Methods to explore the nature of the new exotic resonances from data

Methods to explore the nature of the new exotic resonances from data

- New: Impressive work by LHCb in spectroscopy
- Nature \& exotic:
- Technically, "exotic" is something with quantum numbers different from $q \bar{q}, q q q$
- More generally, something that does not "fit well" within constituent quark models
- Here, exotic possibilities are molecule or compact tetraquark, ...
- from data: avoid model/assumptions for dynamics
- Method: Weinberg's compositeness condition

Outline

(1) Weinberg's compositeness

- Standard compositeness criteria
- Extension of criteria
(2) Examples
- Canonical example: the deuteron
- $D_{s 0}^{*}(2317)$ (exotic)
(3) Detailed example: $T_{c c}^{+}$
(4) Summary

Weinberg's compositeness

- Identity resolution:

$$
\mathbb{1}=\sum_{n}|n\rangle\langle n|+\int \mathrm{d} \alpha|\alpha\rangle\langle\alpha|
$$

- $\hat{H}=\hat{H}_{0}+\hat{V}$
- Eigenstates of \hat{H}_{0} :
- continuum $|\alpha\rangle, \hat{H}_{0}|\alpha\rangle=E(\alpha)|\alpha\rangle$
- bare elementary $|n\rangle, \hat{H}_{0}|n\rangle=E_{n}|n\rangle$
- Eigenstates of \hat{H} :
- $|d\rangle$ ("deuteron") $\hat{H}|d\rangle=E_{B}|d\rangle$
- Normalized:

$$
\begin{aligned}
\langle\alpha \mid \beta\rangle & =\delta(\beta-\alpha) & \langle\alpha \mid n\rangle & =0 \\
\langle m \mid n\rangle & =\delta_{m n} & & \langle d \mid d\rangle=1
\end{aligned}
$$

Weinberg's compositeness

- Identity resolution:

$$
\mathbb{1}=\sum_{n}|n\rangle\langle n|+\int \mathrm{d} \alpha|\alpha\rangle\langle\alpha|
$$

- $\hat{H}=\hat{H}_{0}+\hat{V}$
- Eigenstates of \hat{H}_{0} :
- continuum $|\alpha\rangle, \hat{H}_{0}|\alpha\rangle=E(\alpha)|\alpha\rangle$
- bare elementary $|n\rangle, \hat{H}_{0}|n\rangle=E_{n}|n\rangle$
- Eigenstates of \hat{H} :
- $|d\rangle$ ("deuteron") $\hat{H}|d\rangle=E_{B}|d\rangle$
- Normalized:

$$
\begin{array}{ll}
\langle\alpha \mid \beta\rangle=\delta(\beta-\alpha) & \langle\alpha \mid n\rangle=0 \\
\langle m \mid n\rangle=\delta_{m n} & \langle d \mid d\rangle=1
\end{array}
$$

Fundamental quantity $Z=\sum_{n}|\langle n \mid d\rangle|^{2}$ «(...) Z is the probability of finding the deuteron in a bare elementary-particle state.》 [Weinberg, PR,137,B672]

Weinberg's compositeness

- Identity resolution:

$$
\mathbb{1}=\sum_{n}|n\rangle\langle n|+\int \mathrm{d} \alpha|\alpha\rangle\langle\alpha|
$$

- $\hat{H}=\hat{H}_{0}+\hat{V}$
- Eigenstates of \hat{H}_{0} :
- continuum $|\alpha\rangle, \hat{H}_{0}|\alpha\rangle=E(\alpha)|\alpha\rangle$
- bare elementary $|n\rangle, \hat{H}_{0}|n\rangle=E_{n}|n\rangle$
- Eigenstates of \hat{H} :
- $|d\rangle$ ("deuteron") $\hat{H}|d\rangle=E_{B}|d\rangle$
- Normalized:

$$
\begin{aligned}
\langle\alpha \mid \beta\rangle & =\delta(\beta-\alpha) & & \langle\alpha \mid n\rangle
\end{aligned}=0
$$

- Sandwich $\langle d| \mathbb{1}|d\rangle=1$

$$
1=Z+\int \mathrm{d} \alpha \frac{|\langle\alpha| V| d\rangle\left.\right|^{2}}{\left(E(\alpha)-E_{B}\right)^{2}}
$$

- $1^{\text {st }}$ crucial approximation: $\langle\alpha| V|d\rangle \simeq g /(2 \pi)^{3 / 2}$

$$
1-Z=g^{2} \frac{\mu}{2 \pi^{2}} \int_{E_{\mathrm{th}}}^{\infty} \mathrm{d} W \frac{k(W)}{\left(W-E_{B}\right)^{2}}=\frac{\mu^{2} g^{2}}{2 \pi \gamma_{B}}
$$

Fundamental quantity $Z=\sum_{n}|\langle n \mid d\rangle|^{2}$ "(...) Z is the probability of finding the deuteron in a bare elementary-particle state.》 [Weinberg, PR,137,B672]

