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Methods to explore the nature of the new exotic resonances from data

New: Impressive work by LHCb in spectroscopy

Nature & exotic:
Technically, “exotic” is something with quantum numbers different from qq̄, qqq
More generally, something that does not “fit well” within constituent quark models
Here, exotic possibilities are molecule or compact tetraquark, . . .

from data: avoid model/assumptions for dynamics

Method: Weinberg’s compositeness condition
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Evidence That the Deuteron Is Not an Elementary Particle*

STEVEN WEINBERGt

Department of Physics and Lawrence Radiation Laboratory, University of California, Berkeley, California

(Received 30 September 1964)

If the deuteron were an elementary particle then the triplet n-p effective range would be approximately
ZE/(I—Z), wh—ere E=4.31F is the usual deuteron radius and Z is the probability of 6nding the deuteron

in a bare elementary-particle state. This formula is model-independent, but has an error of the order of the
range m =1.41F of the n-p force, so it becomes exact only in the limit of small deuteron binding energy,
i.e., R))m '. The experimental value of the efFective range is not of order R and negative, but rather of
order m ' and positive, so Z is small or zero and the deuteron is mostly or wholly composite.

I. INTRODUCTION

'ANY physicists believe that low-energy experi-
- ~ ments can never decide whether a given particle

is composite or elementary. I will try to show here that
low-energy rt psca-ttering data already provide very
strong model-independent evidence that the deuteron
is in fact composite, or more precisely, that the proba-
bility Z of ending the deuteron in a bare elementary-
particle state is very small.

This conclusion is based on a theorem proven in
Secs. II and III, which give formulas' for the triplet ss-P

scattering length and effective range in the limit of
small deuteron binding energy:

a, = L2 (1—Z)/(2 —Z) )R+0 (m ') (1)
r'e=

t
—Z/(1 —Z)]R+0(m i) (2)

where Z is the famous deuteron "field renormalization"
constant, and E. is the usual deuteron radius

(3)
k cot5= 1/a, +r.k'/2, — (6)

(1) and (2) give in this case

a, =R; r,=0(m.—'). (4)

This is in agreement with the conclusions of simple
potential theory, and, as is well known, it also agrees
with the experimental values:

a,=+5.41 F; r, =+1.75 F. (5)

In contrast, if the deuteron had an appreciable proba-
bility Z of being found in an elementary bare-particle
state then a, would be less than E, and more striking,
r, x Olid be large and eegaHee. This is clearly contradicted
by the experimental values (5), so we may conclude
that Z is small (say (0.2), and therefore the deuteron
is at least mostly composite. '

The large values for both a, and r, when Z is not zero
may suggest to the reader that the eGective-range
approximation,

R= (2tsB)
—'t'= 4.31 —F

may itself break down when the deuteron is elementary.
In fact, we will see that this does not happen; it is only
the erst two terms in the expansion of k cotb in powers
of k' that become of order R ' for Z&0 and Jt—1/R, the
third and higher terms being smaller by powers of
(Rm ) '. One well-known consequence of (6) is the
relation between a„r„and E.

with 8 the deuteron binding energy and tt the rtp-
reduced mass. The first terms in (1) and (2) are model-
independent and become very large for small 8, while
the second terms called 0(m ') cannot be calculated
without specific information on the rt-p interaction but
are expected to be of the order of magnitude of the
range ns '=1.41F, and will in any case become
negligible for 8~ 0. In actuality E. is three times larger
than m ', so the separation between terms in (1) and
(2) is reasonably clear cut.

If the deuteron is purely composite then Z=O, ' and

1/R = 1/a, +r,/2R' (7)

which is satisfied by (1) and (2) for all Z. It should be
stressed that (7) itself tells us nothing about the
elementarity of the deuteron, since (7) follows directly
from the requirement that (6) give cot8=+ (is.e.,
e"'= co) when k is extrapolated to the deuteron pole
at k=i/R The tru.e token that the deuteron is com-
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t Alfred P. Sloan Foundation Fellow.
' After deriving these formulas I became aware that they could

also be obtained in the nonrelativistic limit of the Zachariasen
model, as treated by J. S. Dowker, Nuovo Cimento 25, 224 (1962),
by using his Eq. (9) in his Eq. (13), and then passing to the limit
it4R))1. However, Dowker's derivation does not show that for
small binding energy this result is actually model-independent
and hence applicable to the deuteron, and he does not make this
application. {There seems to be a factor of 4 lost from Dowker's
equation for the efFective range, but his equation for k cotb is
correct. )

'The use of Z=O to distinguish composite from elementary
particles has been discussed by many authors, including J. C.
Howard and 3 Jouvet, Nu.ovo Cimento 18, 466 (1960); M. T.

