

Maria Zambrano grants to attract international talent

Maria Zambrany

FSI to enhance CP violation in charm decay

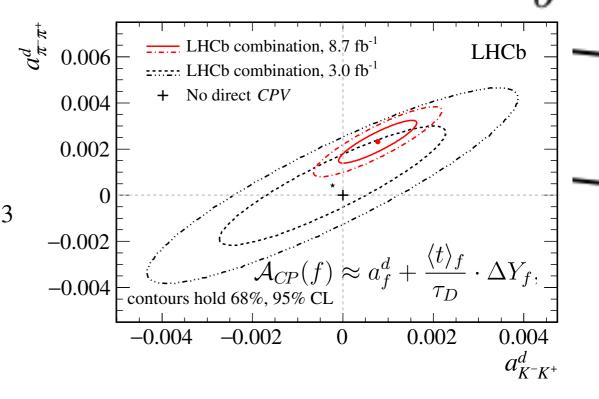
Patricia C. Magalhães

Complutense University of Madrid

p.magallhaes@cern.ch

Implications of LHCb measurements and future prospects

CERN 2022


motivation

•
$$\Delta A_{CP}^{\text{LHCb}} = A_{cp}(D^0 \to K^+K^-) - A_{cp}(D^0 \to \pi^+\pi^-) = -(1.54 \pm 0.29) \times 10^{-3}$$

Phys. Rev. Lett. 122, 211803 (2019)

•
$$A_{CP}^{LHCb}(KK) = (0.77 \pm 0.57) \times 10^{-3}$$

$$A_{CP}^{LHCb}(\pi\pi) = (2.32 \pm 0.61) \times 10^{-1}$$

arXiv:2209.03179

• QCD \rightarrow LCSR predictions $A_{CP} \approx 10^{-4}$ (1 order magnitude bellow)

> new physics? nonperturbative effects?!

Khodjamirian, Petrov, Phys. Lett. B 774, 235 (2017)

 $V_{cd}V_{ud}^*$

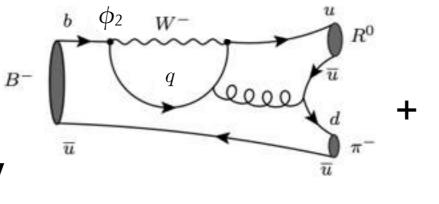
• CPV on $D \rightarrow hhh$? \rightarrow searches in many process at LHCb, BESIII, BeleII is expected soon with LHCb run II

FSI to enhance CPV in charm

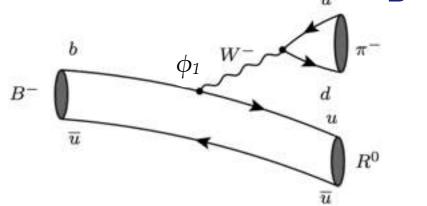
LHCb implications 2022

direct CP violation


• 2 amplitudes: SAME final state, \neq strong (δ_i) and weak (ϕ_i) phases


$$\langle f | T | M \rangle = A_1 e^{i(\delta_1 + \phi_1)} + A_2 e^{i(\delta_2 + \phi_2)}$$

 $\langle \bar{f} | T | \bar{M} \rangle = A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)}$
 $\bullet \text{ strong phase } \rightarrow \text{QCD}$


•
$$\Delta\Gamma_{CP} = \Gamma(M \to f) - \Gamma(\bar{M} \to \bar{f}) = |\langle f | T | M \rangle|^2 - |\langle \bar{f} | T | \bar{M} \rangle|^2 = -4A_1A_2\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)$$

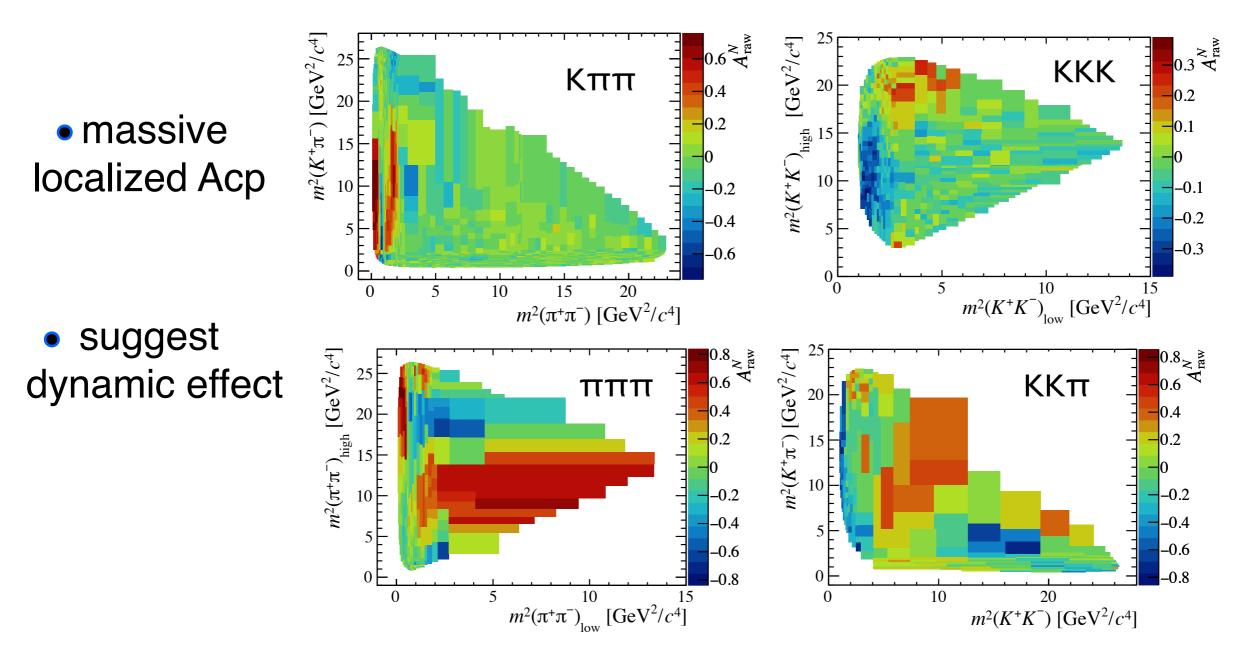
•
$$A_{CP} = \frac{\Gamma(M \to f) - \Gamma(M_{i} \to f)}{\Lambda(B \to f) + \Gamma(M \to f)} + A_2 e^{i(\delta_2 + \phi_2)}$$
$$A(B \to f) = A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)}$$
$$A(B \to f) = A_1 e^{i(\delta_1 - \phi_1)}$$
$$A(B \to f) = A_1 e^{i(\delta_1 - \phi_1)}$$
$$A(B \to f) = A_1 e^{i(\delta_1 - \phi_1)}$$

• BSSr 'A Bander Sperman & Sorli PRL 43 (1979) 242

not enough for CPV

• hadronic interactions are natural sources of strong phase! $|A_B \rightarrow f|^2 - |A_{\bar{B}} \rightarrow \bar{f}|^2 = -4A_1A_2\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)$ FSI to enhance CPV in charm LHCb implications 2022 $|A_B \rightarrow f|^2 - |A_B \rightarrow f|$ $B \rightarrow !$