- Measure: $\mathrm{d} \alpha=\mathrm{d}^{3} \vec{k}=4 \pi \mu k(W) \mathrm{d} W$

Weinberg's compositeness (II)

- $1-Z$ written in terms of $g^{2}: \quad 1-Z=\frac{\mu^{2} g^{2}}{2 \pi \gamma_{B}}$

Next step, move to low energy $n-p$ scattering, and relate g^{2} to a, r

- Start from a version of the Low equation:

$$
T(E)=\frac{g^{2}}{E-E_{B}}+\int \frac{\mathrm{d}^{3} \vec{k}}{(2 \pi)^{3}} \frac{\sqrt{\vec{k}^{2}}}{E-E_{\mathrm{th}}-\vec{k}^{2} /(2 \mu)}\left|T\left(E\left(\vec{k}^{2}\right)\right)\right|^{2}
$$

- A solution proposed by Weinberg reads [2 ${ }^{\text {nd }}$ crucial assumption]:

$$
T^{-1}(E)=\frac{E-E_{B}}{g^{2}}-\frac{\mu^{2}}{2 \pi \gamma_{B}}\left(E+E_{B}-2 E_{\mathrm{th}}\right)+i \frac{\mu k(E)}{2 \pi}
$$

- This solution for the amplitude exactly satisfies the Effective Range Expansion (ERE):

$$
-\frac{2 \pi}{\mu} T^{-1}(E)=k \cot \delta-i k=\frac{1}{a}+\frac{1}{2} r k^{2}+\cdots-i k
$$

Weinberg's compositeness (II)

- $1-Z$ written in terms of $g^{2}: \quad 1-Z=\frac{\mu^{2} g^{2}}{2 \pi \gamma_{B}}$

Next step, move to low energy $n-p$ scattering, and relate g^{2} to a, r

- Start from a version of the Low equation:

$$
T(E)=\frac{g^{2}}{E-E_{B}}+\int \frac{\mathrm{d}^{3} \vec{k}}{(2 \pi)^{3}} \frac{\sqrt{\vec{k}^{2}}}{E-E_{\mathrm{th}}-\vec{k}^{2} /(2 \mu)}\left|T\left(E\left(\vec{k}^{2}\right)\right)\right|^{2}
$$

- A solution proposed by Weinberg reads
[2 ${ }^{\text {nd }}$ crucial assumption]:

$$
T^{-1}(E)=\frac{E-E_{B}}{g^{2}}-\frac{\mu^{2}}{2 \pi \gamma_{B}}\left(E+E_{B}-2 E_{\mathrm{th}}\right)+i \frac{\mu k(E)}{2 \pi}
$$

- This solution for the amplitude exactly satisfies the
- Relation of g^{2} and γ_{B} to a and r : Effective Range Expansion (ERE):

$$
-\frac{2 \pi}{\mu} T^{-1}(E)=k \cot \delta-i k=\frac{1}{a}+\frac{1}{2} r k^{2}+\cdots-i k
$$

Weinberg's compositeness (II)

- $1-Z$ written in terms of $g^{2}: \quad 1-Z=\frac{\mu^{2} g^{2}}{2 \pi \gamma_{B}}$

Next step, move to low energy $n-p$ scattering, and relate g^{2} to a, r

- Start from a version of the Low equation:

$$
T(E)=\frac{g^{2}}{E-E_{B}}+\int \frac{\mathrm{d}^{3} \vec{k}}{(2 \pi)^{3}} \frac{\sqrt{\vec{k}^{2}}}{E-E_{\mathrm{th}}-\vec{k}^{2} /(2 \mu)}\left|T\left(E\left(\vec{k}^{2}\right)\right)\right|^{2}
$$

- A solution proposed by Weinberg reads [2 ${ }^{\text {nd }}$ crucial assumption]:

$$
T^{-1}(E)=\frac{E-E_{B}}{g^{2}}-\frac{\mu^{2}}{2 \pi \gamma_{B}}\left(E+E_{B}-2 E_{\mathrm{th}}\right)+i \frac{\mu k(E)}{2 \pi}
$$

- This solution for the amplitude exactly satisfies the
- Relation of g^{2} and γ_{B} to a and r :

$$
\begin{aligned}
& \text { Effective Range Expansion (ERE): } \\
& \quad-\frac{2 \pi}{\mu} T^{-1}(E)=k \cot \delta-i k=\frac{1}{a}+\frac{1}{2} r k^{2}+\cdots-i k \longrightarrow r \gamma_{B}=\left(1-\frac{2 \pi \gamma_{B}}{\mu^{2} g^{2}}\right)
\end{aligned}
$$

Weinberg's compositeness (II)

- $1-Z$ written in terms of $g^{2}: \quad 1-Z=\frac{\mu^{2} g^{2}}{2 \pi \gamma_{B}}$