B

Vaughan, R. Aaron, and R. D. Amado, Phys. Rev. 124, 1258
(1961);R. Acharya, Nuovo Cimento 24, 870 (1962); S. Weinberg,
Proceedings of the 1P6Z International Conference on High Energy
Physics at CERE, edited by J. Prentki (CERN, Geneva, 1962),
p. 683; A. Salam, Nuovo Cimento 25, 224 (1962); J. S. Dowker,
ibid 25, 1135 (1962); S.. Weinberg, Phys. Rev. 130, 776 (1963).

'The point that the experimental values (5) of r, and a, are
consistent with Z=O has been made by H. Ezawa, T. Muta, and
H. Umesawa, Progr. Theoret. Phys. (Kyoto) 29, 877 (1963).
However, these authors do not compute r, and a, for Z&0, and
hence miss the point that an elementary deuteron would entail a
large negative n-p effective range.
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Elementary∼ not composite∼ compact

not elementary∼ composite∼ molecule
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Outline

1 Weinberg’s compositeness

Standard compositeness criteria

Extension of criteria

2 Examples

Canonical example: the deuteron

D∗s0(2317) (exotic)

3 Detailed example: T+cc

4 Summary
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Weinberg’s compositeness [Weinberg, PR,137,B672(’65)]

Identity resolution:

1 =
∑
n

|n〉〈n|+
∫
dα |α〉〈α|

Sandwich 〈d|1|d〉 = 1

1 = Z +

∫
dα

|〈α|V |d〉|2

(E(α)− EB)
2

1st crucial approximation: 〈α|V |d〉 ' g/(2π)3/2

1− Z = g2
µ

2π2

∫ ∞

Eth
dW

k(W)

(W − EB)2
=

µ2 g2

2πγB

Ĥ = Ĥ0 + V̂

Eigenstates of Ĥ0 :

continuum |α〉, Ĥ0 |α〉 = E(α) |α〉

bare elementary |n〉, Ĥ0 |n〉 = En |n〉

Eigenstates of Ĥ:

|d〉 (“deuteron”) Ĥ |d〉 = EB |d〉

Normalized:

〈α|β〉 = δ(β − α)

〈m|n〉 = δmn

〈α|n〉 = 0

〈d|d〉 = 1

Fundamental quantity Z =
∑
n

|〈n|d〉|2

«(. . . ) Z is the probability of finding the deuteron in a bare
elementary-particle state.» [Weinberg, PR,137,B672]

Measure: dα = d3~k = 4π µ k(W)dW
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|d〉 (“deuteron”) Ĥ |d〉 = EB |d〉
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Weinberg’s compositeness (II) [Weinberg, PR,137,B672(’65)]

1− Z written in terms of g2: 1− Z =
µ2g2

2πγB
Next step, move to low energy n-p scattering, and relate g2 to a, r

Start from a version of the Low equation:

T(E) =
g2

E − EB
+

∫ d3~k
(2π)3

√
~k2

E − Eth −~k2/(2µ)

∣∣∣T(E(~k2))∣∣∣2
A solution proposed by Weinberg reads
[2nd crucial assumption]:

T−1(E) =
E − EB
g2

−
µ2

2πγB
(E + EB − 2Eth) + i

µk(E)
2π

This solution for the amplitude exactly satisfies the
Effective Range Expansion (ERE):

−
2π
µ
T−1(E) = k cot δ − ik =

1
a
+
1
2
r k2 + · · · − ik

Relation of g2 and γB to a and r:

aγB = −2
(
1+

2πγB
µ2g2

)−1

rγB =

(
1−

2πγB
µ2g2

)