Patricia Magalhães


CPV on heavy meson decays

• CPV in $B^{\pm} \rightarrow h^{\pm}h^{-}h^{+}$

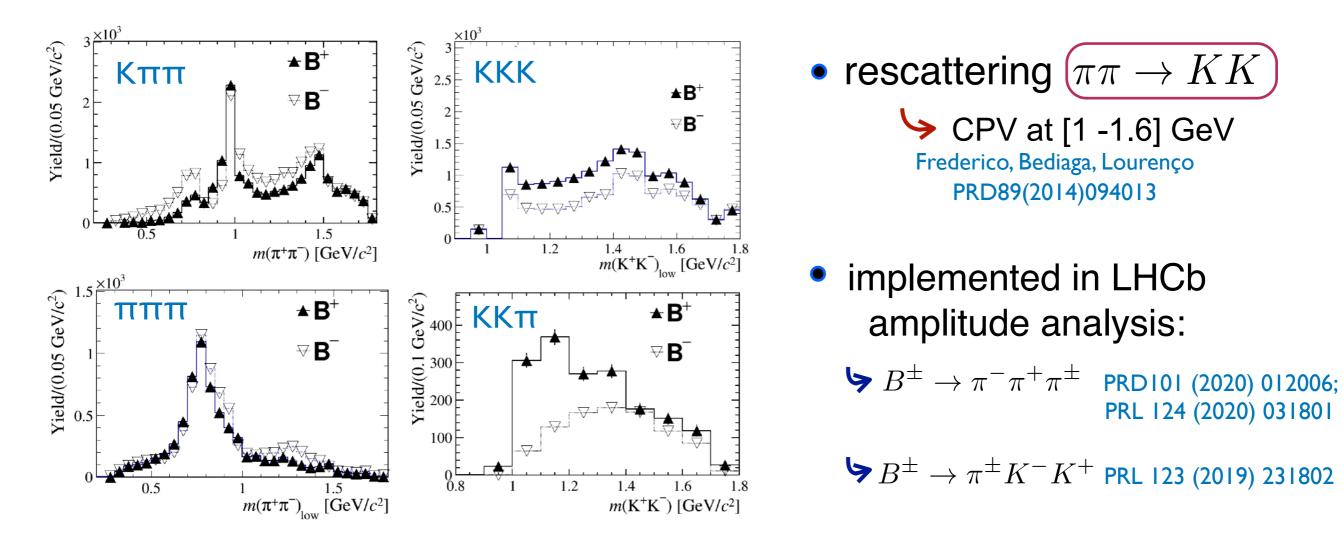
Run II 5.9 fb⁻¹

arXiv:2206.07622 PRD 2022 XX

 $A_{CP}(B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}) = +0.011 \pm 0.002,$ $A_{CP}(B^{\pm} \to K^{\pm}K^{+}K^{-}) = -0.037 \pm 0.002,$ $A_{CP}(B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}) = +0.080 \pm 0.004,$ $A_{CP}(B^{\pm} \to \pi^{\pm}K^{+}K^{-}) = -0.114 \pm 0.007,$

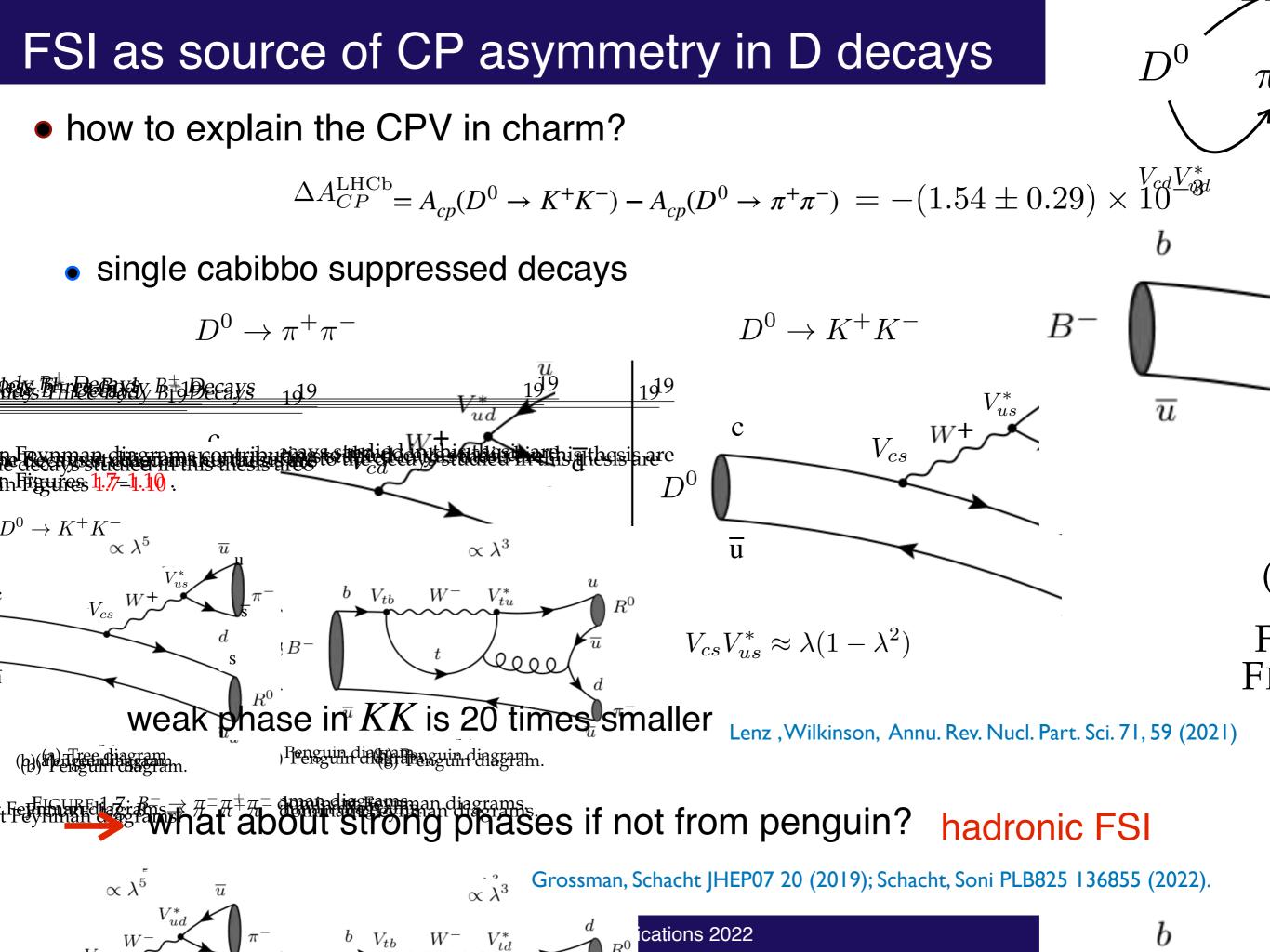
integrated

rescattering as a CPV mechanism

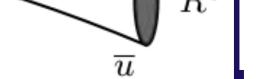

CPT must be preserved

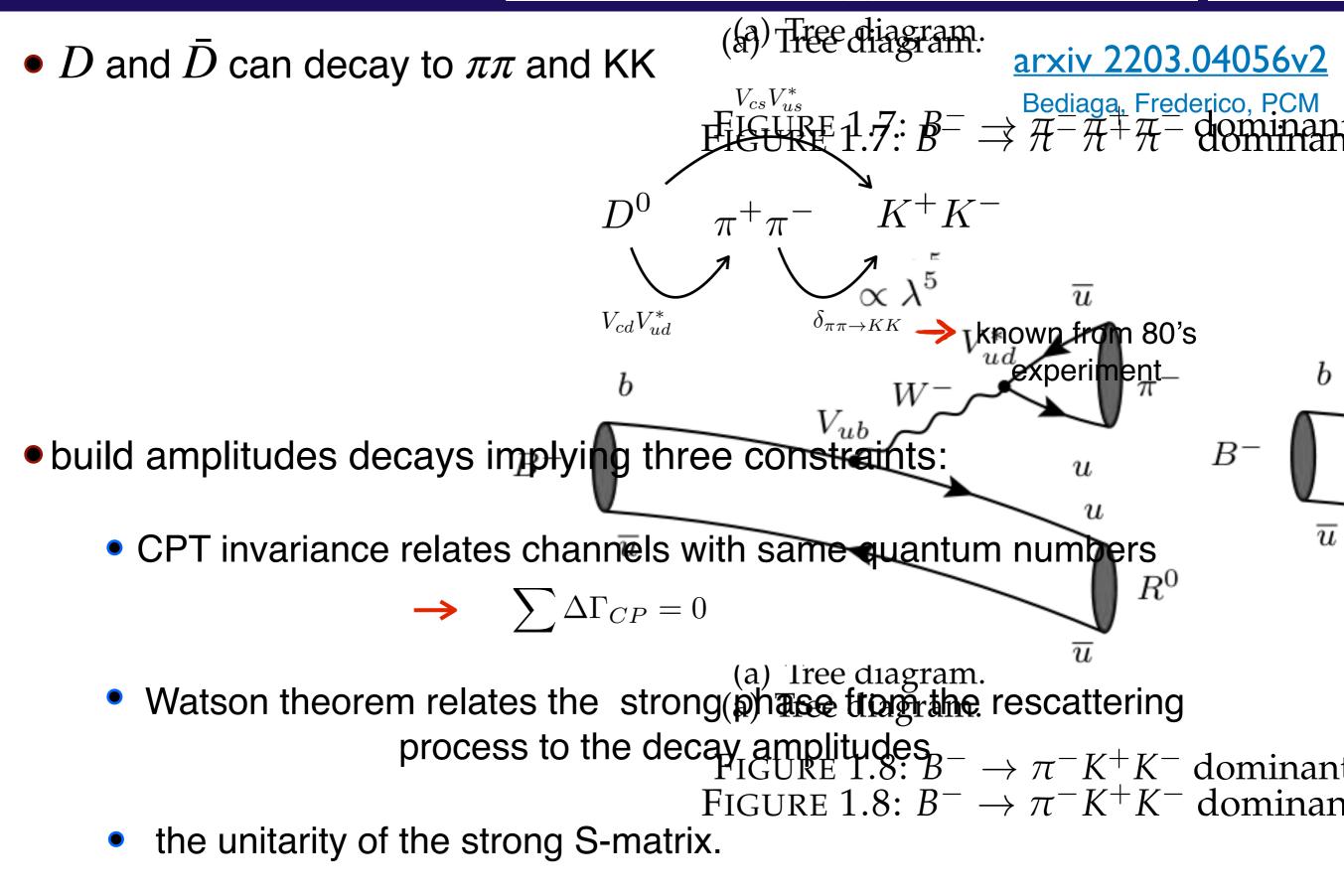
Lifetime
$$\tau = 1 / \Gamma_{total} = 1 / \overline{\Gamma}_{total}$$

