$K \rightarrow \mu^+ \mu^-$ as a probe for New Physics

Stefan Schacht University of Manchester

Implications of LHCb measurements and future prospects

CERN October 2022

$K \rightarrow \mu^+ \mu^-$ is exciting! A lot of recent activity

Theory:

- D'Ambrosio Kitahara, 1707.06999
- Dery Ghosh Grossman StS, 2104.06427
- Buras Venturini, 2109.11032
- Dery Ghosh, 2112.05801
- Brod Stamou, 2209.07445
- Dery Ghosh Grossman Kitahara StS, 22xx.SOON

Experiment:

- LHCb, 2001.10354: Upper limit on $K_S \rightarrow \mu^+ \mu^-$
- LHCb, KAON'22: Upper limits on $K_{S,L} \rightarrow 2(\mu^+\mu^-)$

$$K \rightarrow \mu^+ \mu^-$$
 is exciting!

[D'Ambrosio Kitahara 1707.06999, Dery Ghosh Grossman StS, 2104.06427]

NA62

The new idea

- We can very cleanly measure $\operatorname{Im}(V_{td}^*V_{ts})$ (or η) from $K \to \mu^+\mu^-$.
- We can do so employing time-dependent interference effects.
- Third golden channel alongside: $K^+ \rightarrow \pi^+ v \bar{v}$ gives $|V_{td}V_{ts}|$ $K_{\tau} \rightarrow \pi^0 v \bar{v}$ gives $Im(V^* V_{ts})$ (or n)
 - $K_L \to \pi^0 v \bar{v}$ gives $\operatorname{Im}(V_{td}^* V_{ts})$ (or η) **KOTO**
- Determine the unitarity triangle purely with kaon decays.
 Crucial intergenerational consistency check of the SM.
- New ways to probe for new physics.

The three golden channels

 $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$

"Theoretically clean, experimentally hard"

$K \rightarrow \mu^+ \mu^-$, common lore

"Theoretically not clean, experimentally not hard."

$K \rightarrow \mu^+ \mu^-$, this talk

"Theoretically clean, experimentally hard."

- Only hadronic uncertainty from f_K .
- Challenging to measure time-dependent interference effects.

Long-Distance and Short-Distance Physics

[Isidori Unterdorfer hep-ph/0311084]

Stefan Schacht (Manchester)

CERN October 2022 5 / 25

Can we overcome soft QCD?

• To get a theoretically clean method we need a theory error of $\leq 1\%$.

 We are currently not able to achieve theory precision of long distance (LD) effects in K → μ⁺μ⁻ below ~ 10%.

• We know short-distance (SD) physics at desired precision.

• How can we measure the SD physics?

Basics of $K \to \mu^+ \mu^-$

Approximation

In this talk we neglect CP-violating in mixing *ε_K*.
 ▶Can be incorporated into analysis [Brod Stamou 2209.07445].

Angular momentum conservation: Only $(\mu\mu)_{l=0}$ or $(\mu\mu)_{l=1}$

CP-conserving decays

$$K_L \rightarrow (\mu\mu)_{l=0}$$
 $K_S \rightarrow (\mu\mu)_{l=1}$
CP-odd CP-odd CP-even CP-even

CP-violating decays

 $K_S \rightarrow (\mu\mu)_{l=0}$ $K_L \rightarrow (\mu\mu)_{l=1}$ CP-even CP-odd CP-even

CP of muons: $(-1)^{l+1}$.

$K \rightarrow \mu^+ \mu^-$ in the Standard Model

To good approximation:

LD effects are CP conserving.
 CP violating amplitudes are purely SD.

Short-distance (SD) and long-distance (LD) physics
CP-conserving decays: SD and LD

$$\begin{array}{rcl} K_L & \rightarrow & (\mu\mu)_{l=0} & K_S & \rightarrow & (\mu\mu)_{l=1} \\ \mbox{CP-odd} & \mbox{CP-even} & \mb$$

$K \rightarrow \mu^+ \mu^-$ in the Standard Model

• SM: SD operator $(\bar{\mu}\gamma^{\mu}\mu_{L})$ does **not** generate $(\mu\mu)_{l=1}$ state (CPT).