Next step, move to low energy $n-p$ scattering, and relate g^{2} to a, r

- Start from a version of the Low equation:

$$
T(E)=\frac{g^{2}}{E-E_{B}}+\int \frac{\mathrm{d}^{3} \vec{k}}{(2 \pi)^{3}} \frac{\sqrt{\vec{k}^{2}}}{E-E_{\mathrm{th}}-\vec{k}^{2} /(2 \mu)}\left|T\left(E\left(\vec{k}^{2}\right)\right)\right|^{2}
$$

- A solution proposed by Weinberg reads [2 ${ }^{\text {nd }}$ crucial assumption]:

$$
T^{-1}(E)=\frac{E-E_{B}}{g^{2}}-\frac{\mu^{2}}{2 \pi \gamma_{B}}\left(E+E_{B}-2 E_{\mathrm{th}}\right)+i \frac{\mu k(E)}{2 \pi} .
$$

- This solution for the amplitude exactly satisfies the
- Relation of g^{2} and γ_{B} to a and r :

$$
\begin{aligned}
& \text { Effective Range Expansion (ERE): } \\
& -\frac{2 \pi}{\mu} T^{-1}(E)=k \cot \delta-i k=\frac{1}{a}+\frac{1}{2} r k^{2}+\cdots-i k \\
& r \gamma_{B}=\left(1-\frac{2 \pi \gamma_{B}}{\mu^{2} g^{2}}\right)
\end{aligned}
$$

Weinberg's compositeness condition(s)

$$
a=-\frac{2}{\gamma_{B}} \frac{1-Z}{2-Z} \quad r=-\frac{1}{\gamma_{B}} \frac{Z}{1-Z}
$$

Extension of Weinberg's compositeness

(A) r, a are expansions in $\frac{1}{\beta}\left(\frac{\gamma_{B}}{\beta}\right)^{n-1}$, with β^{-1} an interaction range [in $n p, \beta \sim m_{\pi}$]

$$
\begin{aligned}
& r=\overbrace{-\frac{1}{\gamma_{B}} \frac{Z}{1-Z}}^{r_{\mathrm{LO}}(Z) \sim \mathcal{O}\left(\gamma_{B}^{-1}\right)}+\mathcal{O}\left(\gamma_{B}^{0} \beta^{-1}\right) \\
& a=\underbrace{-\frac{2}{\gamma_{B}} \frac{1-Z}{2-Z}}_{a_{\mathrm{LO}}(Z) \sim \mathcal{O}\left(\gamma_{B}^{-1}\right)}+\mathcal{O}\left(\gamma_{B}^{0} \beta^{-1}\right)
\end{aligned}
$$

Extension of Weinberg's compositeness

(A) r, a are expansions in $\frac{1}{\beta}\left(\frac{\gamma_{B}}{\beta}\right)^{n-1}$, with β^{-1} an interaction range [in $n p, \beta \sim m_{\pi}$]

$$
\begin{array}{lll}
r=\overbrace{-\frac{1}{\gamma_{B}} \frac{Z}{1-Z}}^{r_{\mathrm{LO}}(Z) \sim \mathcal{O}\left(\gamma_{B}^{-1}\right)}+\mathcal{O}\left(\gamma_{B}^{0} \beta^{-1}\right) & \Longrightarrow & r=\overbrace{r_{\mathrm{LO}}(Z)+\delta r}^{r_{\mathrm{NLO}}(Z, \delta r)}+\mathcal{O}\left(\gamma_{B} / \beta^{2}\right) \\
a=\underbrace{-\frac{2}{\gamma_{B}} \frac{1-Z}{2-Z}}_{a_{\mathrm{LO}}(Z) \sim \mathcal{O}\left(\gamma_{B}^{-1}\right)}+\mathcal{O}\left(\gamma_{B}^{0} \beta^{-1}\right) & \Longrightarrow & a=\underbrace{a_{\mathrm{LO}}(Z)+\delta a}_{a_{\mathrm{NLO}}(Z, \delta a)}+\mathcal{O}\left(\gamma_{B} / \beta^{2}\right)
\end{array}
$$

Extension of Weinberg's compositeness

(A) r, a are expansions in $\frac{1}{\beta}\left(\frac{\gamma_{B}}{\beta}\right)^{n-1}$, with β^{-1} an interaction range [in $n p, \beta \sim m_{\pi}$]

$$
\begin{array}{lll}
r=\overbrace{-\frac{1}{\gamma_{B}} \frac{Z}{1-Z}}^{r_{\mathrm{LO}}(Z) \sim \mathcal{O}\left(\gamma_{B}^{-1}\right)}+\mathcal{O}\left(\gamma_{B}^{0} \beta^{-1}\right) & \Longrightarrow & r=\overbrace{r_{\mathrm{LO}}(Z)+\delta r}^{r_{\mathrm{NLO}}(Z, \delta r)}+\mathcal{O}\left(\gamma_{B} / \beta^{2}\right) \\
a=\underbrace{-\frac{2}{\gamma_{B}} \frac{1-Z}{2-Z}}_{a_{\mathrm{LO}}(Z) \sim \mathcal{O}\left(\gamma_{0}^{-1}\right)}+\mathcal{O}\left(\gamma_{B}^{0} \beta^{-1}\right) & \Longrightarrow & a=\underbrace{a_{\mathrm{LO}}(Z)+\delta a}_{a_{\mathrm{NLO}}(Z, \delta a)}+\mathcal{O}\left(\gamma_{B} / \beta^{2}\right)
\end{array}
$$

