A bridge to new physics

Bridge solutions for a_{μ} and $b \rightarrow s \ell \ell$ anomalies
arXiv:2205.04480
G. Guedes, PO

Pablo Olgoso

Universidad
de Granada

The g-2 anomaly

- There has been a big effort to explain the discrepancy between the SM prediction and the observed value (4.2 σ).
- Disagreement in HVP contributions to SM prediction (tension would be reduced to 1.5σ).
[S. Borsanyi et al., 2022.12347]

[M. Cè et al., 2206.06582]

The g-2 anomaly

- From the lens of the SMEFT, it is generated by the dipole operators:

$$
\begin{aligned}
\mathcal{O}_{e B} & =\left(\bar{\ell} \sigma^{\mu \nu} e\right) H B_{\mu \nu}+\text { h.c. } \\
\mathcal{O}_{e W} & =\left(\bar{\ell} \sigma^{\mu \nu} e\right) \sigma^{I} H W_{\mu \nu}^{I}+\text { h.c.. }
\end{aligned}
$$

The g-2 anomaly

The g-2 anomaly

- From the lens of the SMEFT, it is generated by the dipole operators:

$$
\begin{aligned}
\mathcal{O}_{e B} & =\left(\bar{\ell} \sigma^{\mu \nu} e\right) H B_{\mu \nu}+\text { h.c. } \\
\mathcal{O}_{e W} & =\left(\bar{\ell} \sigma^{\mu \nu} e\right) \sigma^{I} H W_{\mu \nu}^{I}+\text { h.c.. }
\end{aligned}
$$

- For a comprehensive review of the status of solutions, see:
[P. Athron, C. Balázs, D. Jacob, W. Kotlarski, D. Stöckinger, H. Stöckinger-Kim, 2104.03691]

Chirally enhanced solutions

- $\mathcal{O}(\mathrm{TeV})$ solutions need chirally enhanced contributions, i.e., not proportional to the muon's Yukawa.
- Chirality flip comes from:
- Top Yukawa (S1 leptoquark).
- Heavy VL fermions.

The bridge diagram

- In this work we focus on the bridge topology:

$\Phi \sim(1,2,1 / 2)$
(No contribution)

$$
\begin{gathered}
E \sim(1,1,-1) \\
\Delta \sim(1,2,-1 / 2) \\
\Sigma \sim(1,3,-1)
\end{gathered}
$$

The bridge diagram

- General results:

$$
\begin{gathered}
\alpha_{e \gamma}^{2,2}=\frac{i N_{c} e}{4} y_{M} y_{F} y_{b}^{R} \sum_{I J} T_{I 2 J}\left[\gamma_{\Psi} T_{I^{\prime} I}^{\gamma, \Psi} T_{2 J I^{\prime}}^{\prime}+\gamma_{\Phi} T_{J J^{\prime}}^{\gamma, \Phi} T_{2 I J^{\prime}}^{\prime}\right] \\
\gamma_{\psi}=\frac{-i M_{\Psi}}{(4 \pi)^{2} M_{\Delta}} \frac{M_{\Psi}^{4}-4 M_{\Psi}^{2} M_{\Phi}^{2}+3 M_{\Phi}^{4}+2 M_{\Phi}^{4} \log \left[M_{\Psi}^{2} / M_{\Phi}^{2}\right]}{\left(M_{\Psi}^{2}-M_{\Phi}^{2}\right)^{3}} \\
\gamma_{\Phi}=-\frac{i M_{\Psi}}{(4 \pi)^{2} M_{\Delta}} \frac{M_{\Psi}^{4}-M_{\Phi}^{4}-2 M_{\Psi}^{2} M_{\Phi}^{2} \log \left[M_{\Psi}^{2} / M_{\Phi}^{2}\right]}{\left(M_{\Psi}^{2}-M_{\Phi}^{2}\right)^{3}}
\end{gathered}
$$

2 field extensions

2 field extensions

2 field extensions

2 field extensions

Bridge	Other Fermion
$E \sim(1,1,-1)$	$\Delta \sim(1,2,-1 / 2)$
	$\Delta_{3} \sim(1,2,-3 / 2)$
	$E \sim(1,1,-1)$
$\Delta \sim(1,2,-1 / 2)$	$\Sigma \sim(1,3,-1)$
	$N \sim(1,1,0)$
	$\Sigma_{0} \sim(1,3,0)$
	$\Delta \sim(1,2,-1 / 2)$
$\Sigma \sim(1,3,-1)$	$\Delta_{3} \sim(1,2,-3 / 2)$

[A. Freitas, J. Lykken, S. Kell, S. Westhoff, 1402.7065]

2 field extensions

Bridge	Other Fermion
$E \sim(1,1,-1)$	$\Delta \sim(1,2,-1 / 2)$
	$\Delta_{3} \sim(1,2,-3 / 2)$
	$E \sim(1,1,-1)$
$\Delta \sim(1,2,-1 / 2$	$\Sigma \sim(1,3,-1)$
	$N \sim(1,1,0)$
	$\Sigma_{0} \sim(1,3,0)$
	$\Delta \sim(1,3,-1)$
	$\Delta \sim(1,2,-1 / 2)$
	$\Delta_{3} \sim(1,2,-3 / 2)$