 $\Gamma_{total} = \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4 + \Gamma_5 + \Gamma_6 + \dots$
 $\overline{\Gamma}_{total} = \overline{\Gamma}_1 + \overline{\Gamma}_2 + \overline{\Gamma}_3 + \overline{\Gamma}_4 + \overline{\Gamma}_5 + \overline{\Gamma}_6 + \dots$

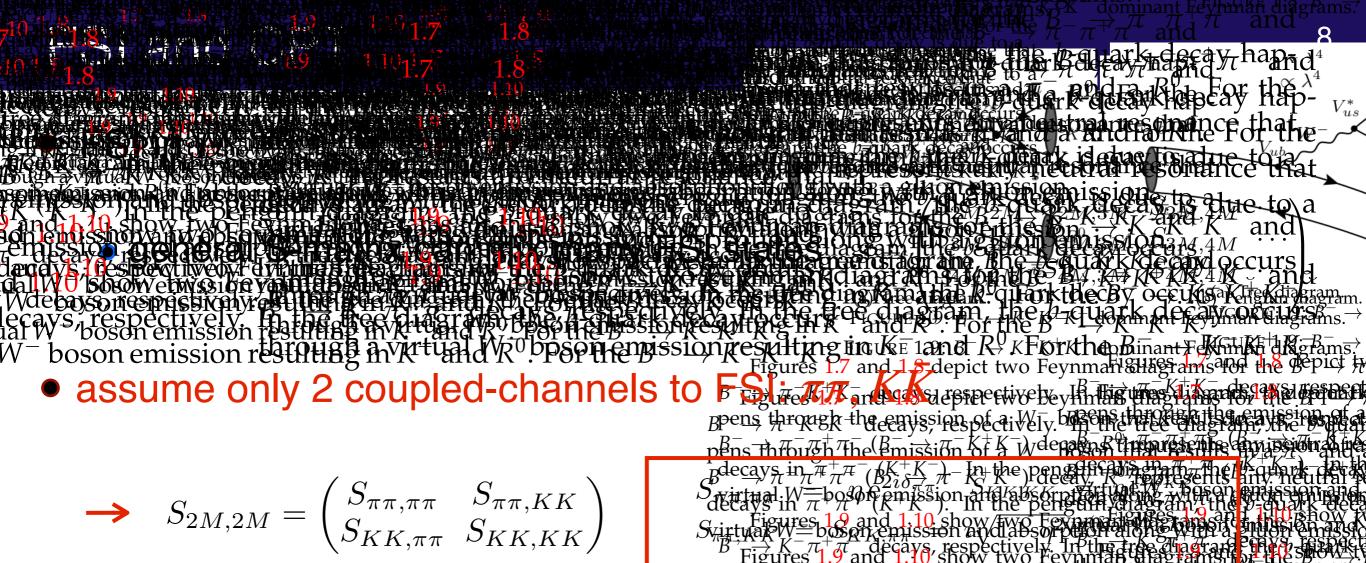

$$\sum \Delta \Gamma_{CP} = 0$$

CPV in one channel should be compensated by another, same quantum #, with opposite sign


