Decays of rare charmed baryons

based on works with Stefan de Boer, Joachim Brod, Nico Adolph, Rigo Bause, Marcel Golz, Tom Magorsch, Andrey Tayduganov, Dominik Suelmann and Hector Gisbert-Mullor Gudrun Hiller, TU Dortmund Supported by the Federal Ministry for Education and Research (BMBF) resonant and multi-bodies, mesons and baryons,.. $P_{1,2,3} = \pi, K$

radiative
$$c \to u\gamma$$
: $D \to V\gamma$, $V = \rho$, ..., $D \to P_1P_2\gamma$,
 $D \to A\gamma$, $A = K_1$, ... $D \to P_1P_2P_3\gamma$,
 $\Lambda_c \to p\gamma$, $\Xi_c^0 \to \Lambda(\to p\pi)\gamma$,....

semileptonic
$$c \to u\ell\ell^{(\prime)}$$
: $D \to \pi\mu\mu$, $D \to \mu\mu$, $D \to P_1P_2\ell\ell$,
 $\Lambda_c \to p\ell\ell$, $\Xi_c^0 \to \Lambda(\to p\pi^-)\ell\ell$,...

dineutrinos/MET/ALPs $c \to u\nu\bar{\nu}$: $D \to \pi\nu\bar{\nu}$, $D \to \nu\bar{\nu}$, $D \to P_1P_2\nu\bar{\nu}$, $\Lambda_c \to p\nu\bar{\nu}$, $\Xi_c^0 \to \Lambda(\to p\pi^-)\nu\bar{\nu}$,...

Very little probed so far

radiative $c \to u\gamma$: $D \to V\gamma$, $V = \rho$, .., $D \to P_1P_2\gamma$, $D \to A\gamma$, $A = K_1$, .. $D \to P_1P_2P_3\gamma$, $\Lambda_c \to p\gamma$, $\Xi_c^0 \to \Lambda(\to p\pi)\gamma$,.... $B(D^0 \to \rho^0\gamma) = (1.77 \pm 0.31) \cdot 10^{-5}$ Belle'16, Cabibbo-favored modes: $B(\Lambda_c \to \Sigma\gamma) < 2.6 \cdot 10^{-4}$, $B(\Xi_c^0 \to \Xi^0\gamma) < 1.8 \cdot 10^{-4}$ Belle 2206.12517

semileptonic $c \to u\ell\ell^{(\prime)}$: $D \to \pi\mu\mu$, $D \to \mu\mu$, $D \to P_1P_2\ell\ell$, $\Lambda_c \to p\ell\ell$, $\Xi_c^0 \to \Lambda(\to p\pi^-)\ell\ell$,... $B(D \to \pi\pi\mu\mu) \simeq 9.6 \cdot 10^{-7}$ LHCB'18, $B(\Lambda_c \to p\mu\mu) \lesssim 7.7 \cdot 10^{-8}$ LHCb'17, $[D \to \pi\mu\mu, D \to \mu\mu$ upper limits]

dineutrinos/MET/ALPs $c \to u\nu\bar{\nu}$: $D \to \pi\nu\bar{\nu}$, $D \to \nu\bar{\nu}$, $D \to P_1P_2\nu\bar{\nu}$, $\Lambda_c \to p\nu\bar{\nu}$, $\Xi_c^0 \to \Lambda(\to p\pi^-)\nu\bar{\nu}$,... $B(D^0 \to nothing) < 9.4 \cdot 10^{-5}$ Belle'16, $B(D^0 \to \pi^0\nu\bar{\nu}) < 2.1 \cdot 10^{-4}$ BESIII 2112.14236 Baryons are sensitive to many couplings and can be polarized or undergo self-analyzing (weakly-induced) decays 2203.14982, 2202.02331

Decay	Br	$lpha_B$
$\Lambda(1116) \to p\pi^-$	$(63.9 \pm 0.5)\%$	0.732 ± 0.014
$\Sigma^+(1189) \to p\pi^0$	$(51.57 \pm 0.30)\%$	-0.982 ± 0.014
$\Xi^0(1315) \to \Lambda \pi^0$	$(99.52 \pm 0.012)\%$	-0.356 ± 0.011