Short-distance (SD) and long-distance (LD) physics

CP-conserving decays: SD and LD

 $K_L \rightarrow (\mu\mu)_{l=0}$ CP-odd CP-odd $K_S \rightarrow (\mu\mu)_{l=1}$ CP-even CP-even

CP-violating decays: Only SD

 $K_S \rightarrow (\mu\mu)_{l=0}$ $K_L \rightarrow (\mu\mu)_{l=1}$ CP-even CP-odd CP-odd CP-even = 0

Counting of Theory Parameters

- A priori: 6 parameters: 4 magnitudes, 2 phases.
- In SM/large class of NP models: Reduction to 4.
- 1 of which is pure SD.

$K_S \rightarrow (\mu \mu)_{l=0}$ is the key to SD physics

• We can cleanly calculate it in the SM.

$$\mathcal{B}(K_S \to (\mu\mu)_{l=0}) = 1.9 \cdot 10^{-13} \times \left(\frac{A^2 \lambda^5 \eta}{1.3 \times 10^{-4}}\right)$$

[Isidori Unterdorfer hep-ph/0311084, Dumm Pich hep-ph/9801298]

- Hadronic uncertainties from $f_K < 1\%$.
- Way to extract η theoretically clean.
- We can also calculate $\mathcal{B}(K_S \to (\mu \mu)_{l=0})$ cleanly in NP models.

In practice we measure incoherent sum

- Muon states with specific angular momentum $(\mu\mu)_{l=0}$ and $(\mu\mu)_{l=1}$: Not available to us: We cannot separate l = 0 and l = 1.
- Instead, we measure the incoherent sum:

$$\Gamma(K_S \to \mu^+ \mu^-)_{\text{meas.}} = \Gamma(K_S \to (\mu^+ \mu^-)_{l=0}) + \Gamma(K_S \to (\mu^+ \mu^-)_{l=1})$$

$$\Gamma(K_L \to \mu^+ \mu^-)_{\text{meas.}} = \Gamma(K_S \to (\mu^+ \mu^-)_{l=0}) + \Gamma(K_S \to (\mu^+ \mu^-)_{l=1})$$

\Rightarrow "So what are you talking about?"

Solution: Look at time dependence

• Generic time dependence of *K* decay:

$$\left(\frac{d\Gamma}{dt}\right) \propto C_L e^{-\Gamma_L t} + C_S e^{-\Gamma_S t} + 2\left(C_{sin}\sin(\Delta m t) + C_{cos}\cos(\Delta m t)\right) e^{-\Gamma t}$$

• $\Gamma = (\Gamma_S + \Gamma_L)/2$. Δm : Kaon mass difference.

- The 4 Cs are the observables:
 - C_L is related to K_L decay rate.
 - *C_S* is related to *K_S* decay rate.
 - *C_{sin}* and *C_{cos}* are due to interference.
- We can calculate the 4 Cs in terms of the 4 theoretical parameters.

We can completely solve the system.

• For pure K^0 beam:

$$C_{L} = |A(K_{L})_{l=0}|^{2}$$

$$C_{S} = |A(K_{S})_{l=0}|^{2} + |A(K_{S})_{l=1}|^{2}$$

$$C_{cos} = \operatorname{Re} \left(A(K_{S})_{l=0} \times A^{*}(K_{L})_{l=0} \right)$$

$$C_{sin} = \operatorname{Im} \left(A(K_{S})_{l=0} \times A^{*}(K_{L})_{l=0} \right)$$

We can get the clean amplitude from the observable combination

$$|A(K_S)_{l=0}|^2 = \frac{C_{cos}^2 + C_{sin}^2}{C_L}.$$

We can rewrite this as:

$$\mathcal{B}(K_S \to (\mu^+ \mu^-)_{l=0}) = \mathcal{B}(K_L \to \mu^+ \mu^-) \times \frac{\tau_S}{\tau_L} \times \frac{C_{cos}^2 + C_{sin}^2}{C_L^2}$$

Compare with calculation of B(K_S → (μ⁺μ⁻)_{l=0}) ⇒ extract η.
We need the interference terms!