LHCb run 1 projections

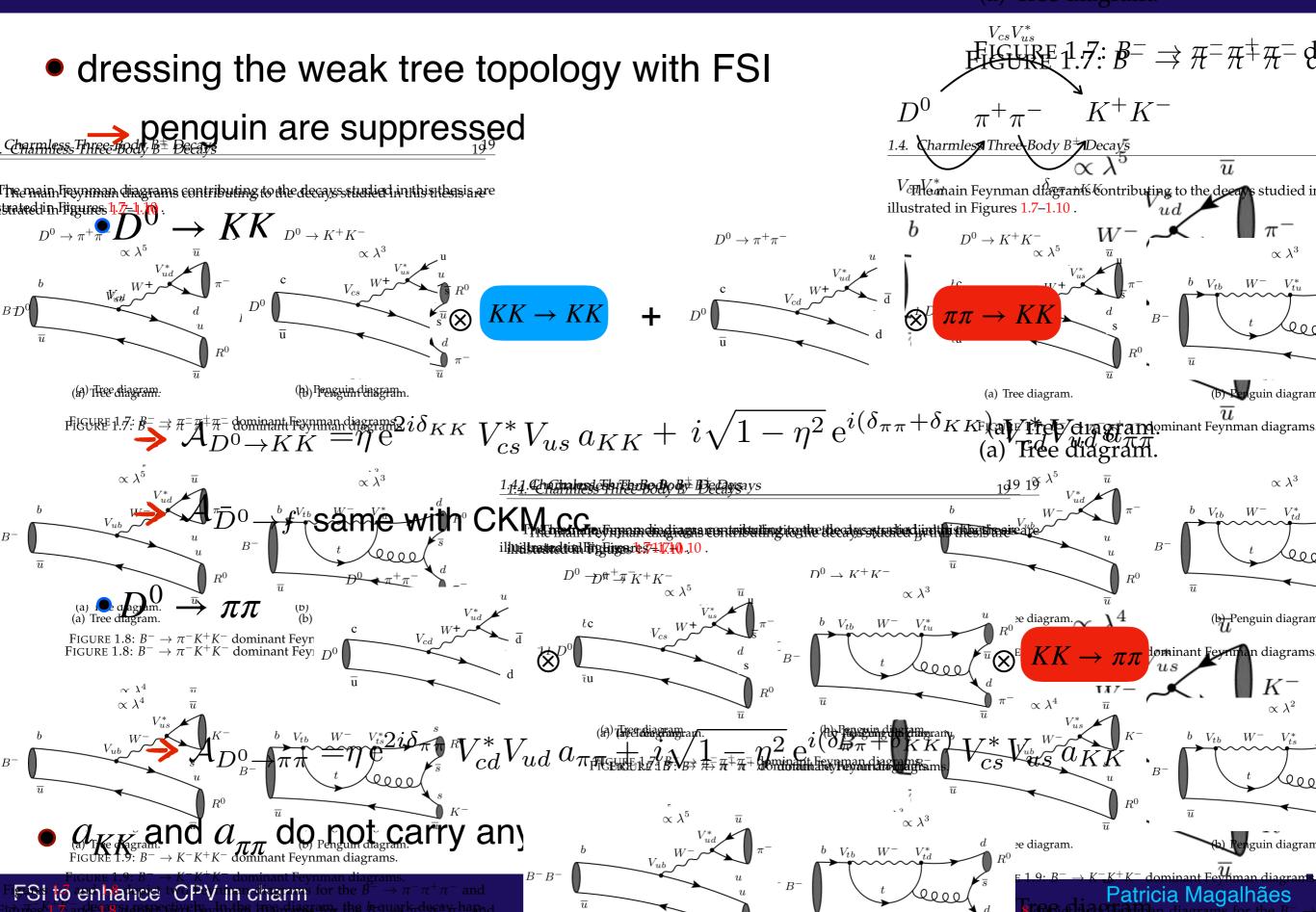


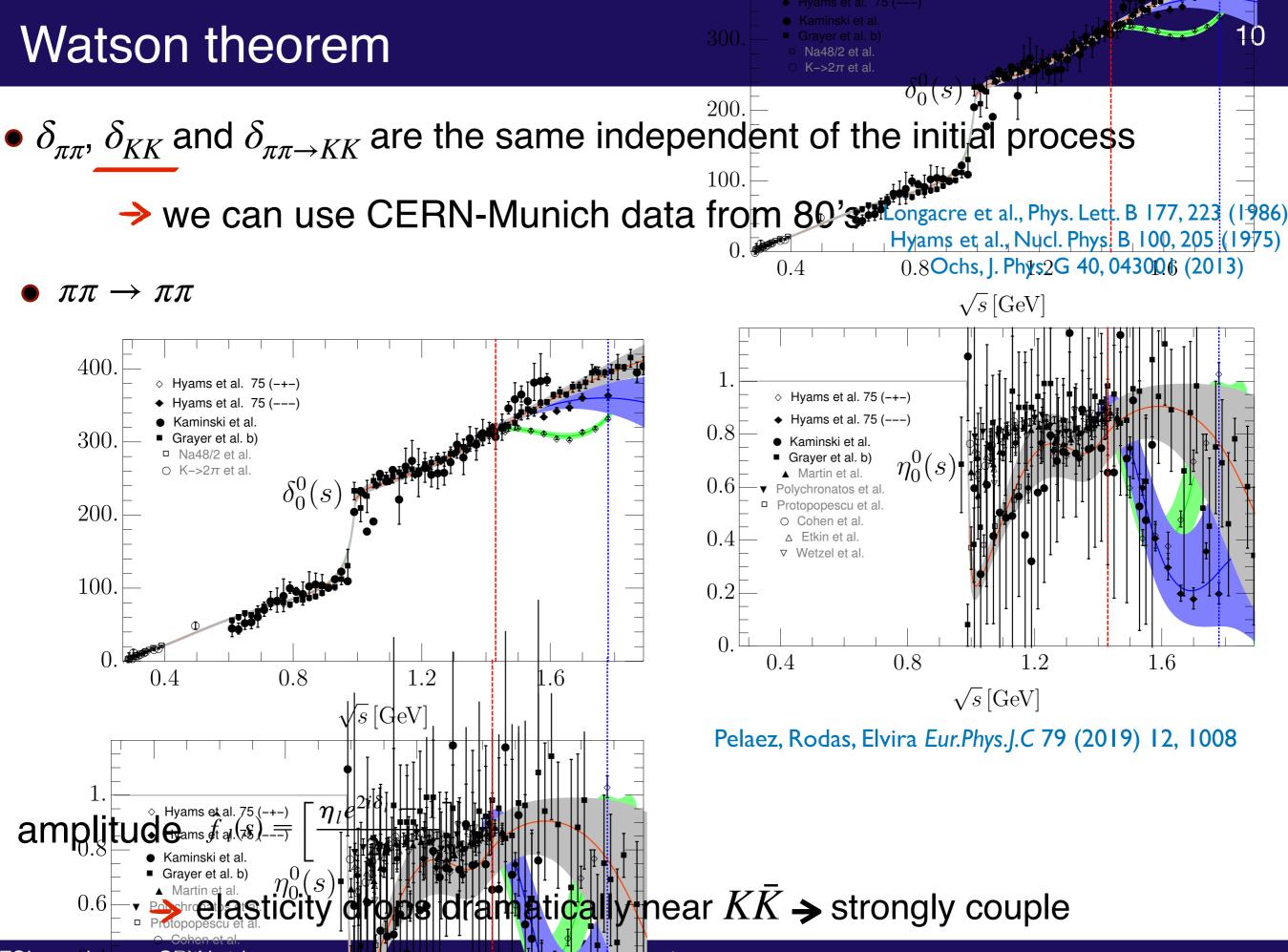
FSI to enhance CPV in charm


FSI to enhance CPV

 $\propto \lambda^4$

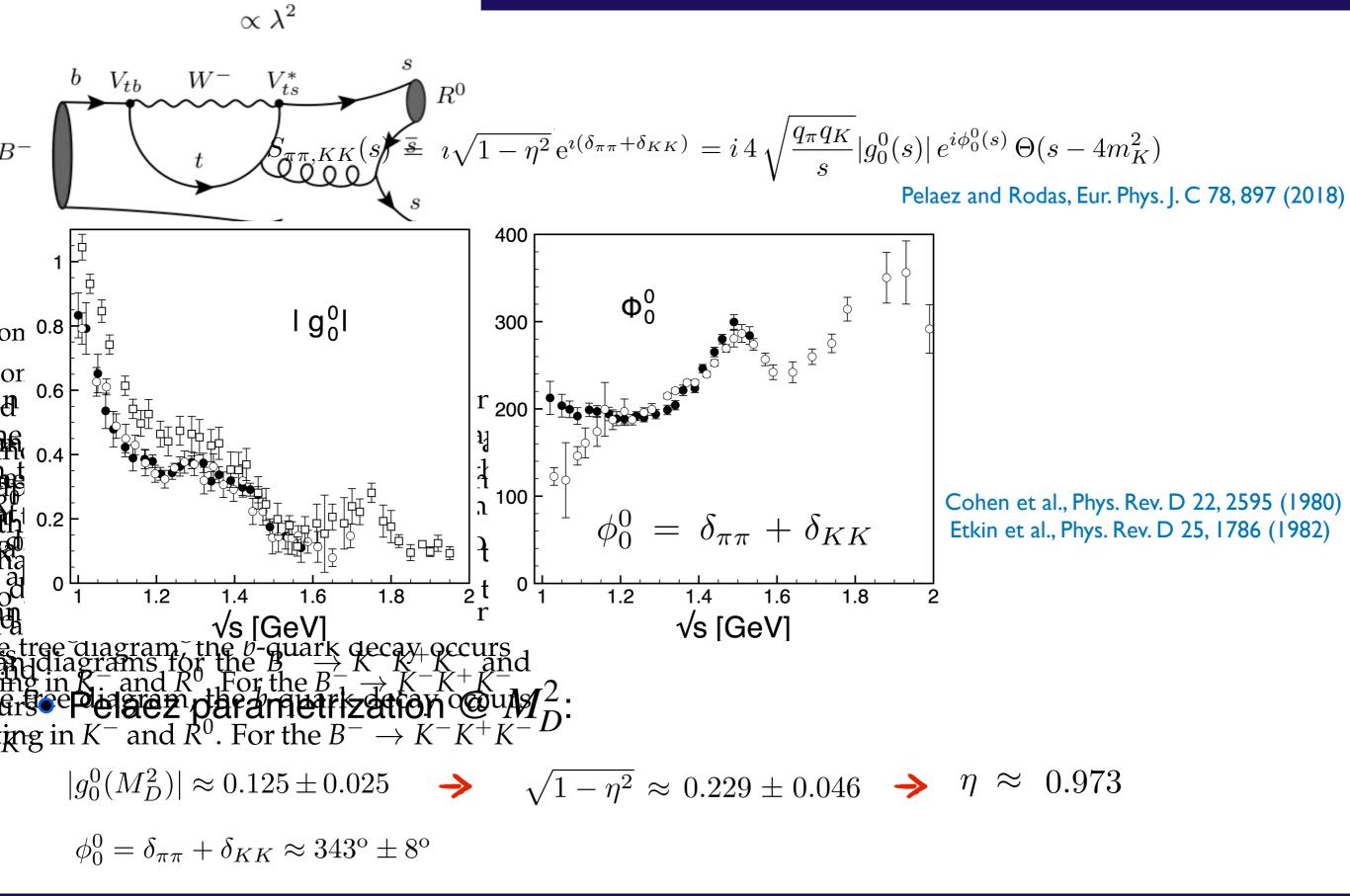
 \overline{n}




- two pions cannot go to three pions due to G-parity
- ignore four pion coupling to the 2M channel based on 1/Nc counting
- ignore $\eta\eta$ channel once their coupling to the $\pi\pi$ channel are suppressed with respect to $K\bar{K}$.
- CPT constraint restricted to the two-channels: $\sum_{f=(\pi\pi,KK)} (|\mathcal{A}_{D^0\to f}|^2 |\mathcal{A}_{\bar{D}^0\to f}|^2) = 0$

