Methods to explore the nature of the new exotic resonances from data

RPUSCULAR

Miguel Albaladejo (IFIC)

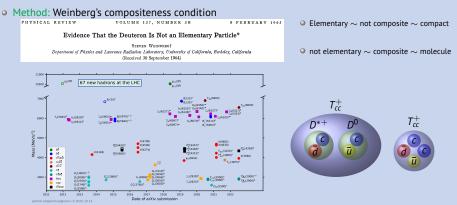
Implications of LHCb measurements and future prospects LHCb 19-21 October 2022 CERN, 19-21 October 2022

GOBIERNO DE ESPAÑA

Introduction				
0	000	000	000000	00

Methods to explore the nature of the new exotic resonances from data

- New: Impressive work by LHCb in spectroscopy
- Nature & exotic:
 - Technically, "exotic" is something with quantum numbers different from qq, qqq
 - More generally, something that does not "fit well" within constituent quark models
 - Here, exotic possibilities are molecule or compact tetraquark, ...
- from data: avoid model/assumptions for dynamics



Introduction		
Outline		

Outline

Weinberg's compositeness

- Standard compositeness criteria
- Extension of criteria

2 Examples

- Canonical example: the deuteron
- D^{*}_{s0}(2317) (exotic)
- **3** Detailed example: T_{cc}^+
- **④** Summary

	Weinberg's compositeness and extension				
Weinberg	g's compositeness	● Ĥ =	$\hat{H}_0 + \hat{V}$ [W	einberg, PR,137,B672('65)]	
5		Eiger			
Identity re	esolution:	• continuum $ lpha angle, \hat{H}_0 lpha angle = \textit{E}(lpha) lpha angle$			
		$\circ~$ bare elementary $ n angle, \hat{H}_0 n angle = {\it E}_n n angle$			

$$\mathbf{L} = \sum_{n} |n\rangle\langle n| + \int \mathrm{d}\alpha \, |\alpha\rangle\langle \alpha|$$

- Eigenstates of \hat{H} :
 - $\left| d \right\rangle$ ("deuteron") $\hat{H} \left| d \right\rangle = E_B \left| d \right\rangle$
- Ormalized:

$$\begin{split} \langle \alpha | \beta \rangle &= \delta(\beta - \alpha) \qquad \langle \alpha | n \rangle = 0 \\ \langle m | n \rangle &= \delta_{mn} \qquad \langle d | d \rangle = 1 \end{split}$$

	Weinberg's compositeness and extension			Discussion and summary
Weinberg	g's compositeness	● Ĥ =	$\hat{H}_0 + \hat{V}$	/einberg, PR,137,B672('65)]
-		Eiger	nstates of \hat{H}_0 :	
• Identity resolution: $\mathbb{1} = \sum n angle \langle n + \int \! \mathrm{d} lpha lpha angle \langle lpha $		• continuum $ lpha angle, \hat{H}_0 lpha angle = \textit{E}(lpha) lpha angle$		
		٥	• bare elementary $ n angle,\hat{H}_{0} n angle={\sf E}_{n}$	
		Eiger	 Eigenstates of Ĥ: 	

- $|d\rangle$ ("deuteron") $\hat{H} |d\rangle = E_B |d\rangle$
- Ormalized:

$$\langle \alpha | \beta \rangle = \delta(\beta - \alpha) \qquad \langle \alpha | n \rangle = 0$$

 $\langle m | n \rangle = \delta_{mn} \qquad \langle d | d \rangle = 1$

• Sandwich $\langle d|\mathbb{1}|d\rangle = 1$

п

$$1 = Z + \int \mathrm{d}\alpha \frac{\left|\langle \alpha | V | d \rangle\right|^2}{\left(E(\alpha) - E_B\right)^2}$$

Fundamental quantity $Z = \sum_{n} |\langle n | d \rangle|^2$ «(...) Z is the probability of finding the deuteron in a bare elementary-particle state.» [Weinberg, PR,137,B672]

	Weinberg's compositeness and extension			Discussion and summary
Weinberg's	s compositeness	● Ĥ = Ĥ	$\hat{H}_0 + \hat{V}$ [We	inberg, PR,137,B672('65)]
		Eigen:	states of \hat{H}_0 :	
Identity reso	olution:	0	continuum $ lpha angle$, $\hat{H}_{0} lpha angle$ =	= $E(\alpha) \alpha \rangle$
,		\circ bare elementary $ n angle, \hat{H}_0 n angle = E_n n angle$		
	$\mathbb{1} = \sum_{n \in \mathcal{A}} n\rangle \langle n + \int \mathrm{d}\alpha \alpha\rangle \langle \alpha $	Eigen:	states of \hat{H} :	
	n	0	$ d angle$ ("deuteron") $\hat{H} d angle =$	$E_B d\rangle$