(B) From ERE one gets a relation that works very well: $\gamma_{B} \simeq-\frac{1}{a}+\frac{1}{2} r \gamma_{B}^{2}$

Extension of Weinberg's compositeness

(A) r, a are expansions in $\frac{1}{\beta}\left(\frac{\gamma_{B}}{\beta}\right)^{n-1}$, with β^{-1} an interaction range [in $n p, \beta \sim m_{\pi}$]

$$
r=\overbrace{-\frac{1}{\gamma_{B}} \frac{Z}{1-Z}}^{r_{\mathrm{LO}}(Z) \sim \mathcal{O}\left(\gamma_{B}^{-1}\right)}+\mathcal{O}\left(\gamma_{B}^{0} \beta^{-1}\right) \quad \Longrightarrow \quad r=\overbrace{r_{\mathrm{LO}}(Z)+\delta r}^{r_{\mathrm{LLO}}(Z, \delta r) \sim \mathcal{O}\left(\gamma_{B}^{-1}\right)}+\mathcal{O}\left(\gamma_{B} / \beta^{2}\right)
$$

(B) From ERE one gets a relation that works very well: $\gamma_{B} \simeq-\frac{1}{a}+\frac{1}{2} r \gamma_{B}^{2}$

- The trick is to combine $\mathrm{A} \& \mathrm{~B}$ to correlate δr and δa :
(1) Introduce a_{NLO} and r_{NLO} above,
(2) Expand in powers of γ_{B},
(3) Solve δa in terms of δr such that the difference is $\mathcal{O}\left(\gamma_{B}^{3} / \beta^{2}\right)$.

Extension of Weinberg's compositeness

(A) r, a are expansions in $\frac{1}{\beta}\left(\frac{\gamma_{B}}{\beta}\right)^{n-1}$, with β^{-1} an interaction range [in $n p, \beta \sim m_{\pi}$]

$$
r=\overbrace{-\frac{1}{\gamma_{B}} \frac{Z}{1-Z}}^{r_{\mathrm{LO}}(Z) \sim \mathcal{O}\left(\gamma_{B}^{-1}\right)}+\mathcal{O}\left(\gamma_{B}^{0} \beta^{-1}\right) \quad \Longrightarrow \quad r=\overbrace{r_{\mathrm{LO}}(Z)+\delta r}^{r_{\mathrm{LLO}}(Z, \delta r) \sim \mathcal{O}\left(\gamma_{B}^{-1}\right)}+\mathcal{O}\left(\gamma_{B} / \beta^{2}\right)
$$

(B) From ERE one gets a relation that works very well: $\gamma_{B} \simeq-\frac{1}{a}+\frac{1}{2} r \gamma_{B}^{2}$

- The trick is to combine $\mathrm{A} \& \mathrm{~B}$ to correlate δr and δa :
(1) Introduce $a_{\text {NLO }}$ and $r_{\text {NLO }}$ above,
(2) Expand in powers of γ_{B},
(3) Solve δa in terms of δr such that the difference is $\mathcal{O}\left(\gamma_{B}^{3} / \beta^{2}\right)$.
- Final equations, main result of [MA, J. Nieves, EPJ, C82,8(22)]:

$$
\begin{aligned}
r & =-\frac{1}{\gamma_{B}} \frac{Z}{1-Z}+\delta r+\mathcal{O}\left(\gamma_{B} / \beta^{2}\right) \\
a & =-\frac{2}{\gamma_{B}} \frac{1-Z}{2-Z}-2 \delta r\left(\frac{1-Z}{2-Z}\right)^{2}+\mathcal{O}\left(\gamma_{B} / \beta^{2}\right)
\end{aligned}
$$

Canonical example: the deuteron

Exp. data: $\left\{\begin{array}{ll}a_{\exp } & =-5.42(1) \mathrm{fm} \\ r_{\exp } & =+1.75(1) \mathrm{fm} \\ \gamma_{B \exp } & =45.7 \mathrm{MeV}\end{array}\right\}$

If Z is naively evaluated from these data, one gets $P=1-Z=1.68$ [which makes no sense!]

