FSI to enhance $C P$ violation in charm decay

Patricia C. Magalhães

Complutense University of Madrid
p.magallhaes@cern.ch

Implications of LHCb measurements and future prospects
CERN 2022

motivation

- $\Delta A_{C P}^{\mathrm{LHCb}}=A_{c p}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{c p}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=-(1.54 \pm 0.29) \times 10^{-3}$

Phys. Rev. Lett. I22, 2 II 803 (20I9)
\rightarrow direct CP asymmetry observation

- $A_{C P}^{L H C b}(K K)=(0.77 \pm 0.57) \times 10^{-3}$

$$
\hookrightarrow A_{C P}^{L H C b}(\pi \pi)=(2.32 \pm 0.61) \times 10^{-3}
$$

arXiv:2209.03179

- QCD \rightarrow LCSR predictions $A_{C P} \approx 10^{-4}$ (1 order magnitude bellow)
new physics? nonperturbative effects?!
\rightarrow CPV on $D \rightarrow h h h ?$
\rightarrow searches in many process at LHCb, BESIII, Belell \longrightarrow is expected soon with LHCb run II

direct CP violation

- 2 amplitudes: SAME final state, $\neq \operatorname{strong}\left(\delta_{i}\right)$ and weak $\left(\phi_{i}\right)$ phases

$$
\begin{array}{ll}
\langle f| T|M\rangle=A_{1} e^{i\left(\delta_{1}+\phi_{1}\right)}+A_{2} e^{i\left(\delta_{2}+\phi_{2}\right)} & \text { - weak phase } \rightarrow \text { CKM } \\
\langle\bar{f}| T|\bar{M}\rangle=A_{1} e^{i\left(\delta_{1}-\phi_{1}\right)}+A_{2} e^{i\left(\delta_{2}-\phi_{2}\right)} & \text { •strong phase } \rightarrow \text { QCD }
\end{array}
$$

- $\left.\left.\Delta \Gamma_{C P}=\Gamma(M \rightarrow f)-\Gamma(\bar{M} \rightarrow \bar{f})=|\langle f| T| M\right\rangle\left.\right|^{2}-|\langle\bar{f}| T| \bar{M}\right\rangle\left.\right|^{2}=-4 A_{1} A_{2} \sin \left(\delta_{1}-\delta_{2}\right) \sin \left(\phi_{1}-\phi_{2}\right)$
- $A_{C P}=\frac{\Gamma(M \rightarrow f)-\Gamma(\bar{M} \rightarrow \bar{f})}{\Gamma(M \rightarrow f)+\Gamma(\bar{M} \rightarrow \bar{f})}$
- BSS mOdel Bander Silverman \& Soni PRL 43 (1979) 242

$$
\phi+\frac{6}{T}
$$

- not enough for CPV

- hadronic interactions are natural sources of strong phase!

CPV on heavy meson decays

- CPV in $B^{ \pm} \rightarrow h^{ \pm} h^{-} h^{+}$

$$
A_{C P}\left(B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}\right)=+0.011 \pm 0.002,
$$

LHCb Run II $5.9 \mathrm{fb}^{-1}$
arXiv:2206.07622 PRD 2022 XX

- integrated

$$
\begin{aligned}
A_{C P}\left(B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}\right) & =-0.037 \pm 0.002, \\
A_{C P}\left(B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}\right) & =+0.080 \pm 0.004, \\
A_{C P}\left(B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}\right) & =-0.114 \pm 0.007,
\end{aligned}
$$

- massive localized Acp

- suggest dynamic effect

rescattering as a CPV mechanism

- CPT must be preserved

$$
\begin{aligned}
& \text { Lifetime } \tau=1 / \Gamma_{\text {total }}=1 / \bar{\Gamma}_{\text {total }} \\
& \Gamma_{\text {total }}=\Gamma_{1}+\Gamma_{2}+\Gamma_{3}+\Gamma_{4}+\Gamma_{5}+\Gamma_{6}+\ldots \\
& \bar{\Gamma}_{\text {total }}=\bar{\Gamma}_{1}+\bar{\Gamma}_{2}+\bar{\Gamma}_{3}+\bar{\Gamma}_{4}+\bar{\Gamma}_{5}+\bar{\Gamma}_{6}+\ldots
\end{aligned}
$$

$$
\rightarrow \quad \sum \Delta \Gamma_{C P}=0
$$

CPV in one channel should be compensated by another, same quantum \#, with opposite sign