Ormalized:

$$\langle \alpha | \beta \rangle = \delta(\beta - \alpha) \qquad \langle \alpha | n \rangle = 0$$

 $\langle m | n \rangle = \delta_{mn} \qquad \langle d | d \rangle = 1$

• Sandwich $\langle d|\mathbb{1}|d\rangle = 1$

$$1 = Z + \int d\alpha \frac{|\langle \alpha | V | d \rangle|^2}{(E(\alpha) - E_B)^2}$$

• 1st crucial approximation: $\langle \alpha | V | d \rangle \simeq g/(2\pi)^{3/2}$

$$1 - Z = g^2 \frac{\mu}{2\pi^2} \int_{E_{\rm th}}^{\infty} dW \, \frac{k(W)}{(W - E_B)^2} = \frac{\mu^2 g^2}{2\pi\gamma_B}$$

Fundamental quantity $Z = \sum_{n} |\langle n | d \rangle|^2$ «(...) Z is the probability of finding the deuteron in a bare elementary-particle state.» [Weinberg, PR,137,B672]

• Measure: $d\alpha = d^3 \vec{k} = 4\pi \ \mu \ k(W) dW$

Weinberg's compositeness and extension		
000		

• 1 - Z written in terms of g^2 : $1 - Z = \frac{\mu^2 g^2}{2\pi \gamma_B}$

Next step, move to *low energy* n-p scattering, and relate g^2 to a, r

• Start from *a version* of the Low equation:

$$T(E) = \frac{g^2}{E - E_B} + \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{\sqrt{\vec{k}^2}}{E - E_{\rm th} - \vec{k}^2/(2\mu)} \left| T(E(\vec{k}^2)) \right|^2$$

• A solution proposed by Weinberg reads [2nd crucial assumption]:

$$T^{-1}(E) = rac{E - E_B}{g^2} - rac{\mu^2}{2\pi\gamma_B}(E + E_B - 2E_{
m th}) + irac{\mu k(E)}{2\pi}$$

• This solution for the amplitude exactly satisfies the Effective Range Expansion (ERE):

$$-\frac{2\pi}{\mu}T^{-1}(E) = k \cot \delta - ik = \frac{1}{a} + \frac{1}{2}r k^2 + \cdots - ik$$

Weinberg's compositeness and extension		
000		

• 1 - Z written in terms of g^2 : $1 - Z = \frac{\mu^2 g^2}{2\pi \gamma_B}$

Next step, move to *low energy* n-p scattering, and relate g^2 to a, r

• Start from *a version* of the Low equation:

$$T(E) = \frac{g^2}{E - E_B} + \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{\sqrt{\vec{k}^2}}{E - E_{\rm th} - \vec{k}^2/(2\mu)} \left| T(E(\vec{k}^2)) \right|^2$$

• A solution proposed by Weinberg reads [2nd crucial assumption]:

$$T^{-1}(E) = \frac{E - E_B}{g^2} - \frac{\mu^2}{2\pi\gamma_B}(E + E_B - 2E_{\text{th}}) + i\frac{\mu k(E)}{2\pi}$$

• Relation of g^2 and γ_B to a and r :

• This solution for the amplitude exactly satisfies the Effective Range Expansion (ERE):

$$-\frac{2\pi}{\mu}T^{-1}(E) = k \cot \delta - ik = \frac{1}{a} + \frac{1}{2}rk^2 + \cdots - ik$$

$$a\gamma_B = -2\left(1 + \frac{2\pi\gamma_B}{\mu^2 g^2}\right)^{-1}$$
$$r\gamma_B = \left(1 - \frac{2\pi\gamma_B}{\mu^2 g^2}\right)$$

Introduction Weinberg's composi	teness and extension Examples	
00 000		

• 1 - Z written in terms of g^2 : $1 - Z = \frac{\mu^2 g^2}{2\pi \gamma_B}$

Next step, move to *low energy n-p scattering*, and relate g^2 to *a*, *r*

• Start from *a version* of the Low equation:

$$T(E) = \frac{g^2}{E - E_B} + \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{\sqrt{\vec{k}^2}}{E - E_{\rm th} - \vec{k}^2/(2\mu)} \left| T(E(\vec{k}^2)) \right|^2$$