Canonical example: the deuteron

- Exp. data: $\left\{\begin{array}{ll}a_{\exp } & =-5.42(1) \mathrm{fm} \\ r_{\exp } & =+1.75(1) \mathrm{fm} \\ \gamma_{B_{\exp }} & =45.7 \mathrm{MeV}\end{array}\right\}$

If Z is naively evaluated from these data, one gets $P=1-Z=1.68$ [which makes no sense!]

- Additional tool, likelihood estimator $\mathcal{L}(Z, \delta r)$:

$$
\mathcal{L}(Z, \delta r)=\frac{1}{3}\left[\left(\frac{a_{\exp }-a_{\mathrm{NLO}}}{\Delta a_{\exp }}\right)^{2}+\left(\frac{r_{\exp }-r_{\mathrm{NLO}}}{\Delta r_{\exp }}\right)^{2}+\left(\frac{\gamma_{b}^{\exp }-\gamma_{b}^{\mathrm{NLO}}}{\Delta \gamma_{b}^{\exp }}\right)^{2}\right]
$$

- $\Delta a_{\exp }$ (et al.): relative error taken as $\left(\gamma_{B} / m_{\pi}\right)^{2} \simeq 0.1$ because exp. error is smaller

Canonical example: the deuteron

- Exp. data: $\left\{\begin{array}{cl}a_{\exp } & =-5.42(1) \mathrm{fm} \\ r_{\exp } & =+1.75(1) \mathrm{fm} \\ \gamma_{B_{\exp }} & =45.7 \mathrm{MeV}\end{array}\right\}$

If Z is naively evaluated from these data, one gets $P=1-Z=1.68$ [which makes no sense!]

- Additional tool, likelihood estimator $\mathcal{L}(Z, \delta r)$:

$$
\mathcal{L}(Z, \delta r)=\frac{1}{3}\left[\left(\frac{a_{\exp }-a_{\mathrm{NLO}}}{\Delta a_{\exp }}\right)^{2}+\left(\frac{r_{\exp }-r_{\mathrm{NLO}}}{\Delta r_{\exp }}\right)^{2}+\left(\frac{\gamma_{b}^{\exp }-\gamma_{b}^{\mathrm{NLO}}}{\Delta \gamma_{b}^{\exp }}\right)^{2}\right]
$$

- $\Delta a_{\exp }$ (et al.): relative error taken as $\left(\gamma_{B} / m_{\pi}\right)^{2} \simeq 0.1$ because exp. error is smaller
- The NLO expressions improve the agreement with data for $Z \simeq 0$ (molecular case), as expected
- The minimum is found for $\delta r \simeq r_{\exp }=1.75 \mathrm{fm}$ ($\simeq m_{\pi}^{-1}$, as expected)

$D_{s 0}^{*}(2317): a$ and r can be extracted from data. . . [MA, D. Jido, J. Nieves, E. Oset, EPJ,C76,6(16)]

- $D K(I=0)$ interaction taken from Heavy Meson ChPT

Fit	$M_{D_{s 0}^{*}}(\mathrm{MeV})$	$P_{D K}(\%)$	$a_{0}(\mathrm{fm})$
LHCb	$2326_{-16}^{+16}{ }_{-5}^{+1}$	$74_{-6}^{+7}{ }^{+9}$	$-1.10_{-0.39}^{+0.19}+0.01$
BaBar	$2306_{-23}^{+14}-16$	$67_{-7}^{+5}-10$	$-0.87_{-0.15}^{+0.15}-0.11$
Combined	$2315_{-17}^{+12_{-5}^{+10}}$	$70_{-6}^{+4}{ }_{-8}^{+4}$	$-0.95_{-0.15}^{+0.15}+0.08$

...but we take it from LQCD (apologies)

- a and r :
[Martínez-Torres et al., JHEP,05,153('15)]
[Mohler et al., PRL,111,222001('13); PR,D90,034510(14)]

$$
\begin{aligned}
& a=-1.3(5) \mathrm{fm} \\
& r=-0.1(3) \mathrm{fm}
\end{aligned}
$$

[Values compatible with those in the previous slide]

- $E_{B}=-45(4) \mathrm{MeV}$ [from PDG compilation]
- Molecular probabilities $P=1-Z \gtrsim 0.5$
- We are not as specific as in other cases:
- Larger uncertainties on the input (a, r, E_{B})
- Formalism pushed to (or beyond?) the limits: $\gamma_{B} / \beta \sim 0.6\left[\left(\gamma_{B} / \beta\right)^{2}=36 \%\right.$

$T_{c c}^{+}$and previous predictions

- $T_{c c}^{+}$is a tetraquark with constituent $c c \bar{u} \bar{d}$
- Models give broad range of predictions.
- Not observed until now (only $\Xi_{c c}^{++}$[LHCb])
[PRL,119,112001(17)]
- LQCD: not conclusive in the charm sector; more agreement in the bottom sector.
[Leskovec et al.,PR,D100,014503('19)]
[Bicudo et al.,PR,D103,114506('21)]