- LHCb run 1 projections

- rescattering $\pi \pi \rightarrow K K$
$\longrightarrow C P V$ at [1-1.6] GeV
Frederico, Bediaga, Lourenço PRD89(2014)094013
- implemented in LHCb amplitude analysis:
$\longrightarrow B^{ \pm} \rightarrow \pi^{-} \pi^{+} \pi^{ \pm} \quad$ PRDIOI (2020) 012006; PRL I24 (2020) 03I80I
$\mapsto B^{ \pm} \rightarrow \pi^{ \pm} K^{-} K^{+}$PRL 123 (2019) 231802

FSI as source of CP asymmetry in D decays

- how to explain the CPV in charm?

$$
\Delta A_{C P}^{\mathrm{LHCb}}=A_{c p}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{c p}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=-(1.54 \pm 0.29) \times 10^{-3}
$$

- single cabibbo suppressed decays

$$
D^{0} \rightarrow \pi^{+} \pi^{-}
$$

$$
D^{0} \rightarrow K^{+} K^{-}
$$

$V_{c d} V_{u d}^{*} \approx \lambda\left(1-\lambda^{4} e^{i \delta}\right)$

$$
V_{c s} V_{u s}^{*} \approx \lambda\left(1-\lambda^{2}\right)
$$

- weak phase in $K K$ is 20 times smaller
\rightarrow what about strong phases if not from penguin? hadronic FSI

FSI to enhance CPV

- D and \bar{D} can decay to $\pi \pi$ and KK
- build amplitudes decays implying three constraints:
- CPT invariance relates channels with same quantum numbers

$$
\rightarrow \quad \sum \Delta \Gamma_{C P}=0
$$

- Watson theorem relates the strong phase from the rescattering process to the decay amplitudes
- the unitarity of the strong S-matrix.

FSI and CPT

- FSI in $D^{0} \rightarrow \pi^{+} \pi^{-}$and $D^{0} \rightarrow K^{+} K^{-}$can include multiple mesons

- assume only 2 coupled-channels to FSI: $\pi \pi, K \bar{K}$
$\rightarrow \quad S_{2 M, 2 M}=\left(\begin{array}{cc}S_{\pi \pi, \pi \pi} & S_{\pi \pi, K K} \\ S_{K K, \pi \pi} & S_{K K, K K}\end{array}\right)$

$$
\begin{aligned}
& S_{\pi \pi, \pi \pi}=\eta \mathrm{e}^{2 i \delta_{\pi \pi}} \quad S_{K K, K K}=\eta \mathrm{e}^{2 i \delta_{K K}} \\
& S_{\pi \pi, K K}=S_{K K, \pi \pi}=\imath \sqrt{1-\eta^{2}} \mathrm{e}^{\imath\left(\delta_{\pi \pi}+\delta_{K K}\right)}
\end{aligned}
$$

- two pions cannot go to three pions due to G-parity
- ignore four pion coupling to the 2 M channel based on $1 / \mathrm{Nc}$ counting
- ignore $\eta \eta$ channel once their coupling to the $\pi \pi$ channel are suppressed with respect to $K \bar{K}$.
- CPT constraint restricted to the two-channels: $\sum_{f=(\pi \pi, K K)}\left(\left|\mathcal{A}_{D^{0} \rightarrow f}\right|^{2}-\left|\mathcal{A}_{\bar{D}^{0} \rightarrow f}\right|^{2}\right)=0$

Decay amplitudes

- dressing the weak tree topology with FSI
\rightarrow penguin are suppressed

- $D^{0} \rightarrow K K$

$\rightarrow \mathcal{A}_{D^{0} \rightarrow K K}=\eta \mathrm{e}^{2 i \delta_{K K}} V_{c s}^{*} V_{u s} a_{K K}+i \sqrt{1-\eta^{2}} \mathrm{e}^{i\left(\delta_{\pi \pi}+\delta_{K K}\right)} V_{c d}^{*} V_{u d} a_{\pi \pi}$
$\rightarrow \mathcal{A}_{\bar{D}^{0} \rightarrow f}$ same with CKM cc.
- $D^{0} \rightarrow \pi \pi$

$$
\otimes \pi \pi \rightarrow \pi \pi
$$

$\rightarrow \mathcal{A}_{D^{0} \rightarrow \pi \pi}=\eta \mathrm{e}^{2 i \delta_{\pi \pi}} V_{c d}^{*} V_{u d} a_{\pi \pi}+i \sqrt{1-\eta^{2}} \mathrm{e}^{i\left(\delta_{\pi \pi}+\delta_{K K}\right)} V_{c s}^{*} V_{u s} a_{K K}$