Weinberg’s compositeness condition(s)

a = −
2
γB

1− Z
2− Z

r = −
1
γB

Z
1− Z
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Extension of Weinberg’s compositeness [MA, J. Nieves, EPJ,C82,8(’22)]

A r, a are expansions in 1
β

(
γB
β

)n−1
, with β−1 an interaction range [in np, β ∼ mπ]

r =

rLO(Z)∼O(γ−1
B )︷ ︸︸ ︷

−
1
γB

Z
1− Z

+O(γ0Bβ
−1)

=⇒ r =

rNLO(Z,δr)︷ ︸︸ ︷
rLO(Z) + δr+O(γB/β

2)

a = −
2
γB

1− Z
2− Z︸ ︷︷ ︸

aLO(Z)∼O(γ−1
B )

+O(γ0Bβ
−1)

=⇒ a = aLO(Z) + δa︸ ︷︷ ︸
aNLO(Z,δa)

+O(γB/β
2)

B From ERE one gets a relation that works very well: γB ' −
1
a
+
1
2
rγ2B

The trick is to combine A & B to correlate δr and δa:
1 Introduce aNLO and rNLO above,
2 Expand in powers of γB ,
3 Solve δa in terms of δr such that the difference isO(γ3B/β

2).

Final equations, main result of [MA, J. Nieves, EPJ,C82,8(’22)]:

r = −
1
γB

Z
1− Z

+ δr +O(γB/β
2)

a = −
2
γB

1− Z
2− Z

− 2δr
(
1− Z
2− Z

)2
+O(γB/β

2)
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−1) =⇒ r =

rNLO(Z,δr)︷ ︸︸ ︷
rLO(Z) + δr+O(γB/β

2)

a = −
2
γB

1− Z
2− Z︸ ︷︷ ︸

aLO(Z)∼O(γ−1
B )

+O(γ0Bβ
−1) =⇒ a = aLO(Z) + δa︸ ︷︷ ︸

aNLO(Z,δa)

+O(γB/β
2)

B From ERE one gets a relation that works very well: γB ' −
1
a
+
1
2
rγ2B

The trick is to combine A & B to correlate δr and δa:
1 Introduce aNLO and rNLO above,
2 Expand in powers of γB ,
3 Solve δa in terms of δr such that the difference isO(γ3B/β

2).

Final equations, main result of [MA, J. Nieves, EPJ,C82,8(’22)]:

r = −
1
γB

Z
1− Z

+ δr +O(γB/β
2)

a = −
2
γB

1− Z
2− Z

− 2δr
(
1− Z
2− Z

)2
+O(γB/β

2)
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Canonical example: the deuteron

Exp. data:

 aexp = −5.42(1) fm
rexp = +1.75(1) fm
γBexp = 45.7MeV


If Z is naively evaluated from these
data, one gets P = 1− Z = 1.68
[which makes no sense!]

Additional tool, likelihood estimator L(Z, δr):

L(Z, δr) =
1
3

[(
aexp − aNLO

∆aexp

)2
+

(
rexp − rNLO

∆rexp

)2
+

(
γexpb − γNLOb

∆γexpb

)2]

∆aexp (et al.): relative error taken as (γB/mπ)
2 ' 0.1 because exp. error is smaller

The NLO expressions improve the agreement with data for Z ' 0 (molecular case), as expected

The minimum is found for δr ' rexp = 1.75 fm (' m−1
π , as expected)
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D∗s0(2317): a and r can be extracted from data. . . [MA, D. Jido, J. Nieves, E. Oset, EPJ,C76,6(’16)]

DK (I = 0) interaction taken from Heavy Meson ChPT
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+9
−1 −1.10+0.19−0.39

+0.01
−0.02

BaBar 2306+14−23
+16
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+6
−10 −0.87+0.15−0.15

+0.11
−0.18

Combined 2315+12−17
+10
−5 70+4−6

+4
−8 −0.95+0.15−0.15

+0.08
−0.13
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. . . but we take it from LQCD (apologies) [MA, J. Nieves, EPJ,C82,8(’22)]