 A solution proposed by Weinberg reads [2nd crucial assumption]:

$$T^{-1}(E) = \frac{E - E_B}{g^2} - \frac{\mu^2}{2\pi\gamma_B}(E + E_B - 2E_{\text{th}}) + i\frac{\mu k(E)}{2\pi}$$
This solution for the amplitude exactly satisfies the
Effective Range Expansion (ERE):

$$-\frac{2\pi}{\mu}T^{-1}(E) = k \cot \delta - ik = \frac{1}{a} + \frac{1}{2}rk^2 + \cdots - ik$$
Relation of g^2 and γ_B to a and r :

$$a\gamma_B = -2\left(1 + \frac{2\pi\gamma_B}{\mu^2 g^2}\right)^{-1}$$

$$r\gamma_B = \left(1 - \frac{2\pi\gamma_B}{\mu^2 g^2}\right)$$

Introduction Weinbe	erg's compositeness and extension		
000 000			

• 1 - Z written in terms of g^2 : $1 - Z = \frac{\mu^2 g^2}{2\pi \gamma_B}$

Next step, move to *low energy n-p scattering*, and relate g^2 to *a*, *r*

• Start from *a version* of the Low equation:

$$T(E) = \frac{g^2}{E - E_B} + \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{\sqrt{\vec{k}^2}}{E - E_{\rm th} - \vec{k}^2/(2\mu)} \left| T(E(\vec{k}^2)) \right|^2$$

• A solution proposed by Weinberg reads [2nd crucial assumption]:

۲

$$T^{-1}(E) = \frac{E - E_B}{g^2} - \frac{\mu^2}{2\pi\gamma_B}(E + E_B - 2E_{\text{th}}) + i\frac{\mu k(E)}{2\pi}$$
This solution for the amplitude exactly satisfies the effective Range Expansion (ERE):

$$-\frac{2\pi}{\mu}T^{-1}(E) = k \cot \delta - ik = \frac{1}{a} + \frac{1}{2}rk^2 + \dots - ik$$
Relation of g^2 and γ_B to a and r :

$$a\gamma_B = -2\left(1 + \frac{2\pi\gamma_B}{\mu^2 g^2}\right)^{-1}$$

$$r\gamma_B = \left(1 - \frac{2\pi\gamma_B}{\mu^2 g^2}\right)$$

Weinberg's compositeness condition(s)

$$a = -\frac{2}{\gamma_B} \frac{1-Z}{2-Z} \quad r = -\frac{1}{\gamma_B} \frac{Z}{1-Z}$$

Weinberg's compositeness and extension		
000		

Extension of Weinberg's compositeness

[MA, J. Nieves, EPJ,C82,8('22)]

(a) *r*, *a* are expansions in $\frac{1}{\beta} \left(\frac{\gamma_B}{\beta}\right)^{n-1}$, with β^{-1} an interaction range [in *np*, $\beta \sim m_{\pi}$]

$$r = \underbrace{\frac{1}{-\frac{1}{\gamma_B} \frac{Z}{1-Z}}_{a_{\text{LD}}(Z) \sim \mathcal{O}(\gamma_B^{-1})}^{r_{\text{LD}}(Z) \sim \mathcal{O}(\gamma_B^{-1})} + \mathcal{O}(\gamma_B^0 \beta^{-1})}_{a_{\text{LD}}(Z) \sim \mathcal{O}(\gamma_B^{-1})} + \mathcal{O}(\gamma_B^0 \beta^{-1})$$

Introduction	Weinberg's compositeness and extension						
Extensio	Extension of Weinberg's compositeness [MA, J. Nieves, EPJ,C82,8(22)]						
(a) <i>r</i> , <i>a</i> are expansions in $\frac{1}{\beta} \left(\frac{\gamma_B}{\beta}\right)^{n-1}$, with β^{-1} an interaction range [in <i>np</i> , $\beta \sim m_{\pi}$]							
	$r_{LO}(Z) \sim \mathcal{O}(\gamma_B^{-1})$		$r_{\rm NLO}(Z,\delta r)$				
1	$T = \overline{-\frac{1}{\gamma_B}\frac{Z}{1-Z}} + \mathcal{O}(\gamma_B^0\beta^{-1})$	\Rightarrow	$r = \overbrace{r_{\rm LO}(Z) + \delta r}^{r_{\rm NLO}(Z, \delta r)} + C$	$\mathcal{O}(\gamma_B/\beta^2)$			
C	$n = -\frac{2}{\gamma_B} \frac{1-Z}{2-Z} + \mathcal{O}(\gamma_B^0 \beta^{-1})$	\Rightarrow	$a = \underbrace{a_{\text{LO}}(Z) + \delta a}_{+ 0} + \underbrace{\delta a}_{+ 0}$	$\mathcal{O}(\gamma_B/\beta^2)$			
	$a_{\rm LO}(Z) \sim \mathcal{O}(\gamma_B^{-1})$		$a_{\rm NLO}(Z,\delta a)$				