- $a_{K K}$ and $a_{\pi \pi}$ do not carry any strong phases (real)

Watson theorem

- $\delta_{\pi \pi}, \delta_{K K}$ and $\delta_{\pi \pi \rightarrow K K}$ are the same independent of the initial process
\rightarrow we can use CERN-Munich data from 80's Longacre etal, Phys. Lett. B B 177,223 (1986) Hyams et al., Nucl. Phys. B I00, 205 (1975) Ochs, J. Phys. G 40, 04300I (2013)
- $\pi \pi \rightarrow \pi \pi$

Pelaez, Rodas, Elvira Eur.Phys.J.C 79 (2019) I2, I008
amplitude $\hat{f}_{l}(s)=\left[\frac{\eta_{l} e^{2 i \delta_{l}}-1}{2 i}\right]$.
\rightarrow elasticity drops dramatically near $K \bar{K} \rightarrow$ strongly couple

Watson theorem

- $\pi \pi \rightarrow K K$

$$
\rightarrow S_{\pi \pi, K K}(s)=\imath \sqrt{1-\eta^{2}} \mathrm{e}^{\imath\left(\delta_{\pi \pi}+\delta_{K K}\right)}=i 4 \sqrt{\frac{q_{\pi} q_{K}}{s}}\left|g_{0}^{0}(s)\right| e^{i \phi_{0}^{0}(s)} \Theta\left(s-4 m_{K}^{2}\right)
$$

Pelaez and Rodas, Eur. Phys. J. C 78, 897 (2018)

Cohen et al., Phys. Rev. D 22, 2595 (1980)
Etkin et al., Phys. Rev. D 25, I786 (I982)

- Pelaez parametrization @ M_{D}^{2} :

$$
\begin{aligned}
& \left|g_{0}^{0}\left(M_{D}^{2}\right)\right| \approx 0.125 \pm 0.025 \rightarrow \sqrt{1-\eta^{2}} \approx 0.229 \pm 0.046 \rightarrow \eta \approx 0.973 \\
& \phi_{0}^{0}=\delta_{\pi \pi}+\delta_{K K} \approx 343^{\circ} \pm 8^{\circ}
\end{aligned}
$$

Partial decay widths

- $\Delta \Gamma_{f}=\Gamma\left(D^{0} \rightarrow f\right)-\Gamma\left(\bar{D}^{0} \rightarrow f\right)$

$$
\begin{gathered}
\mathcal{A}_{D^{0} \rightarrow \pi \pi}=\eta \mathrm{e}^{2 i \delta_{\pi \pi}} V_{c d}^{*} V_{u d} a_{\pi \pi}+i \sqrt{1-\eta^{2}} \mathrm{e}^{i\left(\delta_{\pi \pi}+\delta_{K K}\right)} V_{c s}^{*} V_{u s} a_{K K} \\
\mathcal{A}_{D^{0} \rightarrow K K}=\eta \mathrm{e}^{2 i i_{K K}} V_{c s}^{*} V_{u s} a_{K K}+i \sqrt{1-\eta^{2}} \mathrm{e}^{i\left(\delta_{\pi \pi}+\delta_{K K}\right)} V_{c d}^{*} V_{u d} a_{\pi \pi}
\end{gathered}
$$

$\rightarrow \Delta \Gamma_{\pi \pi}=-\Delta \Gamma_{K K}=4 \operatorname{Im}\left[V_{c s} V_{u s}^{*} V_{c d}^{*} V_{u d}\right] \underline{a_{\pi \pi} a_{K K}} \eta \sqrt{1-\eta^{2}} \cos \phi$