ys, respectively. In the free diagram, the b

Decay amplitudes



FSI to enhance CPV in charm

cations 2022

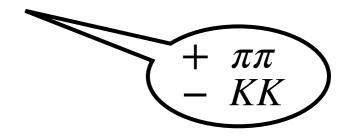
Watson theorem $\propto \lambda^2$

FSI to enhance CPV in charm

Partial decay widths

•
$$\Delta\Gamma_{f} = \Gamma\left(D^{0} \rightarrow f\right) - \Gamma(\bar{D}^{0} \rightarrow f)$$

 $A_{D^{0} \rightarrow \pi\pi} = \eta e^{2i\delta_{\pi\pi}} V_{cd}^{*} V_{ud} a_{\pi\pi} + i\sqrt{1-\eta^{2}} e^{i(\delta_{\pi}} + \delta_{KK})} O_{cd}^{*} V_{ud} a_{\pi}^{*} + \pi^{-} K^{+} K^{-}$
 $A_{D^{0} \rightarrow KK} = \eta e^{2i\delta_{KK}} V_{cs}^{*} V_{us} a_{KK} + i\sqrt{1-\eta^{2}} e^{i(\delta_{\pi\pi} + \delta_{KK})} O_{cd}^{*} V_{ud} a_{\pi}^{*} + \pi^{-} K^{+} K^{-}$
 $\Rightarrow \Delta\Gamma_{\pi\pi} = -\Delta\Gamma_{KK} = 4 \operatorname{Im}[V_{cs} V_{us}^{*} V_{cd}^{*} V_{ud}] a_{\pi\pi} a_{KK} \eta \sqrt{1_{V_{cd}}} 0_{ud}^{*} \cos \phi$
 $\phi = \delta_{KK} - \delta_{\pi\pi}$
 $\phi = \delta_{KK} - \delta_{\pi\pi}$
 $\phi = \delta_{KK} - \delta_{\pi\pi}$
 $hete sign of \Delta\Gamma_{f}$ is determined by the CKM elegenents and the S-wave phase-shifts
 $hete need to quantify a_{\pi\pi}$ and a_{KK} :
 $at D^{0}$ mass $\sqrt{1-\eta^{2}} << 1$ $\Rightarrow \Gamma_{\pi\pi} \approx \eta^{2} |V_{cd}^{*} V_{ud}|^{2} a_{\pi\pi}^{2}$
 $\Gamma_{KK} \approx \eta^{2} |V_{cs}^{*} V_{us}|^{2} a_{KK}^{2}$
 $A_{CP}(f) = \frac{\Gamma(D^{0} \rightarrow f) - \Gamma(D^{0} \rightarrow f)}{\Gamma(D^{0} \rightarrow f) + \Gamma(\bar{D}^{0} \rightarrow f)} = \Delta\Gamma_{f}/2\Gamma_{f}$
FIGURE 1.8: $B^{-} \rightarrow \Gamma_{ICURD_{2}} + 8 uB_{TW}^{2}$


FSI to enhance CPV in charm

LHCb implications 2022

Final values for A_{CP}

•
$$A_{CP}(f) \approx \pm 2 \frac{\operatorname{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}]}{|V_{cs}V_{us}^*V_{cd}^*V_{ud}|} \eta^{-1} \sqrt{1-\eta^2} \cos \phi \left[\frac{\operatorname{Br}(D^0 \to K^+K^-)}{\operatorname{Br}(D^0 \to \pi^+\pi^-)}\right]^{\pm \frac{1}{2}}$$

•
$$\operatorname{Br}(D^0 \to \pi^+ \pi^-) = (1.455 \pm 0.024) \times 10^{-3}$$

 $\operatorname{Br}(D^0 \to K^+ K^-) = (4.08 \pm 0.06) \times 10^{-3}$

•
$$\frac{\text{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}]}{|V_{cs}V_{us}^*V_{cd}^*V_{ud}|} = (6.02 \pm 0.32) \times 10^{-4} \text{ PDG}$$

•
$$\phi_0^0$$

•
$$\cos\phi: \qquad \phi = \delta_{KK} - \delta_{\pi\pi} = (\delta_{KK} + \delta_{\pi\pi}) - 2\delta_{\pi\pi}$$

from $\pi\pi$ and $\pi\pi \rightarrow KK$ data: $\cos\phi = 0.99 \pm 0.18$.