		Weinberg's composi	teness and extension			
E	xtension	of Weinbe	rg's composit	eness	[MA,	J. Nieves, EPJ,C82,8('22)]
A	(a) r, a are expansions in $rac{1}{eta}\left(rac{\gamma_B}{eta} ight)^{n-1}$, with eta^{-1} an interaction range [in <i>np</i> , $eta\sim m_\pi$]					
		$r_{LO}(Z) \sim \mathcal{O}(\gamma_B^{-1})$			$r_{\rm NLO}(Z,\delta r)$	
		,0	$+ \mathcal{O}(\gamma_B^0 \beta^{-1})$	\Rightarrow	$r = \overbrace{r_{\text{LO}}(Z) + \delta r}^{r_{\text{NLO}}(Z, \delta r)} + C$	(γ_B/β^2)
	a =	$-\frac{2}{\gamma_B}\frac{1-Z}{2-Z}$	$+\mathcal{O}(\gamma_B^0\beta^{-1})$	\Rightarrow	$a = \underbrace{a_{\text{LO}}(Z) + \delta a}_{\text{CO}} + \mathcal{C}$	$\mathcal{O}(\gamma_B/\beta^2)$
		$a_{LO}(Z) \sim \mathcal{O}(\gamma_B^{-1})$)		$a_{NLO}(Z,\delta a)$	
B	From ERE or	ne gets a relat	ion that <mark>works ve</mark>	ry well: $\gamma_{B}\simeq -$	$-\frac{1}{a}+\frac{1}{2}r\gamma_B^2$	

Intro 00	duction Weinberg	s compositeness and extension			
Ех	tension of We	inberg's composi	teness	[MA	, J. Nieves, EPJ,C82,8('22)]
A 1	r, a are expansions	in $\frac{1}{\beta} \left(\frac{\gamma_B}{\beta} \right)^{n-1}$, with β^-	⁻¹ an interactio	on range [in <i>np</i> , $eta \sim m_{e}$	π]
	$r_{LO}(Z) \sim C$			$r_{\rm NLO}(Z,\delta r)$	
		$\frac{\overline{Z}}{-Z} + \mathcal{O}(\gamma_B^0 \beta^{-1})$	\Rightarrow	$r = \overbrace{r_{\text{LO}}(Z) + \delta r}^{r_{\text{NLO}}(Z, \delta r)} + C$	$\mathcal{O}(\gamma_B/\beta^2)$
	$a = -\frac{2}{\gamma_B}\frac{1}{2}$	$\frac{z-Z}{z-Z} + \mathcal{O}(\gamma_B^0 \beta^{-1})$	\Rightarrow		$\mathcal{O}(\gamma_{B}/\beta^{2})$
	$a_{LO}(Z) \sim 0$	$\mathcal{D}(\gamma_B^{-1})$		a _{NLO} (Z,δa)	
B	From ERE one gets	a relation that <mark>works v</mark>	ery well: $\gamma_B \simeq$	$-\frac{1}{a}+\frac{1}{2}r\gamma_B^2$	
		ine A & B to correlate a		u Z	

- (1) Introduce a_{NLO} and r_{NLO} above,

2 Expand in powers of γ_{B} , **3** Solve δa in terms of δr such that the difference is $\mathcal{O}(\gamma_{B}^{3}/\beta^{2})$.

	voluction Weinberg's compositeness and extension O OO●	Examples	Detailed example: <i>T</i> ⁺ 000000	Discussion and summary
E	xtension of Weinberg's composite	eness	[MA,	J. Nieves, EPJ,C82,8('22)]
۵	r, a are expansions in $\frac{1}{\beta}\left(\frac{\gamma_B}{\beta}\right)^{n-1}$, with β^{-1}	an interacti	on range [in <i>np</i> , $eta \sim m_\pi$.]
	$r_{\text{LO}}(Z) \sim \mathcal{O}(\gamma_B^{-1})$		$r_{\rm NLO}(Z,\delta r)$	
	$r = -\frac{1}{\gamma_{B}} \frac{Z}{1-Z} + \mathcal{O}(\gamma_{B}^{0}\beta^{-1})$	\Rightarrow	$r = \overbrace{r_{\text{LO}}(Z) + \delta r}^{r_{\text{NLO}}(Z, \delta r)} + \mathcal{O}$	(γ_B/β^2)
	$a = \underbrace{-\frac{2}{\gamma_B} \frac{1-Z}{2-Z}}_{PB} + \mathcal{O}(\gamma_B^0 \beta^{-1})$	\Rightarrow	$a = \underbrace{a_{\text{LO}}(Z) + \delta a}_{a_{\text{NLO}}(Z, \delta a)} + \mathcal{C}$	$\mathcal{O}(\gamma_B/\beta^2)$
	$a_{\rm LD}(Z) \sim \mathcal{O}(\gamma_{\rm g}^{-1})$		$a_{NLO}(Z,\delta a)$	
₿	From ERE one gets a relation that works very	y well: $\gamma_{B} \simeq$	$-\frac{1}{a}+\frac{1}{2}r\gamma_B^2$	
٥	The trick is to combine A & B to correlate δr (1) Introduce a_{NLO} and r_{NLO} above, (2) Expand in powers of γ_B , (3) Solve δa in terms of δr such that the difference		²).	
٥	Final equations, main result of [MA, J. Nieves, EPJ	,C82,8('22)] :		