L(Z, δr)

0.0 0.3 0.5 0.8 1.0

0.0

2.0

4.0

Z

δ
r(
fm
)

0.0

0.5

1.0

1.5

a and r: [Martínez-Torres et al., JHEP,05,153(’15)]

[Mohler et al., PRL,111,222001(’13); PR,D90,034510(’14)]

a = −1.3(5) fm
r = −0.1(3) fm

[Values compatible with those in the previous slide]

EB = −45(4)MeV [from PDG compilation]

Molecular probabilities P = 1− Z & 0.5

We are not as specific as in other cases:
Larger uncertainties on the input (a, r, EB)

Formalism pushed to (or beyond?) the limits: γB/β ∼ 0.6 [(γB/β)2 = 36%
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T+cc and previous predictions

T+cc is a tetraquark with constituent ccūd̄

Models give broad range of predictions.

Not observed until now (only Ξ++
cc [LHCb])

[PRL,119,112001(’17)]

LQCD: not conclusive in the charm sector;
more agreement in the bottom sector.

[Leskovec et al.,PR,D100,014503(’19)]

[Bicudo et al.,PR,D103,114506(’21)]

Then comes LHCb. . . [2109.01038;2109.01056]
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Production Model

LHCb spectrum is essentially T+cc signal and a D∗D phase space
background

Reasonable to assume that all DDπ events are produced
through D∗D

Small range (∼ 30MeV) DDπ invariant mass: assume D∗D in
S-wave

α

D0

D0

π+D∗+ + α

D0

D0

π+

D∗+

D0

D∗+ + β

D0

D0

π+

D∗0

D+
D∗+

Nev(Q2) = N0

(
Q2th
Q2

) 3
2 ∫ smax(Q2)

sth
ds
∫ t+(s,Q2)

t−(s,Q2)
dt
∑
λ

∣∣∣Mλ(Q2, s, t, u)
∣∣∣2 ,

Mλ(Q2, s, t, u) = gD∗Dπ pνπε
µ
S (λ)

 Kt(Q2)
t − m2D∗

(t)

(
−gµν +

k(t)µ k
(t)
ν

t

)
+

Ku(Q2)
u− m2D∗

(u)

(
−gµν +

k(u)µ k(u)ν

u

) .

Kt(Q2) = α
(
1+ G1(Q2)T11(Q2)

)
CD∗+→D0π+ + βG2(Q2)T12(Q2) CD∗+→D0π+ .
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D∗D scattering amplitude

Coupled T-matrix for the D∗+D0, D∗0D+ channels:

T−1(E) = V−1(E)− G(E) ,

Iz = 0: the isospin decomposition reads:∣∣∣D∗+D0〉 = −
1
√
2
(|D∗D, I = 1〉+ |D∗D, I = 0〉) ,∣∣∣D∗0D+〉 = −

1
√
2
(|D∗D, I = 1〉 − |D∗D, I = 0〉) ,

V(E): interaction kernels written in terms of
CI=0,1 (constants):

V(E) =
1
2

(
C0 + C1 C1 − C0
C1 − C0 C0 + C1

)
G(E): loop functions of the D∗+D0, D∗0D+
channels:

Gi(E) =
∫

d3~k
(2π)3

e−
2~k2

Λ2

E − Eith −
~k2
2µi

Width of the D∗: the loop functions are analytically continued to complex values of the D∗ mass,
mD∗ → mD∗ − iΓD∗/2.

Two values for the cutoff, Λ = 0.5 GeV and Λ = 1.0 GeV.

The V -matrix elements depend now on the cutoff, CI(Λ).
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Results: Fit

Exp. resolution taken from LHCb (δ ' 400 keV):

N ev(E) =
∫
dE′ RLHCb

(
E, E′

)
Nev(E′)
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N
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/
(0
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M
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)

Parameter Λ = 1.0 GeV Λ = 0.5 GeV

C0(Λ) [fm
2] −0.7008(22) −1.5417(121)

C1(Λ) [fm
2] −0.440(79) −0.71(27)

β/α 0.228(108) 0.093(79)
χ2/dof 0.95 0.92

Good agreement (χ2/dof = {0.92, 0.95})

Check: pull of the data seems randomly
distributed.