- $\phi=\delta_{K K}-\delta_{\pi \pi}$
- the sign of $\Delta \Gamma_{f}$ is determined by the CKM elements and the S-wave phase-shifts
- need to quantify $a_{\pi \pi}$ and $a_{K K}$:
at D^{0} mass $\sqrt{1-\eta^{2}} \ll 1 \rightarrow \begin{aligned} & \Gamma_{\pi \pi} \approx \eta^{2}\left|V_{c d}^{*} V_{u d}\right|^{2} a_{\pi \pi}^{2} \\ & \Gamma_{K K} \approx \eta^{2}\left|V_{c s}^{*} V_{u s}\right|^{2} a_{K K}^{2}\end{aligned}$
$\operatorname{Br}[D \rightarrow f]=\Gamma_{f} / \Gamma_{\text {total }}$
we can use
experimental input
- $A_{C P}(f)=\frac{\Gamma\left(D^{0} \rightarrow f\right)-\Gamma\left(\bar{D}^{0} \rightarrow f\right)}{\Gamma\left(D^{0} \rightarrow f\right)+\Gamma\left(\bar{D}^{0} \rightarrow f\right)} \quad=\Delta \Gamma_{f} / 2 \Gamma_{f}$

Final values for $A_{C P}$

- $A_{C P}(f) \approx \pm 2 \frac{\operatorname{Im}\left[V_{c s} V_{u s}^{*} V_{c d}^{*} V_{u d}\right]}{\left|V_{c s} V_{u s}^{*} V_{c d}^{*} V_{u d}\right|} \eta^{-1} \sqrt{1-\eta^{2}} \cos \phi\left[\frac{\operatorname{Br}\left(D^{0} \rightarrow K^{+} K^{-}\right)}{\operatorname{Br}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)}\right]^{ \pm \frac{1}{2}}$
- $\operatorname{Br}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=(1.455 \pm 0.024) \times 10^{-3}$ PDG $\operatorname{Br}\left(D^{0} \rightarrow K^{+} K^{-}\right)=(4.08 \pm 0.06) \times 10^{-3}$

- $\frac{\operatorname{Im}\left[V_{c s} V_{u s}^{*} V_{c d}^{*} V_{u d}\right]}{\left|V_{c s} V_{u s}^{*} V_{c d}^{*} V_{u d}\right|}=(6.02 \pm 0.32) \times 10^{-4} \quad$ PDG
- $\cos \phi: \quad \phi=\delta_{K K}-\delta_{\pi \pi}=\left(\delta_{K K}+\delta_{\pi \pi}\right)-2 \delta_{\pi \pi}$ from $\pi \pi$ and $\pi \pi \rightarrow K K$ data: $\cos \phi=0.99 \pm 0.18$

$$
\begin{aligned}
& A_{C P}(\pi \pi)=(1.99 \pm 0.37) \times 10^{-3} \sqrt{\eta^{-2}-1} \\
& A_{C P}(K K)=-(0.71 \pm 0.13) \times 10^{-3} \sqrt{\eta^{-2}-1}
\end{aligned}
$$

as a function of inelasticity

Predictions for $\Delta A_{C P}$

$$
\Delta A_{C P}^{\mathrm{LHCb}}=-(1.54 \pm 0.29) \times 10^{-3}
$$

- $\Delta A_{C P}^{t h}=-(2.70 \pm 0.50) \times 10^{-3} \sqrt{\eta^{-2}-1}$
- from $\pi \pi \rightarrow K K$ data (only one set) $\rightarrow \eta \approx 0.973 \pm 0.011$

$$
\Delta A_{C P}^{t h}=-(0.64 \pm 0.18) \times 10^{-3} \quad 3 \sigma
$$

\rightarrow largest theoretical prediction within SM without relying on fitting parameters
\rightarrow systematic uncertainties are unknown in $\eta \rightarrow$ error is underestimated

- Alternatively one can assume all inelasticity in $\pi \pi \rightarrow \pi \pi$ is due to KK
\rightarrow more precise data (Grayer) $\rightarrow \quad \eta=0.78 \pm 0.08$

$$
\Delta A_{C P}^{t h}=-(2.17 \pm 0.70) \times 10^{-3} \quad 1 \sigma
$$

Predictions for $A_{C P}(h h)$

- direct CP asymmetry observation

- with $\eta=0.78 \pm 0.08$

$$
\begin{array}{c|c}
A_{C P}(K K)=-(0.57 \pm 0.18) \times 10^{-3} & 2 \sigma \\
A_{C P}(\pi \pi)=(1.60 \pm 0.51) \times 10^{-3} & 1 \sigma
\end{array}
$$