Table 1: Branching ratio and weak decay parameter α_B of self-analyzing hyperon decays [PDG]. Note, the $\Xi^-(1322)$ decays almost entirely to $\Lambda\pi^-$ with sizable $\alpha_B = -0.4$, however, it is not produced in rare decays of charm baryons. (from 2203.14982)

$$\Xi_c^0 \to \Lambda(\to p\pi^-)\gamma, \ell\ell, \, \Xi_c^+ \to \Sigma^+(\to p\pi^0)\gamma, \ell\ell, \, \Omega_c^0 \to \Xi^0(\to \Lambda\pi^0)\gamma, \ell\ell$$

- radiative $c \rightarrow u \gamma$ 2203.14982, 1701.06392
- electroweak $c \rightarrow u\ell\ell$ 2107.13010, 2202.02331
- dineutrinos $c \rightarrow u \bar{\nu} \nu$ 2010.02225

Not a single baryonic one observed.

SM tests in rare charm decays are null tests based on approximate symmetries of the SM: <u>GIM</u>, CP, cLFC, LFU, $SU(3)_F$

Advantages charm (vs beauty):

GIM-suppression very efficient: $C_{\nu}^{\text{SM}} = C_{10}^{\text{SM}} = 0$ (and RG effects tiny) $SU(3)_F$ partner modes - SM-like and NP-sensitive ones related.

theory and observables: 2203.14982 SU(3)-F techniques

Decay	U-Spin	$SU(3)_F$	$SU(3)_F$ IRA
$\Lambda_c \to \Sigma^+ \gamma$	$V_{cs}^* V_{ud} A_{\Sigma}$	$V_{cs}^* V_{ud} B_{\Sigma}$	$V_{cs}^* V_{ud} D$
$\Xi_c^0 \to \Xi^0 \gamma$	$V_{cs}^* V_{ud} A'_{\Sigma}$	$V_{cs}^*V_{ud}B_{\Sigma}'$	$V_{cs}^* V_{ud} D'$
$\Lambda_c \to p\gamma$	$-\Sigma A_{\Sigma} + \Delta A_{\Delta} + A_7$	$\Sigma B_{\Sigma} - \Delta B_{\Delta} + B_7$	$\Sigma D - \Delta ilde{b}_4 + D_7$
$\Xi_c^+ \to \Sigma^+ \gamma$	$\Sigma A_{\Sigma} + \Delta A_{\Delta} + A_7$	$-\Sigma B_{\Sigma} - \Delta B_{\Delta} + B_7$	$\Sigma D + \Delta ilde{b}_4 - D_7$
$\Xi_c^0 \to \Lambda \gamma$	$-\sqrt{\frac{3}{2}}\Sigma A'_{\Sigma} - \frac{1}{2}(\Delta A'_{\Delta} + A'_{7})$	$\sqrt{\frac{3}{2}}\Sigma B_{\Sigma}' + \sqrt{\frac{3}{2}}\Delta B_{\Delta} + \frac{1}{\sqrt{6}}B_7$	$-\sqrt{\frac{3}{2}}\Sigma D' + \sqrt{\frac{3}{2}}\Delta \tilde{b}_4 + \frac{1}{\sqrt{6}}D_7$
$\Xi_c^0 \to \Sigma^0 \gamma$	$-\frac{1}{\sqrt{2}}\Sigma A'_{\Sigma} + \frac{\sqrt{3}}{2}(\Delta A'_{\Delta} + A'_{7})$	$-\frac{1}{\sqrt{2}}\Sigma B_{\Sigma}' + \frac{3}{\sqrt{2}}\Delta B_{\Delta} + \sqrt{\frac{1}{2}}B_7$	$\frac{1}{\sqrt{2}}\Sigma D' + \frac{3}{\sqrt{2}}\Delta \tilde{b}_4 + \frac{1}{\sqrt{2}}D_7$
$\Xi_c^+ \to p\gamma$	$V_{cd}^*V_{us}A_\Sigma$	$V_{cd}^*V_{us}B_\Sigma$	$V_{cd}^*V_{us}D$
$\Xi_c^0 ightarrow n\gamma$	$-V_{cd}^*V_{us}A_{\Sigma}'$	$V_{cd}^* V_{us} B'_{\Sigma}$	$-V_{cd}^*V_{us}D'$