•
$$A_{CP}(\pi\pi) = (1.99 \pm 0.37) \times 10^{-3} \sqrt{\eta^{-2} - 1}$$

 $A_{CP}(KK) = -(0.71 \pm 0.13) \times 10^{-3} \sqrt{\eta^{-2} - 1}$

as a function of inelasticity

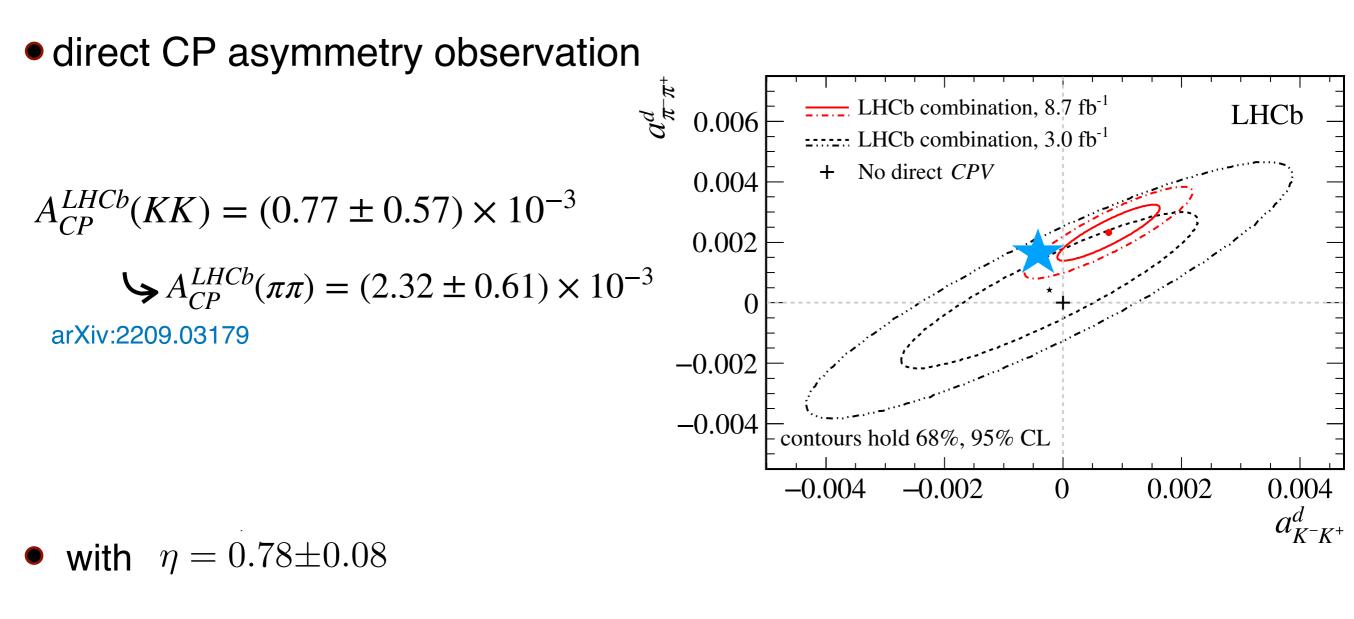
FSI to enhance CPV in charm

Predictions for ΔA_{CP}

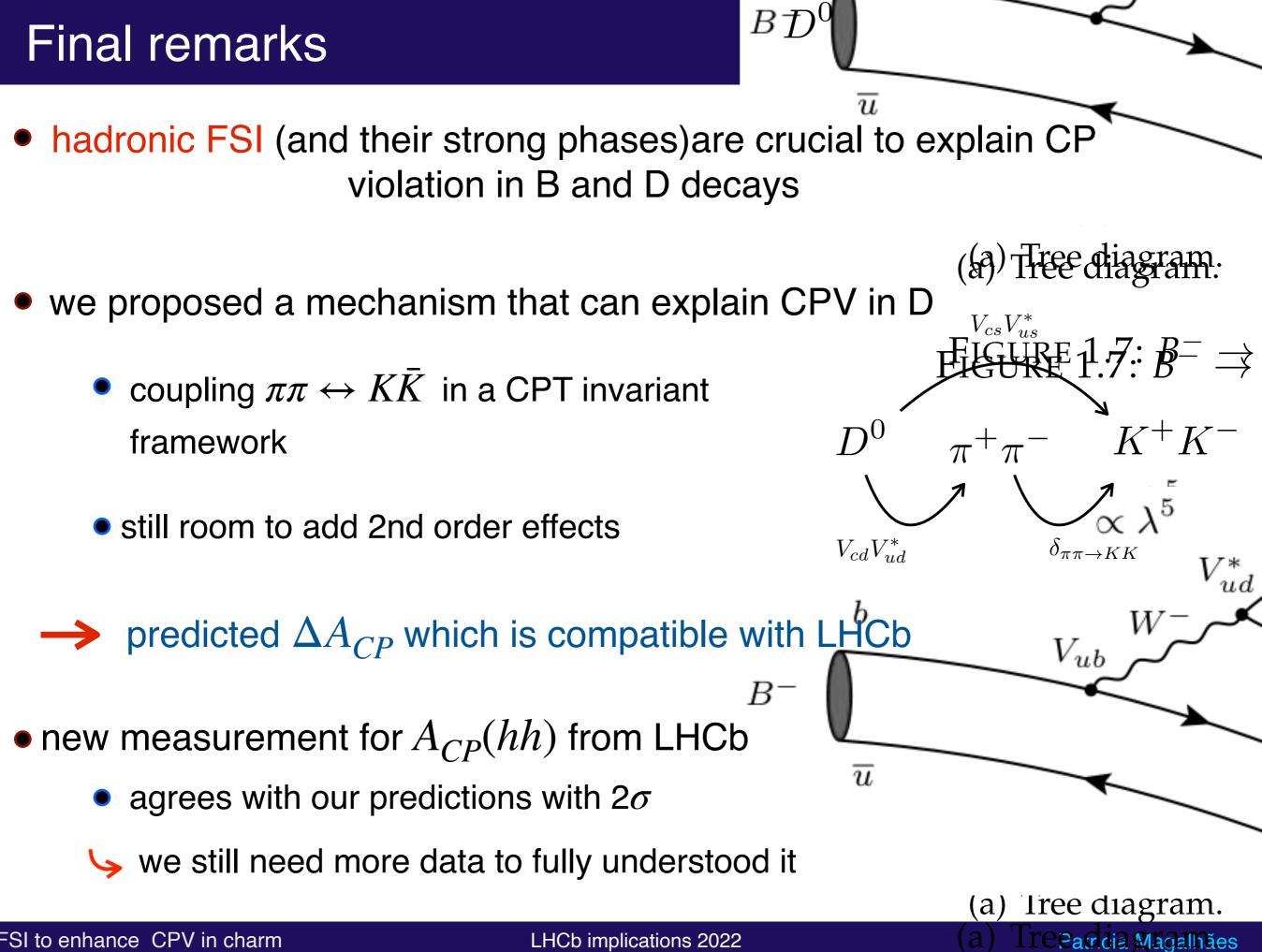
$$\Delta A_{CP}^{\rm LHCb} = -(1.54 \pm 0.29) \times 10^{-3}$$

•
$$\Delta A_{CP}^{th} = -(2.70 \pm 0.50) \times 10^{-3} \sqrt{\eta^{-2} - 1}$$

• from $\pi\pi \rightarrow KK$ data (only one set) $\rightarrow \eta \approx 0.973 \pm 0.011$


$$\Delta A_{CP}^{th} = -(0.64 \pm 0.18) \times 10^{-3} \qquad 3\sigma$$

→ largest theoretical prediction within SM without relying on fitting parameters → systematic uncertainties are unknown in η → error is underestimated


- Alternatively one can assume all inelasticity in $\pi\pi \to \pi\pi$ is due to KK
- \rightarrow more precise data (Grayer) \rightarrow $\eta = 0.78 \pm 0.08$

$$\Delta A_{CP}^{th} = -(2.17 \pm 0.70) \times 10^{-3} \quad 1\sigma$$

Predictions for $A_{CP}(hh)$

$$A_{CP}(KK) = -(0.57 \pm 0.18) \times 10^{-3}$$
 2 σ
 $A_{CP}(\pi\pi) = (1.60 \pm 0.51) \times 10^{-3}$ 1 σ

FSI to enhance CPV in charm

LHCb implications 2022

(b) Penguin diagram. K+K-Finalmremarks

l g₀⁰l

 $\sqrt{s [GeV]}$ $\sqrt{s [GeV]}$

if in R^- and R^0 . For the $B^- \rightarrow K^- K^+ K^$ rece diagram, the *b*-quark decay occurs

ongresspilting in K^- and R^0 . For the $B^- \to K^- K^+ K^-$

 K^{-}

 K^+K^- don

K⁺K⁻ dor Feynman

de av Hud pla

 B^{-}

This effect will be bigger and phase-space distributed $V_{ts}^* \rightarrow V_{ts}^{s} \rightarrow V_{ts}^{s}$

 $\pi^{-\pi}\pi^{+}$ and $D^{+} \rightarrow \pi^{+}K^{-}K^{+}$ have exactly the same Weak vertex

• expected CPV in run II analysis

stay tuned!

thank you! obrigada!! #forabolsonaro

 Φ_0^0

1.2

1.4

√s [GeV]

1.6

1.8

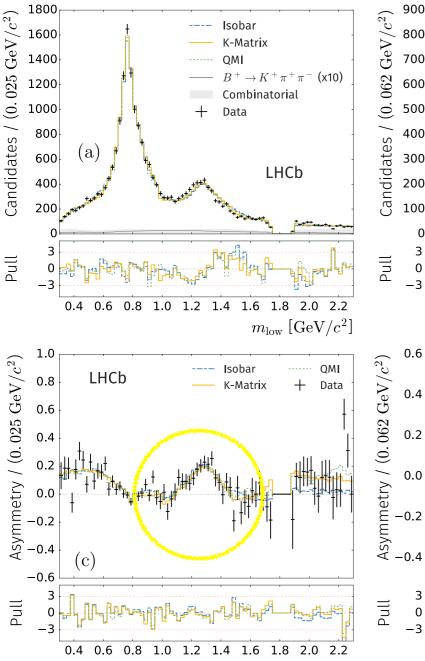
300

r ₂₀₀

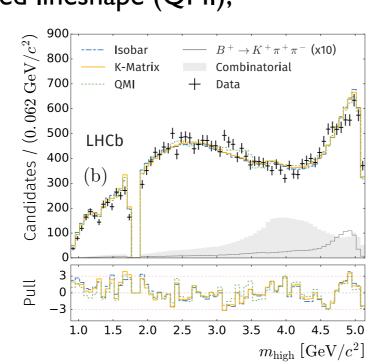
100

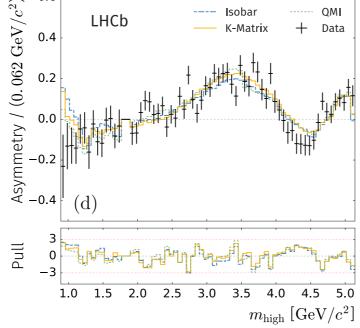
FSI to enhance CPV in charm

1.2


LHCb implications 2022

Patricia Magalhães


Backup slides


CPV: amplitude analysis

- $B^{\pm} \to \pi^- \pi^+ \pi^{\pm}$
 - $(\pi^-\pi^+)_{S-Wave}$ 3 different model:
 - $\backsim \sigma$ as BW (!) + rescattering;
 - ♀ P-vector K-Matrix;
 - binned freed lineshape (QMI);