Statistical uncertainties obtained by MC
bootstrap of the data
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Spectroscopy
Bound state pole in T-matrix, det (1 − V G) = 0:

Tij(E) =
g̃i g̃j

E2 −
(
MT+cc − i ΓT+cc /2

)2 + · · ·

Width: mD∗ − i ΓD∗/2⇒ MT+cc − i ΓT+cc /2

Pole position (wrt D∗+D0 threshold):

Λ (GeV) δMT+cc (keV) ΓT+cc
(keV)

1.0 −357(29) 77(1)
0.5 −356(29) 78(1)

Good agreement with LHCb determination:

δMT+cc (keV) ΓT+cc
(keV)

[2109.01038] −273(61) 410(165)
[2109.01056] −360(40) 48(2)

Our width is somewhat larger than the ∼ 50 keV
obtained by LHCb and [Feijoo et al., 2108.02730], [Ling et
al., 2108.00947].

[Du et al., 2110.13765]: ΓT+cc depending on the model
used.
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Results similar to [LHCb, 2109.0156] (top) and
[Feijoo et al., 2108.02730; Du et al., 2110.13765]

(bottom).
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Molecular state?
Weinberg compositeness [Weinberg, PR,137,B672(’65)]: P = 1− Z '

µ2g2

2πγB
= −g2G′(EB)

We get PD∗+D0 = 0.78(5)(2), PD∗0D+ = 0.22(5)(2) → PI=0 = 1 purely molecular state (model built-in!)

Relation to ERE parameters a, r
[Weinberg,PR,137,B672(’65)]

a = −
2
γB

1− Z
2− Z

+ · · · ,

r = −
1
γB

Z
1− Z

+ · · · .

Single channel & isospin limit:

Λ (GeV) 0.5 1.0
EB (keV) 833(67) 856(53)
aI=0 (fm) −5.57(25) −5.18(16)
rI=0 (fm) 0.63 1.26

Average values: aph = −5.38(30) fm, rph = 0.95(32) fm, γBph = 40.4(1.7)MeV.

Minimum at δr ' rph ' 1 fm
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The values obtained clearly support a molecular picture for T+cc
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Size

Can we address the question of 4q, qq̄, molecule based on the size of the object?

π π

q
q̄ q

q̄

σ
q

q̄ q
q̄

π

π

π

π

σ σ

F(q2)

For ππ scattering, σ meson: MA, Oller, PR,D86,034003(’12)√
〈r2〉Sσ ' 0.44 fm vs

√
〈r2〉Sπ ' 0.81 fm

Perhaps only theoretical? Future lattice QCD calculations?
Briceño et al., PR,D103,114512(’21) [and refs. therein]
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Summary

Hadron spectroscopy keeps living exciting times, as shown by the LHCb discovery of the T+cc
state: a tetraquark with double charm

Weinberg’s compositeness condition is
a fundamental tool to study of the
nature (compact vs molecule) of the
newly discovered states
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1. Introduction

Steven Weinberg was one of those physicists who turned everything they touched into
gold—except, of course, for their less well-known work. Steve once or twice told me that
few things gave him as much pleasure as some recognition, such as a citation, of one of his
more obscure papers that he nevertheless was proud of. The context was his paper on the
algebraic realization of chiral symmetry [1], a beautiful and underappreciated idea related
to some work we were performing in the early 1990s [2–4].

Steve was not a conceited man, and he realized some of his work was not golden—
even though by other people’s standards, it could very well seem so. He has also told
me—and is even on record in some YouTube video I can no longer find—that some of
his papers in the 1960s were better forgotten. I do not know that this is for sure the case,
but he might have been referring to his paper on the evidence that the deuteron is not an
“elementary” particle [5], which followed a series of papers on “quasiparticles” [6–8]. By
2007, this paper had been cited in only about 20 publications, according to inSpire. The
only citation by Steve himself I could locate is [9], where the “compositeness” condition
Z = 0 is not considered particularly “useful” in quantum field theories, except that “it fixes
the coupling of the deuteron to the neutron and proton”. When we were looking into the
deuteron also in the 1990s [10–12], not once did Steve recommend [5] to me. Yet, it has now
300+ citations (again, in inSpire) due to the explosion of interest in the new exotic hadronic
states found since the X(3872) in 2003 [13]. (For a recent review, see [14].) In this context,
Steve’s result has been invoked as a criterion to decide which of the new states should be
viewed as hadronic molecules.