$$r = -\frac{1}{\gamma_B} \frac{Z}{1-Z} + \delta r + \mathcal{O}(\gamma_B/\beta^2)$$
$$a = -\frac{2}{\gamma_B} \frac{1-Z}{2-Z} - 2\delta r \left(\frac{1-Z}{2-Z}\right)^2 + \mathcal{O}(\gamma_B/\beta^2)$$

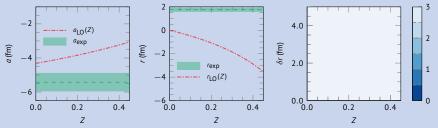
		Examples •00	
Canonica	l example: the deuteron		

• Exp. data:

$$a_{exp} = -5.42(1) \text{ fm}$$

 $r_{exp} = +1.75(1) \text{ fm}$
 $\gamma_{Bexp} = 45.7 \text{ MeV}$

If *Z* is **naively evaluated** from these data, one gets P = 1 - Z = 1.68 [which makes no sense!]



	Examples •00	
_		

Canonical example: the deuteron

Exp. data:

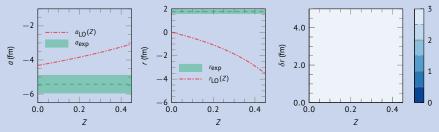
$$\begin{array}{ll} a_{\rm exp} & = -5.42(1) \, {\rm fm} \\ r_{\rm exp} & = +1.75(1) \, {\rm fm} \\ \gamma_{{\cal B}{\rm exp}} & = 45.7 \, {\rm MeV} \end{array}$$

If *Z* is **naively evaluated** from these data, one gets P = 1 - Z = 1.68 [which makes no sense!]

• Additional tool, likelihood estimator $\mathcal{L}(Z, \delta r)$:

$$\mathcal{L}(Z,\delta r) = \frac{1}{3} \left[\left(\frac{a_{\exp} - a_{\mathsf{NLO}}}{\Delta a_{\exp}} \right)^2 + \left(\frac{r_{\exp} - r_{\mathsf{NLO}}}{\Delta r_{\exp}} \right)^2 + \left(\frac{\gamma_b^{\exp} - \gamma_b^{\mathsf{NLO}}}{\Delta \gamma_b^{\exp}} \right)^2 \right]$$

• Δa_{\exp} (et al.): relative error taken as $(\gamma_B/m_\pi)^2 \simeq 0.1$ because exp. error is smaller



	Examples ••••	

Canonical example: the deuteron

Exp. data:

$$\begin{array}{ll} a_{\rm exp} & = -5.42(1) \, {\rm fm} \\ r_{\rm exp} & = +1.75(1) \, {\rm fm} \\ \gamma_{{\cal B}{\rm exp}} & = 45.7 \, {\rm MeV} \end{array}$$

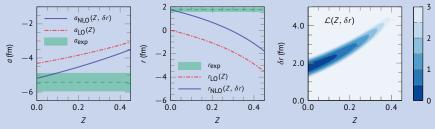
If *Z* is **naively evaluated** from these data, one gets P = 1 - Z = 1.68 [which makes no sense!]

• Additional tool, likelihood estimator $\mathcal{L}(Z, \delta r)$:

$$\mathcal{L}(Z,\delta r) = \frac{1}{3} \left[\left(\frac{a_{\exp} - a_{\mathsf{NLO}}}{\Delta a_{\exp}} \right)^2 + \left(\frac{r_{\exp} - r_{\mathsf{NLO}}}{\Delta r_{\exp}} \right)^2 + \left(\frac{\gamma_b^{\exp} - \gamma_b^{\mathsf{NLO}}}{\Delta \gamma_b^{\exp}} \right)^2 \right]$$