Table 2: Flavor symmetry relations of the decay amplitudes for the charmed anti-triplet baryons. $A_{\Sigma}^{(\prime)}$ and $A_{\Delta}^{(\prime)}$ refer to the U-spin triplet and singlet SM contributions of the W-exchange diagrams. $A_{7}^{(\prime)} = A_{NP}^{(\prime)} + A_{LD}^{(\prime)}$ denote the $c \rightarrow u\gamma$ short distance and long distance contributions with intermediate vector resonances. $\Sigma = \frac{V_{cs}^* V_{us} - V_{cd}^* V_{ud}}{2}$, $\Delta = \frac{V_{cs}^* V_{us} + V_{cd}^* V_{ud}}{2} = -\frac{V_{cb}^* V_{ub}}{2}$. Top: CF, SM-like decays, Middle: SCS, NP-sensitive, Bottom: DCS, SM-like decays Relations for charm sextett-decays ($\Omega_c \rightarrow \Lambda, \Sigma^0, \Xi^0$) also in 2203.14982.

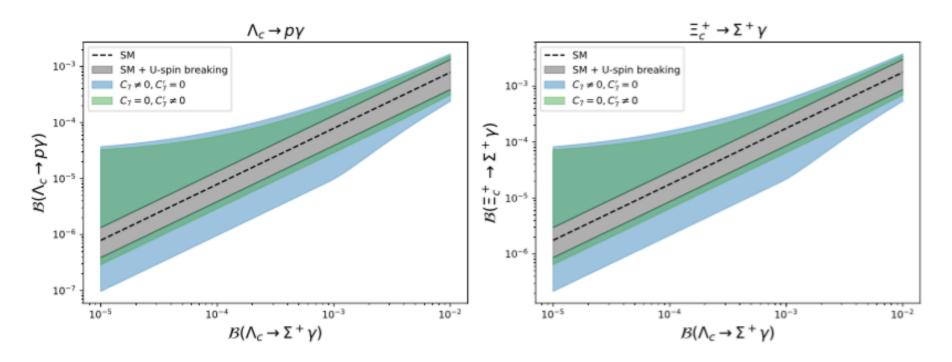
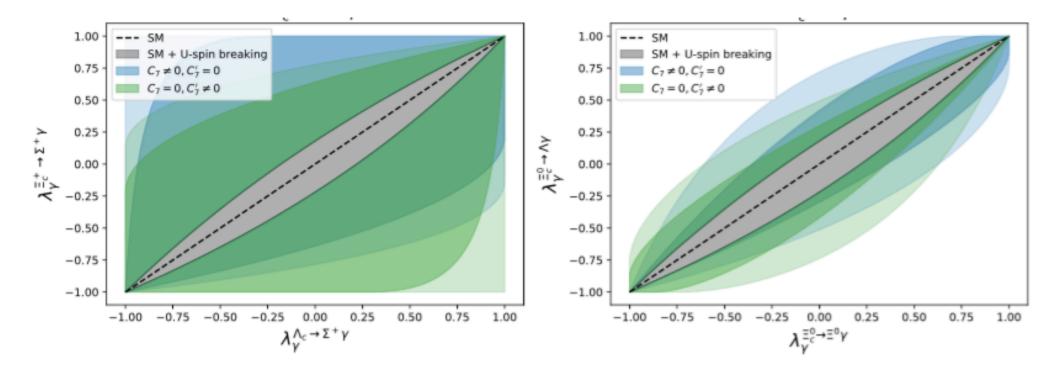