J. Carlson et al. 1987
B. Silvestre-Brac and C. Semay 1993
C. Semay and B. Silvestre-Brac 1994
M. A. Moinester 1995
S. Pepin et al. 1996
B. A. Gelman and S. Nussinov 2003
J. Vijande et al. 2003
D. Janc and M. Rosina 2004
F. Navarra et al. 2007
J. Vijande et al. 2007
D. Ebert et al. 2007
S. H. Lee and S. Yasui 2009
Y. Yang et al. 2009
N. Li et al. 2012
G.-Q. Feng et al. 2013
S.-Q. Luo et al. 2017
M. Karliner and J. Rosner 2017
E. J. Eichten and C. Quigg 2017
Z. G. Wang 2017
W. Park et al. 2018
P. Junnarkar et al. 2018
C. Deng et al. 2018
M.-Z. Liu et al. 2019
L. Maiani et al. 2019
G. Yang et al. 2019
Y. Tan et al. 2020
Q.-F. Lü et al. 2020
E. Braaten et al. 2020
D. Gao et al. 2020
J.-B. Cheng et al. 2020
S. Noh et al. 2021
R. N. Faustov et al. 2021

$T_{c c}^{+}$and previous predictions

- $T_{c c}^{+}$is a tetraquark with constituent $c c \bar{u} \bar{d}$
- Models give broad range of predictions.
- Not observed until now (only $\equiv_{c c}^{++}$[LHCb])
[PRL,119,112001(17)]
- LQCD: not conclusive in the charm sector; more agreement in the bottom sector.
[Leskovec et al.,PR,D100,014503('19)]
[Bicudo et al.,PR,D103,114506('21)]
- Then comes LHCb...
[2109.01038;2109.01056]

J. Carlson et al. 1987
B. Silvestre-Brac and C. Semay 1993
C. Semay and B. Silvestre-Brac 1994
M. A. Moinester 1995
S. Pepin et al. 1996
B. A. Gelman and S. Nussinov 2003
J. Vijande et al. 2003
D. Janc and M. Rosina 2004
F. Navarra et al. 2007
J. Vijande et al. 2007
D. Ebert et al. 2007
S. H. Lee and S. Yasui 2009
Y. Yang et al. 2009
N. Li et al. 2012
G.-Q. Feng et al. 2013
S.-Q. Luo et al. 2017
M. Karliner and J. Rosner 2017
E. J. Eichten and C. Quigg 2017
Z. G. Wang 2017
W. Park et al. 2018
P. Junnarkar et al. 2018
C. Deng et al. 2018
M.-Z. Liu et al. 2019
L. Maiani et al. 2019
G. Yang et al. 2019
Y. Tan et al. 2020
Q.-F. Lï et al. 2020
E. Braaten et al. 2020
D. Gao et al. 2020
J.-B. Cheng et al. 2020
S. Noh et al. 2021
R. N. Faustov et al. 2021

Production Model

- LHCb spectrum is essentially $T_{c c}^{+}$signal and a $D^{*} D$ phase space background
- Reasonable to assume that all $D D \pi$ events are produced through $D^{*} D$
- Small range ($\sim 30 \mathrm{MeV}$) $D D \pi$ invariant mass: assume $D^{*} D$ in S-wave

$$
\mathcal{N}_{\mathrm{ev}}\left(Q^{2}\right)=\mathcal{N}_{0}\left(\frac{Q_{\mathrm{th}}^{2}}{Q^{2}}\right)^{\frac{3}{2}} \int_{\mathrm{s}_{\mathrm{th}}}^{s_{\max }\left(Q^{2}\right)} \mathrm{d} s \int_{D_{-}\left(s, Q^{2}\right)}^{t_{+}\left(s, Q^{2}\right)} \mathrm{d} t \sum_{D^{0}}^{D^{0}}\left|\mathcal{M}_{\lambda}\left(Q^{2}, s, t, u\right)\right|^{D^{*++}}
$$

$$
\mathcal{M}_{\lambda}\left(Q^{2}, s, t, u\right)=g_{D^{*} D_{\pi}} p_{\pi}^{\nu} \epsilon_{S}^{\mu}(\lambda)\left[\frac{K_{t}\left(Q^{2}\right)}{t-m_{D_{(t)}^{*}}^{2}}\left(-g_{\mu \nu}+\frac{k_{\mu}^{(t)} k_{\nu}^{(t)}}{t}\right)+\frac{K_{u}\left(Q^{2}\right)}{u-m_{D_{(u)}^{*}}^{2}}\left(-g_{\mu \nu}+\frac{k_{\mu}^{(u)} k_{\nu}^{(u)}}{u}\right)\right]
$$

$$
K_{t}\left(Q^{2}\right)=\alpha\left(1+G_{1}\left(Q^{2}\right) T_{11}\left(Q^{2}\right)\right) C_{D^{*+} \rightarrow D^{0} \pi^{+}}+\beta G_{2}\left(Q^{2}\right) T_{12}\left(Q^{2}\right) C_{D^{*+} \rightarrow D^{0} \pi^{+}}
$$