 $m_{\rm low} \, [{
m GeV}/c^2]$

FRDTOT (2020) 012000, FRE 124 (2020) 031801				
Contribution	Fit fraction (10^{-2})	$A_{CP} (10^{-2})$	B^+ phase (°)	B^- phase (°)
Isobar model				
$ ho(770)^{0}$	$55.5 \pm 0.6 \pm 2.5$	$+0.7 \pm 1.1 \pm 1.6$	_	_
$\omega(782)$	$0.50 \pm 0.03 \pm 0.05$	$-4.8 \pm 6.5 \pm 3.8$	$-19\pm 6\pm 1$	$+8 \pm 6 \pm 1$
$f_2(1270)$	$9.0\ \pm 0.3\ \pm 1.5$	$+46.8 \pm 6.1 \pm 4.7$	$+5\pm$ $3\pm$ 12	$+53\pm2\pm12$
$ \rho(1450)^{0} $	$5.2 \pm 0.3 \pm 1.9$	$-12.9 \pm 3.3 \pm 35.9$	$+127\pm 4\pm 21$	$+154 \pm 4 \pm 6$
$ ho_{3}(1690)^{0}$	$0.5\ \pm 0.1\ \pm 0.3$	$-80.1 \pm 11.4 \pm 25.3$	$-26\pm7\pm14$	$-47\pm18\pm25$
S-wave	$25.4\ \pm 0.5\ \pm 3.6$	$+14.4 \pm 1.8 \pm 2.1$		
Rescattering	$1.4 \pm 0.1 \pm 0.5$	$+44.7 \pm 8.6 \pm 17.3$	$-35\pm~6\pm~10$	$-4\pm 4\pm 25$
σ	$25.2 \pm 0.5 \pm 5.0$	$+16.0 \pm 1.7 \pm 2.2$	$+115\pm2\pm14$	$+179\pm1\pm95$
K-matrix				
$ ho(770)^{0}$	$56.5 \pm 0.7 \pm 3.4$	$+4.2 \pm 1.5 \pm 6.4$	_	_
$\omega(782)$	$0.47 \pm 0.04 \pm 0.03$	$-6.2 \pm 8.4 \pm 9.8$	$-15\pm 6\pm 4$	$+8\pm 7\pm 4$
$f_2(1270)$	$9.3 \pm 0.4 \pm 2.5$	$+42.8 \pm 4.1 \pm 9.1$	$+19\pm~4\pm~18$	$+80\pm 3\pm 17$
$ ho(1450)^{0}$	$10.5 \pm 0.7 \pm 4.6$	$+9.0\pm \ \ 6.0\pm47.0$	$+155\pm5\pm29$	$-166\pm~4\pm~51$
$ ho_3(1690)^0$	$1.5 \pm 0.1 \pm 0.4$	$-35.7 \pm 10.8 \pm 36.9$	$+19\pm8\pm34$	$+5\pm$ $8\pm$ 46
S-wave	$25.7\ \pm 0.6\ \pm 3.0$	$+15.8 \pm 2.6 \pm 7.2$		
QMI				
$ ho(770)^{0}$	$54.8 \pm 1.0 \pm 2.2$	$+4.4 \pm 1.7 \pm 2.8$		
$\omega(782)$	$0.57 \pm 0.10 \pm 0.17$	$-7.9 \pm 16.5 \pm 15.8$	$-25\pm 6\pm 27$	$-2\pm7\pm11$
$f_2(1270)$	$9.6\ \pm 0.4\ \pm 4.0$	$+37.6 \pm 4.4 \pm 8.0$	$+13\pm5\pm21$	$+68\pm3\pm66$
$\rho(1450)^0$	$7.4 \pm 0.5 \pm 4.0$	$-15.5 \pm 7.3 \pm 35.2$	$+147\pm7\pm152$	$-175\pm5\pm171$
$ ho_3(1690)^0$	$1.0\ \pm 0.1\ \pm 0.5$	$-93.2 \pm 6.8 \pm 38.9$	$+8\pm10\pm~24$	$+36\pm26\pm$ 46
S-wave	$26.8 \pm 0.7 \pm 2.2$	$+15.0 \pm 2.7 \pm 8.1$		

PRD101 (2020) 012006: PRL 124 (2020) 031801

• $B^{\pm} \to \pi^{\pm} K^{-} K^{+}$ PRL I23 (2019) 231802

Contribut	ion Fit $Fraction(\%)$	$A_{CP}(\%)$	Magnitude (B^+/B^-)	Phase[^o] (B^+/B^-)
$K^{*}(892)$	0 7.5 ± 0.6 ± 0.5	$+12.3 \pm 8.7 \pm 4.5$	$0.94 \pm 0.04 \pm 0.02$	0 (fixed)
			$1.06 \pm 0.04 \pm 0.02$	0 (fixed)
$K_0^*(1430)$	$)^0$ 4.5 ± 0.7 ± 1.2	$+10.4 \pm 14.9 \pm 8.8$	$0.74 \pm 0.09 \pm 0.09$	$-176\pm10\pm16$
			$0.82 \pm 0.09 \pm 0.10$	$136\pm11\pm21$
Single po	ble $32.3 \pm 1.5 \pm 4.1$	$-10.7 \pm 5.3 \pm 3.5$	$2.19 \pm 0.13 \pm 0.17$	$-138\pm7\pm5$
			$1.97 \pm 0.12 \pm 0.20$	$166 \pm 6 \pm 5$
$\rho(1450)$	$30.7 \pm 1.2 \pm 0.9$	$-10.9 \pm 4.4 \pm 2.4$	$2.14 \pm 0.11 \pm 0.07$	$-175\pm10\pm15$
			$1.92 \pm 0.10 \pm 0.07$	$140\pm13\pm20$
$f_2(1270)$) $7.5 \pm 0.8 \pm 0.7$	$+26.7 \pm 10.2 \pm 4.8$	$0.86 \pm 0.09 \pm 0.07$	$-106\pm11\pm10$
			$1.13 \pm 0.08 \pm 0.05$	$-128\pm11\pm14$
Rescatter	ing $16.4 \pm 0.8 \pm 1.0$	$-66.4 \pm 3.8 \pm 1.9$	$1.91 \pm 0.09 \pm 0.06$	$-56\pm12\pm18$
			$0.86 \pm 0.07 \pm 0.04$	$-81\pm14\pm15$
$\phi(1020)$	$0.3 \pm 0.1 \pm 0.1$	$+9.8 \pm 43.6 \pm 26.6$	$0.20 \pm 0.07 \pm 0.02$	$-52\pm23\pm32$
			$0.22 \pm 0.06 \pm 0.04$	$107\pm33\pm41$

Patricia Magalhães

Hadron 2020(1) - Brazil

FSI challenges and future

Theoretical approaches to CPV on charm

QCD short-distance

QCDF → how to calculate penguin contributions? call BSM effects

Chala, Lenz, Rusov, Scholtz, JHEP 07, 161 (2019).