Demonstration of Interference Effect

- Using estimates, not showing large hadronic uncertainties for long-distance contributions.
- As examples, two ad-hoc values for the phase.
- All parameters can be determined from experiment.

Experimental Considerations

- Experimentally, not easy to have pure K^0 or \overline{K}^0 beam.
- NA62: charged kaons. KOTO: pure K_L. LHCb: almost equal mix.
 In these limits no sensitivity to interference term.
 Employ mixed beam. Need non-zero production asymmetry.
 - Regeneration of K_S in K_L beam through matter effects.
 - Charged exchange targets: turn charged K^+ beams into K^0 beams.
 - Post-selection using tagging (?)
- Interference terms are then diluted by dilution factor *D*:

$$D = \frac{N_{K^0} - N_{\overline{K}^0}}{N_{K^0} + N_{\overline{K}^0}} \quad C_{cos} \mapsto DC_{cos} \qquad C_{sin} \mapsto DC_{sin}$$

N_K: Number of incoherent mixture of kaons/anti-kaons at t = 0. • Pure K^0/\overline{K}^0 : $D = \pm 1$.

A Precision relation between $\Gamma(K \to \mu^+ \mu^-)(t)$ and $\mathcal{B}(K_L \to \gamma \gamma)/\mathcal{B}(K_L \to \mu^+ \mu^-)$ [Dery Ghosh Grossman Kitahara StS 22xx.SOON: preliminary results]

• We know more about $\varphi_0 \equiv \arg \left(\mathcal{A}^*(K_S \to (\mu\mu)_{l=0}) \mathcal{A}(K_L \to (\mu\mu)_{l=0}) \right)$

We find the precision relation

$$\cos^2 \varphi_0 = (\text{known QED factor}) \times \frac{\mathcal{B}(K_L \to \gamma \gamma)}{\mathcal{B}(K_L \to \mu^+ \mu^-)}$$

• Assume other intermediate on-shell contributions $(3\pi, \pi\pi\gamma)$ negligible. [Martin De Rafael Smith 1970]

• Preliminary result: $\cos^2 \phi_0 = 0.96 \pm 0.02$.

Discrete Ambiguities

[Dery Ghosh Grossman Kitahara StS 22xx.SOON: preliminary results]

 $\left(\frac{d\Gamma}{dt}\right) \propto f(t) \equiv C_L e^{-\Gamma_L t} + C_S e^{-\Gamma_S t} + 2\left(C_{sin}\sin(\Delta m t) + C_{cos}\cos(\Delta m t)\right) e^{-\Gamma t}$

Resolving discrete ambiguities: Work in progress. Need sign of $A(K_L \rightarrow \gamma \gamma)$ either from theory or experiment.

How much room is there for NP?

[Dery Ghosh 2112.05801]

2020 measurement of LHCb [LHCb, 2001.10354]

$$\mathcal{B}(K_S \to \mu^+ \mu^-) < 2.1 \cdot 10^{-10}$$

• Sum of contributions with different CP (no interference):

$$\mathcal{B}(K_S \to \mu^+ \mu^-) = \mathcal{B}(K_S \to \mu^+ \mu^-)^{(\text{LD})}_{\text{CPC}} + \mathcal{B}(K_S \to \mu^+ \mu^-)^{(\text{SD})}_{\text{CPV}}$$

- Conservative interpretation: set LD contribution = 0
 ⇔ i.e. interpret bound as bound on SD alone.
- \Rightarrow A lot of room for NP in the SD amplitude:

$$R(K_S \to \mu^+ \mu^-)_{l=0} \equiv \frac{\mathcal{B}(K_S \to \mu^+ \mu^-)_{l=0}}{\mathcal{B}(K_S \to \mu^+ \mu^-)_{l=0}}^{\text{SM}} \le 1280.$$

How much room is there for NP? [Dery Ghosh 2112.05801]

- Both can saturate bound, consistent with existing constraints.
- Updated bounds from LHCb important to constrain the model space further.