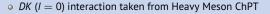
- Δa_{exp} (et al.): relative error taken as $(\gamma_B/m_\pi)^2 \simeq 0.1$ because exp. error is smaller
- The NLO expressions improve the agreement with data for $Z \simeq 0$ (molecular case), as expected

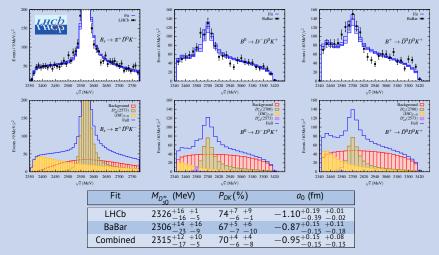
• The minimum is found for $\delta r \simeq r_{
m exp} = 1.75$ fm ($\simeq m_\pi^{-1}$, as expected)

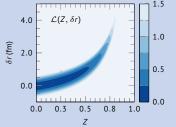


	Examples	
	000	

D^{*}_{s0}(2317): a and r can be extracted from data... [MA, D. Jido, J. Nieves, E. Oset, EPJ,C76,6('16)]







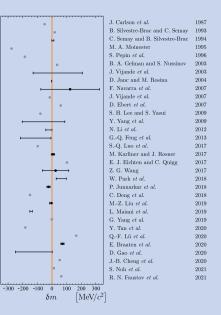
• *a* and *r*: [Martínez-Torres *et al.*, JHEP,05,153(15)] [Mohler *et al.*, PRL,111,222001(13); PR,D90,034510(14)] a = -1.3(5) fmr = -0.1(3) fm[Values compatible with those in the previous slide] • $E_B = -45(4) \text{ MeV}$ [from PDG compilation]

- Molecular probabilities $P = 1 Z \gtrsim 0.5$
- We are not as specific as in other cases:
 - Larger uncertainties on the input (a, r, E_B)
 - Formalism pushed to (or beyond?) the limits: $\gamma_B/\beta \sim 0.6 \left[(\gamma_B/\beta)^2 = 36\%\right]$

T_{cc}^+ and previous predictions

- T_{cc}^+ is a **tetraquark** with constituent $cc\bar{u}\bar{d}$
- Models give broad range of predictions.
- Not observed until now (only \(\mathbf{E}_{cc}^{++}\) [LHCb]\)
 [PRL,119,112001(17)]
- LQCD: not conclusive in the charm sector; more agreement in the bottom sector.

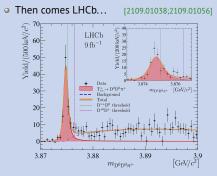
[Leskovec et al.,PR,D100,014503(19)] [Bicudo et al.,PR,D103,114506(21)]

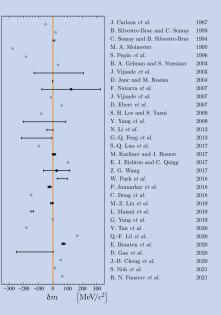


T_{cc}^+ and previous predictions

- T_{cc}^+ is a **tetraquark** with constituent $cc\bar{u}\bar{d}$
- Models give broad range of predictions.
- Not observed until now (only \(\mathbf{E}_{cc}^{++}\) [LHCb]\) [PRL,119,112001(17)]
- LQCD: not conclusive in the charm sector; more agreement in the bottom sector.

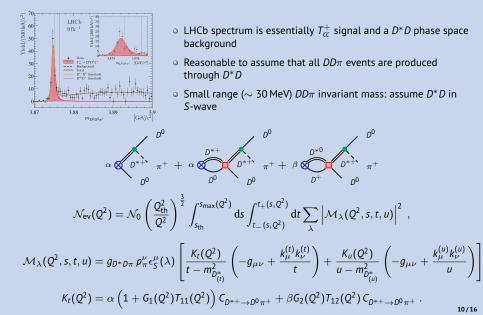
[Leskovec et al.,PR,D100,014503('19)] [Bicudo et al.,PR,D103,114506('21)]





	Detailed example: T_{cc}^+	

Production Model



10/16

	Detailed example: T_{cc}^+	
	00000	

*D***D* scattering amplitude

• Coupled *T*-matrix for the $D^{*+}D^0$, $D^{*0}D^+$ channels:

$$T^{-1}(E) = V^{-1}(E) - \mathcal{G}(E) ,$$

• $I_z = 0$: the isospin decomposition reads:

$$\begin{split} \left| D^{*+} D^{0} \right\rangle &= -\frac{1}{\sqrt{2}} \left(|D^{*} D, I = 1 \rangle + |D^{*} D, I = 0 \rangle \right) , \\ \left| D^{*0} D^{+} \right\rangle &= -\frac{1}{\sqrt{2}} \left(|D^{*} D, I = 1 \rangle - |D^{*} D, I = 0 \rangle \right) , \end{split}$$