Final remarks

- hadronic FSI (and their strong phases)are crucial to explain CP violation in B and D decays
- we proposed a mechanism that can explain CPV in D

$$
V_{c s} V_{u s}^{*}
$$

- coupling $\pi \pi \leftrightarrow K \bar{K}$ in a CPT invariant framework
- still room to add 2nd order effects

\rightarrow predicted $\Delta A_{C P}$ which is compatible with LHCb
- new measurement for $A_{C P}(h h)$ from LHCb
- agrees with our predictions with 2σ
we still need more data to fully understood it

Final remarks

- In 3-body decays this effect will be bigger and phase-space distributed $\hookrightarrow D^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$and $D^{+} \rightarrow \pi^{+} K^{-} K^{+}$have exactly the same Weak vertex

- expected CPV in run II analysis
stay tuned!
thank you!
obrigada!!
\#forabolsonaro

Backup slides

CPV: amplitude analysis

- $B^{ \pm} \rightarrow \pi^{-} \pi^{+} \pi^{ \pm}$
- $\left(\pi^{-} \pi^{+}\right)_{S-W a v e} 3$ different model:
$\rightarrow \sigma$ as $\mathrm{BW}(!)+$ rescattering;
\rightarrow P-vector K-Matrix;
\rightarrow binned freed lineshape (QMI);

$m_{\text {low }}\left[\mathrm{GeV} / c^{2}\right]$

PRDIOI (2020) OI2006; PRL I24 (2020) 03 I80I

Contribution	Fit fraction (10 ${ }^{-2}$)	$A_{C P}\left(10^{-2}\right)$	B^{+}phase (${ }^{\circ}$)	B^{-}phase (${ }^{\circ}$)
Isobar model				
$\rho(770)^{0}$	$55.5 \pm 0.6 \pm 2.5$	$+0.7 \pm 1.1 \pm 1.6$	-	-
$\omega(782)$	$0.50 \pm 0.03 \pm 0.05$	$-4.8 \pm 6.5 \pm 3.8$	$-19 \pm 6 \pm 1$	$+8 \pm 6 \pm 1$
$f_{2}(1270)$	$9.0 \pm 0.3 \pm 1.5$	$+46.8 \pm 6.1 \pm 4.7$	$+5 \pm 3 \pm 12$	$+53 \pm 2 \pm 12$
$\rho(1450)^{0}$	$5.2 \pm 0.3 \pm 1.9$	$-12.9 \pm 3.3 \pm 35.9$	$+127 \pm 4 \pm 21$	$+154 \pm 4 \pm 6$
$\rho_{3}(1690)^{0}$	$0.5 \pm 0.1 \pm 0.3$	$-80.1 \pm 11.4 \pm 25.3$	$-26 \pm 7 \pm 14$	$-47 \pm 18 \pm 25$
S-wave	$25.4 \pm 0.5 \pm 3.6$	$+14.4 \pm 1.8 \pm 2.1$	-	
Rescattering	$1.4 \pm 0.1 \pm 0.5$	$+44.7 \pm 8.6 \pm 17.3$	$-35 \pm 6 \pm 10$	$-4 \pm 4 \pm 25$
σ	$25.2 \pm 0.5 \pm 5.0$	$+16.0 \pm 1.7 \pm 2.2$	$+115 \pm 2 \pm 14$	$+179 \pm 1 \pm 95$
K-matrix				
$\rho(770)^{0}$	$56.5 \pm 0.7 \pm 3.4$	$+4.2 \pm 1.5 \pm 6.4$	-	
$\omega(782)$	$0.47 \pm 0.04 \pm 0.03$	$-6.2 \pm 8.4 \pm 9.8$	$-15 \pm 6 \pm 4$	$+8 \pm 7 \pm 4$
$f_{2}(1270)$	$9.3 \pm 0.4 \pm 2.5$	$+42.8 \pm 4.1 \pm 9.1$	$+19 \pm 4 \pm 18$	$+80 \pm 3 \pm 17$
$\rho(1450)^{0}$	$10.5 \pm 0.7 \pm 4.6$	$+9.0 \pm 6.0 \pm 47.0$	$+155 \pm 5 \pm 29$	$-166 \pm 4 \pm 51$
$\rho_{3}(1690)^{0}$	$1.5 \pm 0.1 \pm 0.4$	$-35.7 \pm 10.8 \pm 36.9$	$+19 \pm 8 \pm 34$	$+5 \pm 8 \pm 46$
S-wave	$25.7 \pm 0.6 \pm 3.0$	$+15.8 \pm 2.6 \pm 7.2$	-	-
QMI				
$\rho(770)^{0}$	$54.8 \pm 1.0 \pm 2.2$	$+4.4 \pm 1.7 \pm 2.8$	-	-
$\omega(782)$	$0.57 \pm 0.10 \pm 0.17$	$-7.9 \pm 16.5 \pm 15.8$	$-25 \pm 6 \pm 27$	$-2 \pm 7 \pm 11$
$f_{2}(1270)$	$9.6 \pm 0.4 \pm 4.0$	$+37.6 \pm 4.4 \pm 8.0$	$+13 \pm 5 \pm 21$	$+68 \pm 3 \pm 66$
$\rho(1450)^{0}$	$7.4 \pm 0.5 \pm 4.0$	$-15.5 \pm 7.3 \pm 35.2$	$+147 \pm 7 \pm 152$	$-175 \pm 5 \pm 171$
$\rho_{3}(1690)^{0}$	$1.0 \pm 0.1 \pm 0.5$	$-93.2 \pm 6.8 \pm 38.9$	$+8 \pm 10 \pm 24$	$+36 \pm 26 \pm 46$
S-wave	$26.8 \pm 0.7 \pm 2.2$	$+15.0 \pm 2.7 \pm 8.1$	-	-