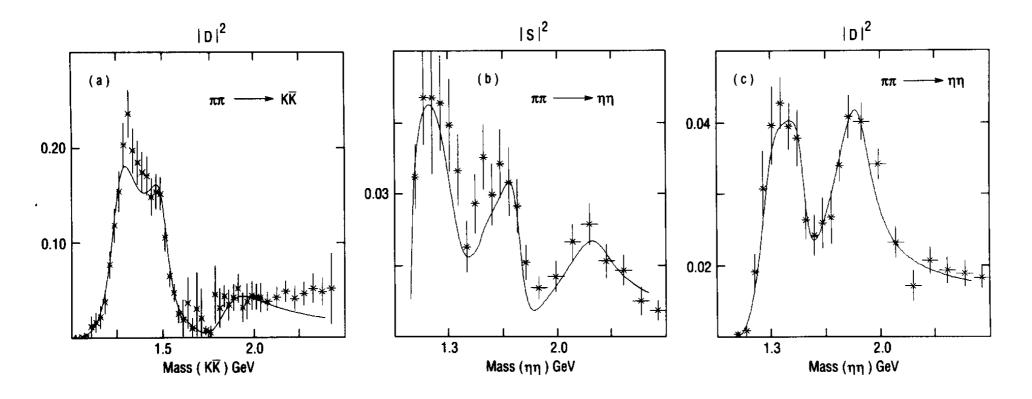
 LCSR
 QCD, model independent but predictions are 1 order Khodjamirian, Petrov, Phys. Lett. B 774, 235 (2017)

long distance effect:

topological and group symmetry approach

- with SU(3) breaking through FSI (fit agrees)
- with resonances (fit agrees)

• FSI with CPT (prediction agrees)


H.-Y. Cheng and C.-W. Chiang, PRD 100, 093002 (2019). F. Buccella, A. Paul and P. Santorelli, PRD 99, 113001 (2019)

Schacht and A. Soni, Phys. Lett. B 825, 136855 (2022). Y. Grossman and S. Schacht, JHEP 07, 20 (2019)

bediaga, Frederico, PCM arxiv 2203.04056v2

$\eta\eta$ coupling to $\pi\pi$

• coupling of $\pi\pi \to KK$ in D wave is bigger than $\eta\eta$ in S-wave

• ~ M_D (1.864) mass

Coupled channel analysis of $J^{PC} = 0^{++}$ and 2^{++} isoscalar mesons with masses below 2.0 GeV $\stackrel{*}{\asymp}$

- S.J. Lindenbaum ^{a,b} and R.S. Longacre ^a
- ^a Brookhaven National Laboratory, Upton, NY 11973, USA
- ^b City College of New York, New York, NY 10031, USA

Physics Letters B 274 (1992) 492-497

• ignore $\eta\eta$ channel once their coupling to the $\pi\pi$ channel are suppressed with respect to $K\bar{K}$.

4π coupling to $\pi\pi$

 $f_0(1500)$ decays in bot

channels

• although the $D^0 \rightarrow 4\pi$ decays have a large branching fraction, there is no compelling experimental evidence that 4π is strongly coupled to $\pi\pi$ at M_{D_0}

Mode	Fraction (Γ_i/Γ)	Scale factor
$\Gamma_1 \pi \pi$	(34.5±2.2) %	1.2
$\Gamma_2 = \pi^+ \pi^- \Gamma_3 = 2\pi^0$	seen	
$\Gamma_{3}^{-} 2\pi^{0}$	seen	
$\Gamma_4 4\pi$	(48.9±3.3) %	1.2
$\Gamma_5 ext{ 4}\pi^0 \ \Gamma_6 ext{ 2}\pi^+2\pi^-$	seen	
$\Gamma_{6} = 2\pi^{+}2\pi^{-}$	seen	
$\Gamma_7 \qquad 2(\pi\pi)_{S-\text{wave}}$	seen	
$\Gamma_8 \qquad \rho \rho$	seen	
$\Gamma_9 = \pi(1300)\pi$	seen	
$\Gamma_{10} = a_1(1260)\pi$	seen	
$\Gamma_{11} \eta \eta$	(6.0±0.9) %	1.1
$\Gamma_{12} \eta \eta' (958)$	(2.2±0.8) %	1.4
Γ_{13} $K\overline{K}$	(8.5±1.0) %	1.1
$\Gamma_{14} \gamma \gamma$	not seen	

f₀(1500) DECAY MODES

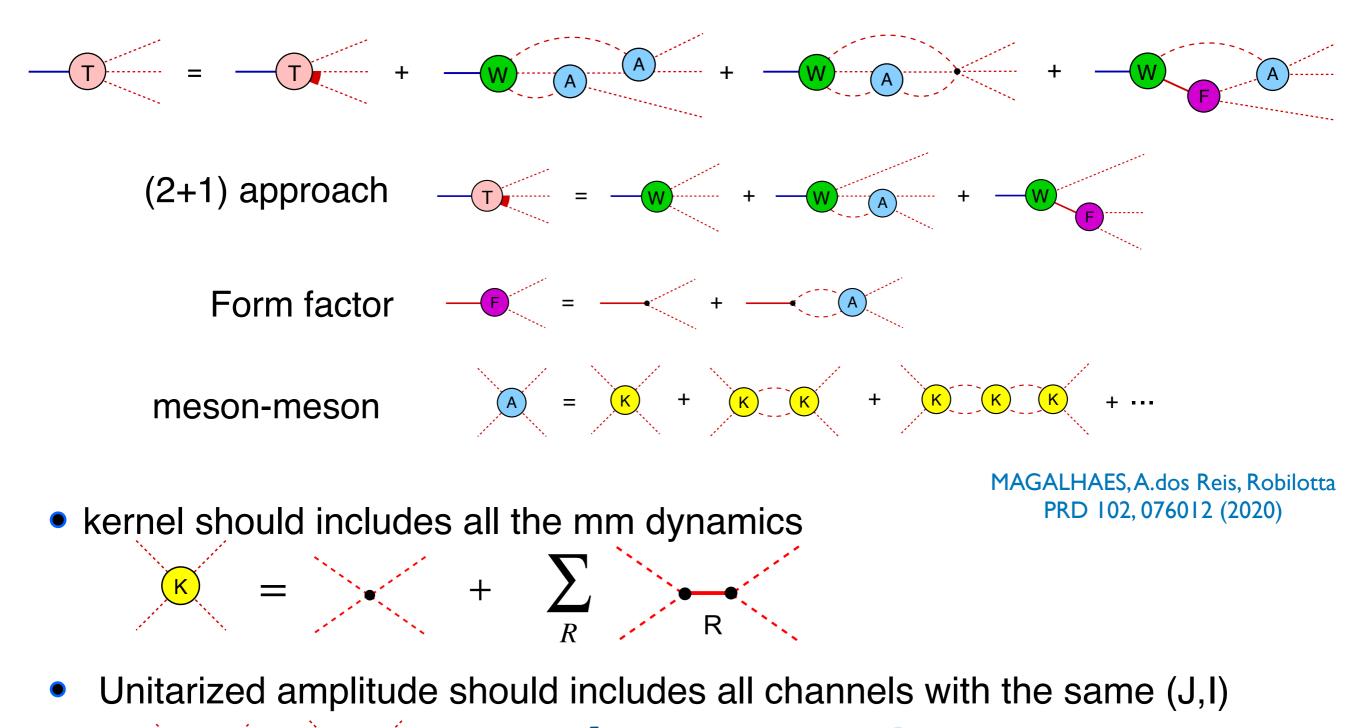
• The nearest $f_0(1710)$ resonance have no observation of four pions reported.

f₀(1710) DECAY MODES

Mode	Fraction (Γ_i/Γ)
K <i>K</i>	seen
$\eta \eta$	seen
$\pi\pi$	seen
$\gamma \gamma$	seen
$\omega \omega$	seen
	$ \begin{array}{c} $

PDG

22


- we don't have data from KK scattering !
 - we can use $\pi\pi$ and $KK \to \pi\pi$ data: $\delta_{KK} \delta_{\pi\pi} = \phi_0^0 2\delta_{\pi\pi} = (\delta_{KK} + \delta_{\pi\pi}) 2\delta_{\pi\pi}$

• CERN-Munich data (revised Ochs)

	$\sqrt{s} [\text{GeV}]$	$\cos\phi$	$\Rightarrow \cos(\delta_{KK} - \delta_{\pi\pi}) \lesssim 1$
	1.58	0.989 ± 0.149	
	1.62	0.994 ± 0.105	
	1.66	0.999 ± 0.040	
	1.70	0.987 ± 0.160	
	1.74	0.999 ± 0.048	
	1.78	0.999 ± 0.037	
$m_D^2 \rightarrow$	1.846	0.987 ± 0.175	Pelaez parametrization

Full story in 3-body decay

• Any 3-body decay amplitude

FSI to enhance CPV in charm

=

+

*K*₁₂

╋

Patricia Magalhães