D* D scattering amplitude

- Coupled T-matrix for the $D^{*+} D^{0}, D^{* 0} D^{+}$channels:

$$
T^{-1}(E)=V^{-1}(E)-\mathcal{G}(E),
$$

- $I_{z}=0$: the isospin decomposition reads:

$$
\begin{aligned}
& \left|D^{*+} D^{0}\right\rangle=-\frac{1}{\sqrt{2}}\left(\left|D^{*} D, I=1\right\rangle+\left|D^{*} D, I=0\right\rangle\right) \\
& \left|D^{* 0} D^{+}\right\rangle=-\frac{1}{\sqrt{2}}\left(\left|D^{*} D, I=1\right\rangle-\left|D^{*} D, I=0\right\rangle\right)
\end{aligned}
$$

$V(E)$: interaction kernels written in terms of $C_{l=0,1}$ (constants):
$\mathcal{G}(E)$: loop functions of the $D^{*+} D^{0}, D^{* 0} D^{+}$ channels:

$$
G_{i}(E)=\int \frac{\mathrm{d}^{3} \vec{k}}{(2 \pi)^{3}} \frac{e^{-\frac{2 \vec{k}^{2}}{\Lambda^{2}}}}{E-E_{\mathrm{th}}^{i}-\frac{\vec{k}^{2}}{2 \mu_{i}}}
$$

- Width of the D^{*} : the loop functions are analytically continued to complex values of the D^{*} mass, $m_{D^{*}} \rightarrow m_{D^{*}}-i \Gamma_{D^{*}} / 2$.
- Two values for the cutoff, $\Lambda=0.5 \mathrm{GeV}$ and $\Lambda=1.0 \mathrm{GeV}$.
- The V-matrix elements depend now on the cutoff, $C_{l}(\Lambda)$.

Results: Fit

- Exp. resolution taken from LHCb ($\delta \simeq 400 \mathrm{keV})$:

$$
\overline{\mathcal{N}}_{\mathrm{ev}}(E)=\int \mathrm{d} E^{\prime} R_{\mathrm{LHCb}}\left(E, E^{\prime}\right) \mathcal{N}_{\mathrm{ev}}\left(E^{\prime}\right)
$$

Parameter	$\Lambda=1.0 \mathrm{GeV}$	$\Lambda=0.5 \mathrm{GeV}$
$\mathrm{C}_{0}(\Lambda)\left[\mathrm{fm}^{2}\right]$	$-0.7008(22)$	$-1.5417(121)$
$C_{1}(\Lambda)\left[\mathrm{fm}^{2}\right]$	$-0.440(79)$	$-0.71(27)$
β / α	$0.228(108)$	$0.093(79)$
$\chi^{2} /$ dof	0.95	0.92

- Good agreement ($\chi^{2} /$ dof $=\{0.92,0.95\}$)
- Check: pull of the data seems randomly distributed.
- Statistical uncertainties obtained by MC bootstrap of the data

Spectroscopy

- Bound state pole in T-matrix, $\operatorname{det}(\mathbb{1}-V G)=0$:

$$
T_{i j}(E)=\frac{\tilde{g}_{i} \tilde{g}_{j}}{E^{2}-\left(M_{T_{c c}^{+}}-i \Gamma_{T_{c c}^{+}} / 2\right)^{2}}+\cdots
$$

- Width: $m_{D^{*}}-i \Gamma_{D^{*}} / 2 \Rightarrow M_{T_{c c}^{+}}-i \Gamma_{T_{c c}^{+}} / 2$
- Pole position (wrt $D^{*+} D^{0}$ threshold):

$\Lambda(\mathrm{GeV})$	$\delta M_{T_{c c}^{+}}(\mathrm{keV})$	$\Gamma_{T_{c c}^{+}}(\mathrm{keV})$
1.0	$-357(29)$	$77(1)$
0.5	$-356(29)$	$78(1)$

- Good agreement with LHCb determination:

	$\delta M_{T_{c}^{+}}(\mathrm{keV})$	$\Gamma_{T_{c c}^{+}}(\mathrm{keV})$
$[2109.01038]$	$-273(61)$	$410(165)$
$[2109.01056]$	$-360(40)$	$48(2)$

- Our width is somewhat larger than the $\sim 50 \mathrm{keV}$ obtained by LHCb and [Feijoo et al., 2108.02730], [Ling et al., 2108.00947].
- [Du et al., 2110.13765]: $\Gamma_{T_{c c}^{+}}$depending on the model used.

- Results similar to [LHCb, 2109.0156] (top) and [Feijoo et al., 2108.02730; Du et al., 2110.13765] (bottom).

Molecular state?