V(E): **interaction** kernels written in terms of $C_{I=0,1}$ (constants):

 $\mathcal{G}(E)$: **loop functions** of the $D^{*+}D^0$, $D^{*0}D^+$ channels:

$$V(E) = \frac{1}{2} \begin{pmatrix} C_0 + C_1 & C_1 - C_0 \\ C_1 - C_0 & C_0 + C_1 \end{pmatrix} \qquad \qquad G_i(E) = \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{e^{-\frac{2\vec{k}^2}{\Lambda^2}}}{E - E_{\text{th}}^i - \frac{\vec{k}^2}{2\mu_i}}$$

• Width of the D^* : the loop functions are analytically continued to complex values of the D^* mass, $m_{D^*} \rightarrow m_{D^*} - i\Gamma_{D^*}/2.$

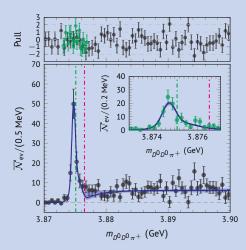
- Two values for the cutoff, $\Lambda=0.5$ GeV and $\Lambda=1.0$ GeV.
- The *V*-matrix elements depend now on the cutoff, $C_l(\Lambda)$.

	Detailed example: T_{cc}^+	

Results: Fit

• Exp. resolution taken from LHCb ($\delta \simeq 400 \text{ keV}$):

$$\overline{\mathcal{N}}_{\mathsf{ev}}(E) = \int \mathrm{d}E' \, R_{\mathsf{LHCb}} \, \left(E, E'\right) \, \mathcal{N}_{\mathsf{ev}}(E')$$



Parameter	$\Lambda = 1.0 \; \text{GeV}$	$\Lambda=0.5~\text{GeV}$
$C_0(\Lambda)$ [fm ²]	-0.7008(22)	-1.5417(121)
$C_1(\Lambda)$ [fm ²]	-0.440(79)	-0.71(27)
β/α	0.228(108)	0.093(79)
χ^2/dof	0.95	0.92

- Good agreement (χ^2 /dof = {0.92, 0.95})
- Check: pull of the data seems randomly distributed.
- Statistical uncertainties obtained by MC bootstrap of the data

	Detailed example: T_{cc}^+	
	000000	

Spectroscopy

• Bound state pole in *T*-matrix, det (1 - VG) = 0:

$$T_{ij}(E) = \frac{\widetilde{g}_i \widetilde{g}_j}{E^2 - \left(M_{T_{cc}^+} - i \,\Gamma_{T_{cc}^+}/2\right)^2} + \cdots$$

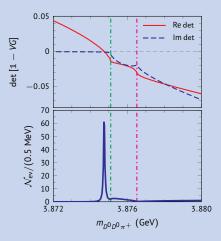
- Width: $m_{D^*} i \Gamma_{D^*}/2 \Rightarrow M_{T_{cc}^+} i \Gamma_{T_{cc}^+}/2$
- Pole position (wrt $D^{*+}D^0$ threshold):

Λ (GeV)	$\delta M_{\mathcal{T}^+_{cc}}$ (keV)	$\Gamma_{T_{cc}^+}$ (keV)
1.0	-357(29)	77(1)
0.5	-356(29)	78(1)

• Good agreement with LHCb determination:

	$\delta M_{T_{cc}^+}$ (keV)	$\Gamma_{T_{cc}^+}$ (keV)
[2109.01038]	-273(61)	410(165)
[2109.01056]	-360(40)	48(2)

- Our width is somewhat larger than the ~ 50 keV obtained by LHCb and [Feijoo et al., 2108.02730], [Ling et al., 2108.00947].
- [Du *et al.*, 2110.13765]: $\Gamma_{T_{cc}^+}$ depending on the model used.



 Results similar to [LHCb, 2109.0156] (top) and [Feijoo et al., 2108.02730; Du et al., 2110.13765] (bottom).

	Detailed example: T_{cc}^+	
	00000	

Molecular state?

• Weinberg compositeness [Weinberg, PR,137,B672(65)]: $P = 1 - Z \simeq rac{\mu^2 g^2}{2\pi\gamma_B} = -g^2 G'(E_B)$

• We get $P_{D^*+D^0} = 0.78(5)(2), P_{D^*0D^+} = 0.22(5)(2) \rightarrow P_{l=0} = 1$ purely molecular state (model built-in!)

