is represented by three successive K0 interactions.
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second perturbative correction; (d) full amplitude.
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channels. The first one involves a two-meson s-channel propagator, whereas the last two do

not and are grouped into a new kernelK1. The case of two loops is shown in fig. (c), whereK2

is a higher order kernel and the s-channel is represented by three successive K0 interactions.
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