Figure 1: NP effects in the branching ratios of the BSM sensitive decay modes as a function of the branching ratios of the SM-like decay modes, for $\lambda_{\gamma}^{\text{CF}} = -0.5$. The black dashed line denotes the SM in the U-spin limit. The gray shaded area shows $\pm 30\%$ U-spin breaking in $A_{L/R}^{\text{SM}}$. The blue (green) region illustrates the BSM reach in C_7 (C_7'). We set $C_7' = 0$ ($C_7 = 0$) and varied the other coefficient within $-0.3 \leq C_7^{(\prime)} \leq 0.3$. The BSM regions also include the $\pm 30\%$ U-spin breaking of the SM amplitudes. Cabibbo-favored modes: $B(\Lambda_c \to \Sigma\gamma) < 2.6 \cdot 10^{-4}$, Belle 2206.12517, that is $B(\Lambda_c \to p\gamma) \lesssim 10^{-4}$,

Probing photon polarization 2203.14982 P_{B_c} : polariation of charm baryon, α_B : weak decay parameter of secondary decays ($\alpha_B = 0$ for strong decays) angular distribution $B_c \rightarrow B_1 (\rightarrow B_2 \pi) \gamma$


 $\frac{\mathrm{d}^{2}\mathcal{B}}{\mathrm{d}\cos(\vartheta_{\gamma})\mathrm{d}\cos(\vartheta_{B})} \propto \left[1 + P_{B_{c}}\alpha_{B}\cos(\vartheta_{\gamma})\cos(\vartheta_{B}) + \alpha_{B}\lambda_{\gamma}\cos(\vartheta_{B}) + P_{B_{c}}\lambda_{\gamma}\cos(\vartheta_{\gamma})\right].$ (1)

polarization asymmetries

$$A_{\mathsf{FB}}^{\gamma} = \frac{1}{\mathcal{B}} \left(\int_{0}^{1} \mathrm{d}\cos(\vartheta_{\gamma}) \frac{\mathrm{d}\mathcal{B}}{\mathrm{d}\cos(\vartheta_{\gamma})} - \int_{-1}^{0} \mathrm{d}\cos(\vartheta_{\gamma}) \frac{\mathrm{d}\mathcal{B}}{\mathrm{d}\cos(\vartheta_{\gamma})} \right) = \frac{P_{B_{c}}\lambda_{\gamma}}{2} \,. \tag{2}$$

$$A_{\mathsf{FB}}^{B} = \frac{1}{\mathcal{B}} \left(\int_{0}^{1} \mathrm{d}\cos(\vartheta_{B}) \frac{\mathrm{d}\mathcal{B}}{\mathrm{d}\cos(\vartheta_{B})} - \int_{-1}^{0} \mathrm{d}\cos(\vartheta_{B}) \frac{\mathrm{d}\mathcal{B}}{\mathrm{d}\cos(\vartheta_{B})} \right) = \frac{\alpha_{B}\lambda_{\gamma}}{2} \,. \tag{3}$$

extract λ_{γ}^{SM} from Cabibbo-favored partner mode

Figure 2: BSM reach of λ_{γ} of the BSM sensitive decay modes $\Xi_c^+ \to \Sigma^+ \gamma$ (left plot) and $\Xi_c^0 \to \Lambda\gamma$ (right plot) as a function of the photon polarization of the corresponding SM-like decay modes, $\Lambda_c \to \Sigma^+ \gamma$ and $\Xi_c^0 \to \Xi^0 \gamma$, respectively, for $B^{CF} = 5 \cdot 10^{-4}$. The black dashed line denotes the SM in the U-spin limit. The gray shaded area shows $\pm 20\%$ U-spin breaking between r_{SM}^{CF} and r_{SM}^{SCS} . The blue (green) region illustrates the BSM reach in C_7 (C_7'). We set $C_7' = 0$ ($C_7 = 0$) and varied the other coefficient within $-0.3 \leq C_7^{(\prime)} \leq 0.3$. For the darker shaded area we used the SM amplitudes in the exakt U-spin limit. For the lighter shaded area we additionally considered $\pm 30\%$ U-spin breaking in $F_{L/R}^{SM}$, while keeping the U-spin breaking of the ratio r_{SM}^{SCS} limited to $\pm 20\%$. The BSM reach of $\Lambda_c \to p\gamma$ and $\Xi_c^0 \to \Sigma^0 \gamma$ coincides with $\Xi_c^+ \to \Sigma^+ \gamma$ (left plot) and is not shown. O(1) NP effects in γ -polarization; Charm quarks are produced polarized at the $Z: P_c^Z = -0.65$, depolarization in hadronization Falk, Peskin $P_{\Lambda_c}^Z \sim -0.44 \pm 0.02$. Input for BSM search, needs to be measured, e.g. from $\Lambda_c \to \Lambda(\to p\pi)\ell\nu$. 1701.06392