- $B^{ \pm} \rightarrow \pi^{ \pm} K^{-} K^{+}$

PRL 123 (2019) 23 I 802

Contribution	Fit Fraction(\%)	$A_{C P}(\%)$	Magnitude $\left(B^{+} / B^{-}\right)$	Phase $[0]\left(B^{+} / B^{-}\right)$
$K^{*}(892)^{0}$	$7.5 \pm 0.6 \pm 0.5$	$+12.3 \pm 8.7 \pm 4.5$	$0.94 \pm 0.04 \pm 0.02$	0 (fixed)
			$1.06 \pm 0.04 \pm 0.02$	0 (fixed)
$K_{0}^{*}(1430)^{0}$	$4.5 \pm 0.7 \pm 1.2$	$+10.4 \pm 14.9 \pm 8.8$	$0.74 \pm 0.09 \pm 0.09$	$-176 \pm 10 \pm 16$
			$0.82 \pm 0.09 \pm 0.10$	$136 \pm 11 \pm 21$
Single pole	$32.3 \pm 1.5 \pm 4.1$	$-10.7 \pm 5.3 \pm 3.5$	$2.19 \pm 0.13 \pm 0.17$	$-138 \pm 7 \pm 5$
			$1.97 \pm 0.12 \pm 0.20$	$166 \pm 6 \pm 5$
$\rho(1450)^{0}$	$30.7 \pm 1.2 \pm 0.9$	$-10.9 \pm 4.4 \pm 2.4$	$2.14 \pm 0.11 \pm 0.07$	$-175 \pm 10 \pm 15$
			$1.92 \pm 0.10 \pm 0.07$	$140 \pm 13 \pm 20$
$f_{2}(1270)$	$7.5 \pm 0.8 \pm 0.7$	$+26.7 \pm 10.2 \pm 4.8$	$0.86 \pm 0.09 \pm 0.07$	$-106 \pm 11 \pm 10$
			$1.13 \pm 0.08 \pm 0.05$	$-128 \pm 11 \pm 14$
Rescattering	$16.4 \pm 0.8 \pm 1.0$	$-66.4 \pm 3.8 \pm 1.9$	$1.91 \pm 0.09 \pm 0.06$	$-56 \pm 12 \pm 18$
			$0.86 \pm 0.07 \pm 0.04$	$-81 \pm 14 \pm 15$
$\phi(1020)$	$0.3 \pm 0.1 \pm 0.1$	$+9.8 \pm 43.6 \pm 26.6$	$0.20 \pm 0.07 \pm 0.02$	$-52 \pm 23 \pm 32$
			$0.22 \pm 0.06 \pm 0.04$	$107 \pm 33 \pm 41$