 Relation to ERE parameters a, r [Weinberg,PR,137,B672('65)]

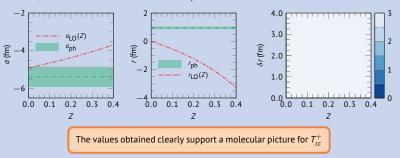
$$a = -\frac{2}{\gamma_B} \frac{1-Z}{2-Z} + \cdots ,$$

$$r = -\frac{1}{\gamma_B} \frac{Z}{1-Z} + \cdots .$$

• Single channel & isospin limit:

Λ (GeV)	0.5	1.0
E_B (keV)	833(67)	856(53)
$a_{l=0}$ (fm)	-5.57(25)	-5.18(16)
<i>r</i> _{<i>l</i>=0} (fm)	0.63	1.26

• Average values: $a_{ph} = -5.38(30)$ fm, $r_{ph} = 0.95(32)$ fm, $\gamma_{Bph} = 40.4(1.7)$ MeV.



	Detailed example: T ⁺ _{cc}	
	000000	

Molecular state?

• Weinberg compositeness [Weinberg, PR,137,B672(65)]: $P = 1 - Z \simeq rac{\mu^2 g^2}{2\pi\gamma_B} = -g^2 G'(E_B)$

• We get $P_{D^{*+}D^{0}} = 0.78(5)(2)$, $P_{D^{*0}D^{+}} = 0.22(5)(2) \rightarrow P_{l=0} = 1$ purely molecular state (model built-in!)

 Relation to ERE parameters a, r [Weinberg,PR,137,B672('65)] + [MA, J. Nieves, EPJ,C82,8('22)]

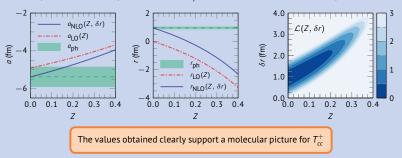
$$a = -\frac{2}{\gamma_B} \frac{1-Z}{2-Z} - 2\delta r \left(\frac{1-Z}{2-Z}\right)^2 + \cdots,$$

$$r = -\frac{1}{\gamma_B} \frac{Z}{1-Z} + \delta r + \cdots.$$

• Single channel & isospin limit:

Λ (GeV)	0.5	1.0
E_B (keV)	833(67)	856(53)
$a_{l=0}$ (fm)	-5.57(25)	-5.18(16)
$r_{l=0}$ (fm)	0.63	1.26

• Average values: $a_{ph} = -5.38(30) \text{ fm}$, $r_{ph} = 0.95(32) \text{ fm}$, $\gamma_{Bph} = 40.4(1.7) \text{ MeV}$. Minimum at $\delta r \simeq r_{ph} \simeq 1 \text{ fm}$



		Discussion and summary
Size		

• Can we address the question of 4q, $q\bar{q}$, molecule based on the size of the object?

• For $\pi\pi$ scattering, σ meson: MA, Oller, PR,D86,034003(12)

$$\sqrt{\langle r^2
angle^S_\sigma} \simeq 0.44 ~{
m fm}~{
m vs}~\sqrt{\langle r^2
angle^S_\pi} \simeq 0.81 ~{
m fm}$$

• Perhaps only theoretical? Future lattice QCD calculations?

Briceño et al., PR,D103,114512('21) [and refs. therein]

		Discussion and summary
Summarv		

- Hadron spectroscopy keeps living exciting times, as shown by the LHCb discovery of the T⁺_{cc} state: a tetraquark with double charm
- Weinberg's compositeness condition is a fundamental tool to study of the nature (compact vs molecule) of the newly discovered states

Symmetry 2022, 14, 1884. https://doi.org/10.3390/sym14091884

Article Weinberg's Compositeness ⁺

Ubirajara van Kolck 1,2

¹ Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France; vankolck@ijclab.in2p3.fr

² Department of Physics, University of Arizona, Tucson, AZ 85721, USA

t Dedicated to the memory of Steven Weinberg, who always chose the right degrees of freedom.

- We have proposed a NLO extension to Weinberg's compositeness condition, that rely on the same assumptions and do not assume any underlying dynamics [MA, J. Nieves, EPJ,C82,8(22)]
- The method has been applied to deuteron and to D^{*}_{s0}(2317)
- A coupled channel *T*-matrix allows a good description of the *T⁺_{cc}* data with few parameters, and to compute the scattering length and the effective range in the isospin (single-channel) limit [MA, PL,B829,137052(22)]
- Applying the new method to these parameters, the T_{cc}^+ state is found to be largely molecular

Methods to explore the nature of the new exotic resonances from data

RPUSCULAR

Miguel Albaladejo (IFIC)

Implications of LHCb measurements and future prospects LHCb 19-21 October 2022 CERN, 19-21 October 2022

GOBIERNO DE ESPAÑA