BSM sensitive (SCS) decay	CF decay ("SM-like")	
$\Xi_c^+ \to \Sigma^+ \gamma$	$\Lambda_c \to \Sigma^+ \gamma$	
$\Xi_c^0 \to \Lambda \gamma$	$\Xi_c^0\to \Xi^0\gamma$	
$\Omega_c\to \Xi^0\gamma$	$\Xi_c^{\prime 0}\to \Xi^0\gamma$	
$\Xi_c'^+ \to \Sigma^+ \gamma$	$\Sigma_c^+ \to \Sigma^+ \gamma$	
$\Xi_c^{\prime 0} \to \Lambda \gamma$	$\Sigma_c^0 ightarrow \Lambda \gamma$, $\Xi_c^{\prime 0} ightarrow \Xi^0 \gamma$	

Table 3: Partner modes which enable tests of the SM by the photon polarization using the decay chains $B_c \to B(\to B'P)\gamma$ and U-spin relations. The secondary baryons $(\Lambda, \Sigma^+, \Xi^0)$ are self-analyzing.

CP-asymmetries can be enhanced: $A_{CP}^{SM} \approx \operatorname{Im}\left(\frac{-2\Delta}{\Sigma}\right) \approx -6 \times 10^{-4}$ NP: $\left|\operatorname{Im}\left(\frac{-2C_7^{(\prime)}}{\Sigma}\right)\right| \approx 2 \times 10^{-2}$ (with ΔA_{CP} -constraint), else if $C_7^{(\prime)} \gg C_8^{(\prime)}$ even larger theory and observables: 2107.13010, 2202.02331 highlights for BSM searches: GIM ($C_{10}^{SM} = 0$), angular distributions, CP, cLFV, LFU

differential angular distribution unpolarized Λ_c , (polarized worked out in 2202.02331)

$$\frac{\mathrm{d}^2\Gamma}{\mathrm{d}q^2\mathrm{d}\cos\vartheta_\ell} = \frac{3}{2}\left(K_{1ss}\,\sin^2\vartheta_\ell\,+\,K_{1cc}\,\cos^2\vartheta_\ell\,+\,K_{1c}\,\cos\vartheta_\ell\right)$$

 \rightarrow observables branching ratio (-), longitudinal pol. fraction F_L (+), Forward-Backward asymmetry $A_{\rm FB}^{\ell} \propto K_{1c} \propto C_{10}$. (++)

 $\Lambda_c \rightarrow p$ form factors from lattice 1712.05783 – $SU(3)_F$ -relations to others 2203.14982

 $-\sqrt{6}h_{\perp}^{\Xi_c^0 \to \Lambda} = \sqrt{2}h_{\perp}^{\Xi_c^0 \to \Sigma^0} = h_{\perp}^{\Xi_c^+ \to \Sigma^+} = h_{\perp}^{\Lambda_c \to p}; \text{Endpoint relations (at } q^2 = \text{max}): 2107.12993$