I believe Steve’s loss of interest in that paper [5] is due to his later, much grander,
idea of effective field theory (EFT) [15], where, from the very beginning, experimental
limitations on accessible energies are explicitly incorporated into theory construction. The
notion of compositeness is tied to resolution: one effective field theorist’s “elementary”
particle is most likely another’s “composite” particle. In the nuclear EFTs formulated since
the 1990s [16], Steve’s criterion of compositeness is automatically satisfied. The naive
interpretation that an “elementary” particle is one associated with an explicit degree of
freedom is muddled by the fact that one can always introduce an auxiliary field for the
deuteron and/or another for the virtual spin-singlet S-wave state. If anything, it is for
the latter [17,18] that the auxiliary field [19] has been more useful despite its intuitively
higher “compositeness” coming from its extreme proximity to the scattering threshold.
More generally, because an EFT includes all interactions allowed by symmetries, the choice
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gold—except, of course, for their less well-known work. Steve once or twice told me that
few things gave him as much pleasure as some recognition, such as a citation, of one of his
more obscure papers that he nevertheless was proud of. The context was his paper on the
algebraic realization of chiral symmetry [1], a beautiful and underappreciated idea related
to some work we were performing in the early 1990s [2–4].

Steve was not a conceited man, and he realized some of his work was not golden—
even though by other people’s standards, it could very well seem so. He has also told
me—and is even on record in some YouTube video I can no longer find—that some of
his papers in the 1960s were better forgotten. I do not know that this is for sure the case,
but he might have been referring to his paper on the evidence that the deuteron is not an
“elementary” particle [5], which followed a series of papers on “quasiparticles” [6–8]. By
2007, this paper had been cited in only about 20 publications, according to inSpire. The
only citation by Steve himself I could locate is [9], where the “compositeness” condition
Z = 0 is not considered particularly “useful” in quantum field theories, except that “it fixes
the coupling of the deuteron to the neutron and proton”. When we were looking into the
deuteron also in the 1990s [10–12], not once did Steve recommend [5] to me. Yet, it has now
300+ citations (again, in inSpire) due to the explosion of interest in the new exotic hadronic
states found since the X(3872) in 2003 [13]. (For a recent review, see [14].) In this context,
Steve’s result has been invoked as a criterion to decide which of the new states should be
viewed as hadronic molecules.

I believe Steve’s loss of interest in that paper [5] is due to his later, much grander,
idea of effective field theory (EFT) [15], where, from the very beginning, experimental
limitations on accessible energies are explicitly incorporated into theory construction. The
notion of compositeness is tied to resolution: one effective field theorist’s “elementary”
particle is most likely another’s “composite” particle. In the nuclear EFTs formulated since
the 1990s [16], Steve’s criterion of compositeness is automatically satisfied. The naive
interpretation that an “elementary” particle is one associated with an explicit degree of
freedom is muddled by the fact that one can always introduce an auxiliary field for the
deuteron and/or another for the virtual spin-singlet S-wave state. If anything, it is for
the latter [17,18] that the auxiliary field [19] has been more useful despite its intuitively
higher “compositeness” coming from its extreme proximity to the scattering threshold.
More generally, because an EFT includes all interactions allowed by symmetries, the choice
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We have proposed a NLO extension to Weinberg’s compositeness condition, that rely on the same
assumptions and do not assume any underlying dynamics [MA, J. Nieves, EPJ,C82,8(’22)]

The method has been applied to deuteron and to D∗s0(2317)

A coupled channel T-matrix allows a good description of the T+cc data with few parameters, and
to compute the scattering length and the effective range in the isospin (single-channel) limit

[MA, PL,B829,137052(’22)]

Applying the new method to these parameters, the T+cc state is found to be largely molecular
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