[Diagrams courtesy Avital Dery]

Another very clean SM test

[Buras Venturini 2109.11032]

• Combination of $K_S \rightarrow \mu^+ \mu^-$ and $K_L \rightarrow \pi^0 \nu \bar{\nu}$:

$$\frac{\mathcal{B}(K_S \to \mu^+ \mu^-)_{l=0}}{\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})} = 1.55 \times 10^{-2} \left(\frac{\lambda}{0.225}\right)^2 \left(\frac{Y(x_t)}{X(x_t)}\right)^2$$

- Depends only on Wolfenstein- λ ($|V_{us}|$) and m_t .
- Does not depend on $|V_{cb}|$.
- $K \rightarrow \mu^+ \mu^-$ and $K_L \rightarrow \pi^0 \nu \bar{\nu}$ are sensitive to different NP operators.

[D'Ambrosio Greynat Vulvert 1309.5736]

$$K \to \mu^+ \mu^- \mu^+ \mu^-$$

Experiment

[LHCb, Kaon'22]

$$\mathcal{B}^{\text{EXP}}(K_S \to \mu^+ \mu^- \mu^+ \mu^-) \le 5.1 \cdot 10^{-12}$$

$$\mathcal{B}^{\text{EXP}}(K_L \to \mu^+ \mu^- \mu^+ \mu^-) \le 2.3 \cdot 10^{-9}$$

Theory: SM

[D'Ambrosio Greynat Vulvert 1309.5736]

$$\mathcal{B}^{\text{SM}}(K_S \to \mu^+ \mu^- \mu^+ \mu^-) \leq O(4 \cdot 10^{-14})$$

$$\mathcal{B}^{\text{SM}}(K_L \to \mu^+ \mu^- \mu^+ \mu^-) \leq O(1 \cdot 10^{-12})$$

Time-dependent interference effects determine sgn (A(K_L → γγ))
 ▶Related to discrete ambiguities of φ₀.

NP Models with Massive Dark Photons[white paper 2201.07805] $\mathcal{B}^{NP}(K_S \rightarrow 2 \text{ dark photons} \rightarrow \mu^+ \mu^- \mu^+ \mu^-) \simeq 2.2 \cdot 10^{-12}$ $\mathcal{B}^{NP}(K_L \rightarrow 2 \text{ dark photons} \rightarrow \mu^+ \mu^- \mu^+ \mu^-) \simeq 2.5 \cdot 10^{-10}$

Almost Conclusion

- Within the SM, time-dependent $K \rightarrow \mu^+ \mu^-$ gives the same information as $K_L \rightarrow \pi^0 v \bar{v}$.
- They have complementary NP sensitivity: Combination can be used to distinguish models.
- "Theoretically clean, experimentally hard": Can we do it?
- Expect even more improved measurements of $\mathcal{B}(K_S \to \mu^+ \mu^-)$ and $\mathcal{B}(K_{S,L} \to \mu^+ \mu^- \mu^+ \mu^-)$ at LHCb. \Rightarrow Constrain or discover BSM physics.

What can LHCb do?

• Can you get a beam that is not equal mix of K^0 , \overline{K}^0 ?

$$\left(\frac{d\Gamma}{dt}\right) \propto C_L e^{-\Gamma_L t} + C_S e^{-\Gamma_S t} + \frac{N_{K^0} - N_{\overline{K}^0}}{N_{K^0} + N_{\overline{K}^0}} \cdot 2\left(C_{sin}\sin(\Delta m t) + C_{cos}\cos(\Delta m t)\right) e^{-\Gamma t}$$

- Measuring C_{sin} , C_{cos} challenged by $\sigma(pp \to K^0 X) \simeq \sigma(pp \to \overline{K}^0 X)$.
- Can it be done with tagging?
- E.g. tag accompanying particles in: [D'Ambrosio Kitahara 1707.06999]

$$pp \to K^0 K^- X$$

$$pp \to K^0 \Lambda^0 X$$

$$pp \to K^{*+} X \to K^0 \pi^+ X \qquad (\text{similar to } D^{*+} \to D^0 \pi^+)$$

Do any jet machine learning ideas help?