Rare electroweak decays of $\Lambda_c, \Xi_c, \Omega_c$

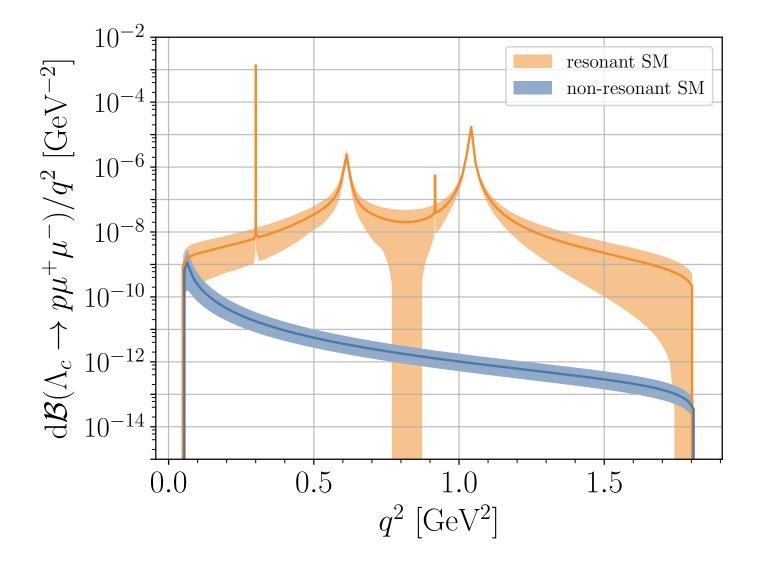
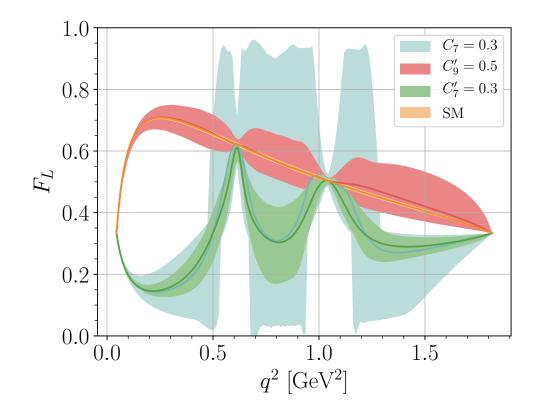



Figure 3: The differential SM branching fraction of $\Lambda_c \rightarrow p\mu^+\mu^-$. In blue (orange) the short-distance (pure resonant) contributions are shown. Their widths indicate theoretical uncertainties of hadronic form factors, resonance parameters and scale uncertainty μ_c . The central line in the resonant case is obtained by five range of pattern varying strenge bases.

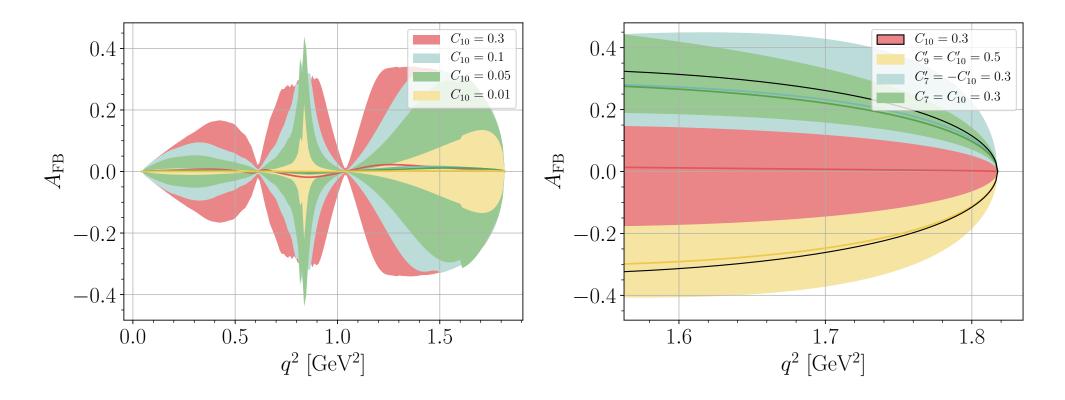
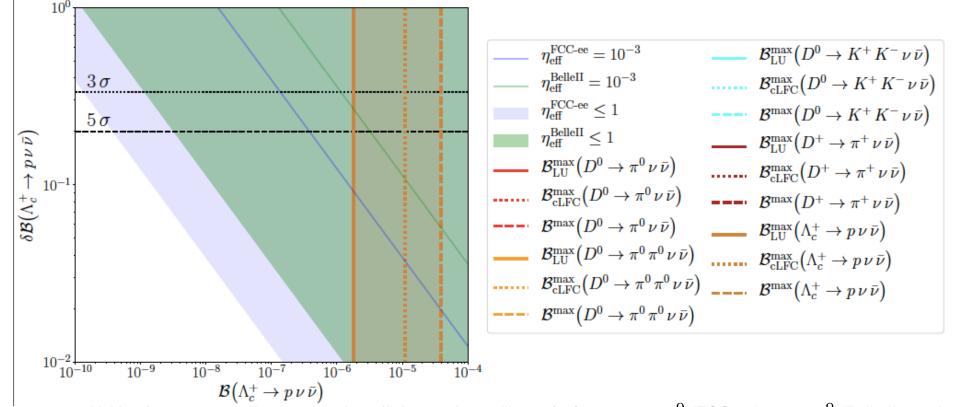