Theoretical approaches to CPV on charm

QCD short-distance

- QCDF \rightarrow how to calculate penguin contributions? call BSM effects

Chala, Lenz, Rusov, Scholtz, JHEP 07, 161 (2019).
\bullet LCSR \rightarrow QCD, model independent but predictions are 1 order Khodjamirian, Petrov, magnitude bellow
long distance effect:

- topological and group symmetry approach
- with SU(3) breaking through FSI (fit agrees)

```
H.-Y. Cheng and C.-W. Chiang, PRD I00, 093002 (2019).
F. Buccella, A. Paul and P. Santorelli, PRD 99, II300I (2019)
```

- with resonances (fit agrees)

Schacht and A. Soni, Phys. Lett. B 825, I 36855 (2022).
Y. Grossman and S. Schacht, JHEP 07, 20 (2019)

- FSI with CPT (prediction agrees)
- coupling of $\pi \pi \rightarrow K K$ in D wave is bigger than $\eta \eta$ in S-wave

- $\sim M_{D}$ (1.864) mass

Coupled channel analysis of $J^{P C}=0^{++}$and 2^{++}isoscalar mesons with masses below 2.0 GeV ~
S.J. Lindenbaum ${ }^{\text {a.b }}$ and R.S. Longacre ${ }^{\text {a }}$
${ }^{\text {a }}$ Brookhaven National Laboratory, Upton, NY 11973, USA
${ }^{\text {b }}$ City College of New York, New York, NY 1003I, USA

- ignore $\eta \eta$ channel once their coupling to the $\pi \pi$ channel are suppressed with respect to $K \bar{K}$.

4π coupling to $\pi \pi$

- although the $D^{0} \rightarrow 4 \pi$ decays have a large branching fraction, there is no compelling experimental evidence that 4π is strongly coupled to $\pi \pi$ at $M_{D_{0}}$
$f_{0}(1500)$ DECAY MODES
- $f_{0}(1500)$ decays in bot channels

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Scale factor
Γ_{1}	$\pi \pi$	$(34.5 \pm 2.2) \%$	1.2
Γ_{2}	$\pi^{+} \pi^{-}$	seen	
Γ_{3}	$2 \pi^{0}$	seen	
Γ_{4}	4π	$(48.9 \pm 3.3) \%$	1.2
Γ_{5}	$4 \pi^{0}$	seen	
Γ_{6}	$2 \pi^{+} 2 \pi^{-}$	seen	
Γ_{7}	$2(\pi \pi)_{S \text {-wave }}$	seen	
Γ_{8}	$\rho \rho$	seen	
Γ_{9}	$\pi(1300) \pi$	seen	
Γ_{10}	$a_{1}(1260) \pi$	seen	1.1
Γ_{11}	$\eta \eta$	$(6.0 \pm 0.9) \%$	1.4
Γ_{12}	$\eta \eta^{\prime}(958)$	$(2.2 \pm 0.8) \%$	1.1
Γ_{13}	$K \bar{K}$	$(8.5 \pm 1.0) \%$	
Γ_{14}	$\gamma \gamma$	not seen	

- The nearest $f_{0}(1710)$ resonance have no observation of four pions reported.
$f_{0}(1710)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$K \bar{K}$	seen
Γ_{2}	$\eta \eta$	seen
Γ_{3}	$\pi \pi$	seen
Γ_{4}	$\gamma \gamma$	seen
Γ_{5}	$\omega \omega$	seen

- we don't have data from KK scattering !
- we can use $\pi \pi$ and $K K \rightarrow \pi \pi$ data: $\delta_{K K}-\delta_{\pi \pi}=\phi_{0}^{0}-2 \delta_{\pi \pi}=\left(\delta_{K K}+\delta_{\pi \pi}\right)-2 \delta_{\pi \pi}$
- CERN-Munich data (revised Ochs)

$\sqrt{s}[\mathrm{GeV}]$	$\cos \phi$
1.58	0.989 ± 0.149
1.62	0.994 ± 0.105
1.66	0.999 ± 0.040
1.70	0.987 ± 0.160
1.74	0.999 ± 0.048
1.78	0.999 ± 0.037
1.846	0.987 ± 0.175

Full story in 3-body decay

- Any 3-body decay amplitude

$$
\text { Form factor }-\infty=\square+\square
$$

meson-meson

- kernel should includes all the mm dynamics

$$
\text { K }=
$$

- Unitarized amplitude should includes all channels with the same (J,I)