- Weinberg compositeness [Weinberg, PR,137,B672(65)]: $P=1-Z \simeq \frac{\mu^{2} g^{2}}{2 \pi \gamma_{B}}=-g^{2} G^{\prime}\left(E_{B}\right)$
- We get $P_{D^{*+}} D^{0}=0.78(5)(2), P_{D^{* 0} D^{+}}=0.22(5)(2) \rightarrow P_{l=0}=1$ purely molecular state (model built-in!)
- Relation to ERE parameters a, r
[Weinberg,PR,137,B672(65)]
- Single channel \& isospin limit:

$\Lambda(\mathrm{GeV})$	0.5	1.0
$E_{B}(\mathrm{keV})$	$833(67)$	$856(53)$
$a_{l=0}(\mathrm{fm})$	$-5.57(25)$	$-5.18(16)$
$r_{l=0}(\mathrm{fm})$	0.63	1.26

- Average values: $a_{\mathrm{ph}}=-5.38(30) \mathrm{fm}, r_{\mathrm{ph}}=0.95(32) \mathrm{fm}, \gamma_{B \mathrm{ph}}=40.4(1.7) \mathrm{MeV}$.

The values obtained clearly support a molecular picture for $T_{c c}^{+}$

Molecular state?

- Weinberg compositeness [Weinberg, PR,137,B672(65)]: $P=1-Z \simeq \frac{\mu^{2} g^{2}}{2 \pi \gamma_{B}}=-g^{2} G^{\prime}\left(E_{B}\right)$
- We get $P_{D^{*+}}=0.78(5)(2), P_{D^{*} 0}=0.22(5)(2) \rightarrow P_{l=0}=1$ purely molecular state (model built-in!)
- Relation to ERE parameters a, r
[Weinberg,PR,137,B672('65)] + [MA, J. Nieves, EPJ,C82,8('22)]

$$
\begin{aligned}
a & =-\frac{2}{\gamma_{B}} \frac{1-Z}{2-Z}-2 \delta r\left(\frac{1-Z}{2-Z}\right)^{2}+\cdots \\
r & =-\frac{1}{\gamma_{B}} \frac{Z}{1-Z}+\delta r+\cdots
\end{aligned}
$$

- Single channel \& isospin limit:

$\Lambda(\mathrm{GeV})$	0.5	1.0
$E_{B}(\mathrm{keV})$	$833(67)$	$856(53)$
$a_{l=0}(\mathrm{fm})$	$-5.57(25)$	$-5.18(16)$
$r_{l=0}(\mathrm{fm})$	0.63	1.26

- Average values: $a_{\mathrm{ph}}=-5.38(30) \mathrm{fm}, r_{\mathrm{ph}}=0.95(32) \mathrm{fm}, \gamma_{B \mathrm{ph}}=40.4(1.7) \mathrm{MeV}$. Minimum at $\delta r \simeq r_{\mathrm{ph}} \simeq 1 \mathrm{fm}$

The values obtained clearly support a molecular picture for $T_{c c}^{+}$

Size

- Can we address the question of $4 q, q \bar{q}$, molecule based on the size of the object?

- For $\pi \pi$ scattering, σ meson: MA, Oller, PR,D86,034003(12)
- $\sqrt{\left\langle r^{2}\right\rangle_{\sigma}^{S}} \simeq 0.44 \mathrm{fm}$ vs $\sqrt{\left\langle r^{2}\right\rangle_{\pi}^{S}} \simeq 0.81 \mathrm{fm}$
- Perhaps only theoretical? Future lattice QCD calculations?

Briceño et al., PR,D103,114512(21) [and refs. therein]

Summary

- Hadron spectroscopy keeps living exciting times, as shown by the LHCb discovery of the $T_{c c}^{+}$ state: a tetraquark with double charm
- Weinberg's compositeness condition is a fundamental tool to study of the nature (compact vs molecule) of the newly discovered states

Symmetry 2022, 14, 1884. https://doi.org/10.3390/sym14091884

Article
Weinberg's Compositeness ${ }^{\dagger}$
Ubirajara van Kolck ${ }^{1,2}$
1 Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France; vankolck@ijclab.in2p3.fr
${ }^{2}$ Department of Physics, University of Arizona, Tucson, AZ 85721, USA
\dagger Dedicated to the memory of Steven Weinberg, who always chose the right degrees of freedom.

- We have proposed a NLO extension to Weinberg's compositeness condition, that rely on the same assumptions and do not assume any underlying dynamics
[MA, J. Nieves, EPJ,C82,8('22)]
- The method has been applied to deuteron and to $D_{s 0}^{*}(2317)$
- A coupled channel T-matrix allows a good description of the $T_{c c}^{+}$data with few parameters, and to compute the scattering length and the effective range in the isospin (single-channel) limit
[MA, PL,B829,137052('22)]
- Applying the new method to these parameters, the $T_{c c}^{+}$state is found to be largely molecular

Methods to explore the nature of the new exotic resonances from data