Rare electroweak decays of $\Lambda_c, \Xi_c, \Omega_c$

Figure 4: The fraction of longitudinally polarized dimuons F_L of $\Lambda_c \rightarrow p\mu^+\mu^-$ decays for various BSM contributions including theoretical uncertainties from form factors and resonance parameters. The orange band corresponds to the resonant SM contribution.


Sensitivity to dipole coefficients!

Rare electroweak decays of $\Lambda_c, \Xi_c, \Omega_c$

Figure 5: The forward-backward asymmetry A_{FB} of $\Lambda_c \rightarrow p\mu^+\mu^-$ decays for different values of C_{10} in the full q^2 -region (left panel) and for various BSM contributions in the high q^2 region (right panel)

 $A_{\rm FB} \propto C_{10}$ clean null test of SM (GIM); Three more GIM-based null tests in 4-body decays $\Xi_c^+ \to \Sigma^+ (\to p\pi^0) \ell^+ \ell^-, \Xi_c^0 \to \Lambda^0 (\to p\pi^-) \ell^+ \ell^-, \Omega_c^0 \to \Xi^0 (\to \Lambda^0 \pi^0) \ell^+ \ell^-, 2202.02331)$ theory and observables: 2010.02225 all modes are null tests and can probe lepton flavor structure highlights for BSM searches: GIM ($C_{\nu}^{SM} = 0$), cLFV, LFU

lines are sensitivities for an assumed reconstruction efficiency of permille, $N(c\bar{c}) = 550 \cdot 10^9$ (FCC-ee), $65 \cdot 10^9$ (Belle II, 50 ab⁻¹).

- Very little experimentally explored in rare charm decays lots of blanks in PDG
- Charm is advantageous because SU(3)-related partners exist: measure the SM-like CF-decay and use symmetry to obtain the SM prediction of the SCS, BSM-sensitive mode. Then measure the SCS decay and test the SM.

Method allows for many tests in radiative charm baryons and mesons.

• NP sensitivity from null tests in branching ratios $c \rightarrow u\nu\bar{\nu}$ (GIM) Upper limits on $B(\Lambda_c \rightarrow p\nu\bar{\nu})$ depends on whether LFC, or LFU holds !

- Angular distributions $C_{10}^{SM} = 0$ kills couplings to axial-vector lepton currents $\bar{\ell}\gamma_{\mu}\gamma_{5}\ell$, hence, unlike in *b*-decays $P_{5}^{\prime SM} = 0$, as well as $A_{FB}^{\ell SM}(\Lambda_{c} \rightarrow p\mu\mu) = 0$. More observable in full distribution.
- BSM effects in $|\Delta c| = |\Delta u| = 1$ can be huge.
- Complementary search to K, *B*-decays.
- Test cLFC, LFU in $\Lambda_c \to p e^{\pm} \mu^{\mp a}$, $\Lambda_c \to p e e \text{ vs } \Lambda_c \to p \mu \mu$ a la R_K .

^aUL by Babar at $O(10^{-5})$