[N. Arkani-Hamed and K. Harigaya, 2106.01373]
[N. Craig, I. Garcia, A. Vainshtein, Z. Zhang, 2112.05770]
[L. Rose, B. Harling and A. Pomarol, 2201.10572]

$$
\Delta a_{\mu}=0!
$$

[A. Freitas, J. Lykken, S. Kell, S. Westhoff, 1402.7065]

2 field extensions

Bridge	Other Fermion
$E \sim(1,1,-1)$	$\Delta \sim(1,2,-1 / 2)$
	$\Delta_{3} \sim(1,2,-3 / 2)$
	$E \sim(1,1,-1)$
$\Delta \sim(1,2,-1 / 2)$	$\Sigma \sim(1,3,-1)$
	$N \sim(1,1,0)$
	$\Sigma_{0} \sim(1,3,0)$
	$\Delta \sim(1,2,-1 / 2)$
$\Sigma \sim(1,3,-1)$	$\Delta_{3} \sim(1,2,-3 / 2)$

Fermion	Scalar
$E \sim(1,1,-1)$	$\mathcal{S}_{0} \sim(1,1,0)$
	$\mathcal{S}_{2} \sim(1,1,-2)$
	$\mathcal{S}_{0} \sim(1,1,0)$
$\Delta \sim(1,2,-1 / 2)$	$\mathcal{S}_{1} \sim(1,1,-1)$
	$\Xi_{0} \sim(1,3,0)$
	$\Xi_{1} \sim(1,3,-1)$
	$\Xi_{0} \sim(1,3,0)$
$\Sigma \sim(1,3,-1)$	$\Xi_{2} \sim(1,3,-2)$

2 field extensions

Bridge	Other Fermion
$E \sim(1,1,-1)$	$\Delta \sim(1,2,-1 / 2)$
	$\Delta_{3} \sim(1,2,-3 / 2)$
	$E \sim(1,1,-1)$
$\Delta \sim(1,2,-1 / 2)$	$\Sigma \sim(1,3,-1)$
	$N \sim(1,1,0)$
	$\Sigma_{0} \sim(1,3,0)$
	$\Delta \sim(1,2,-1 / 2)$
$\Sigma \sim(1,3,-1)$	$\Delta_{3} \sim(1,2,-3 / 2)$

Fermion	Scalar
$E \sim(1,1,-1)$	$\mathcal{S}_{0} \sim(1,1,0)$
	$\mathcal{S}_{2} \sim(1,1,-2)$
	$\mathcal{S}_{0} \sim(1,1,0)$
$\sim \sim(1,2,-1 / 2)$	$\mathcal{S}_{1} \sim(1,1,-1)$
	$\Xi_{0} \sim(1,3,0) ;$
	$\Xi_{1} \sim(1,3,-1)$
$\Sigma \sim(1,3,-1)$	$\Xi_{0} \sim(1,3,0)$
	$\Xi_{2} \sim(1,3,-2)$

Excluded in the literature!

2 field extensions

[P. Athron, C. Balázs, D. Jacob, W. Kotlarski, D. Stöckinger, H. Stöckinger-Kim, 2104.03691]

$$
(\mathbf{1}, \mathbf{3}, 0)_{0} \text { and }(\mathbf{1}, \mathbf{2},-1 / 2)_{1 / 2} \Longrightarrow \underset{\text { (irrespective of } \left.\mathbb{Z}_{2}\right)}{\Delta a_{\mu}<0}
$$

Yukawa-suppressed: <0

Bridge: no definite sign

$$
\alpha_{e \gamma}=y_{b} y_{M} y_{F} f\left(M_{\Delta}, M_{\Xi}\right)
$$

3 field extensions

Bridge	$\left(S U(2)_{\Psi}, S U(2)_{\Phi}\right)$
$E \sim(1,1,-1)$	$(2,1)$
	$(3,3)$
	$(2,1)$
$\Delta \sim(1,2,-1 / 2)$	$(2,3)$
	$(2,2)$
$\Sigma \sim(1,3,-1)$	$(3,3)$

3 field extensions

Connecting trees and bridges

Neutral B anomalies

Cabibbo angle anomaly

Connecting trees and bridges

- S_{3} leptoquark $\sim(3,3,-1 / 3)$ to explain $R_{K}^{(*)}$.

Connecting trees and bridges

- S_{3} leptoquark $\sim(3,3,-1 / 3)$ to explain $R_{K}^{(*)}$.
- $\Sigma \sim(1,3,-1)$ to explain CAA.

Tension between direct measurements of $V_{u s}$ and extraction from CKM unitarity ($\sim 3 \sigma$ depending on the parametrization of β decays).
$R\left(V_{u s}\right)=1-\left(\frac{V_{u d}}{V_{u s}}\right)^{2} v^{2}\left[C_{H \ell}^{(3)}\right]_{22}$
[M. Kirk, 2008.03261]
[A. Crivellin, F. Kirk, C. A. Manzari, M. Montull, 2008.01113]

Some tension with EWPD, worsened by CDF measurement.

Connecting trees and bridges

- S_{3} leptoquark $\sim(3,3,-1 / 3)$ to explain $R_{K}^{(*)}$.
- $\Sigma \sim(1,3,-1)$ to explain CAA.
- $\Psi \sim(3,3,-4 / 3)$ to construct the bridge for Δa_{μ}

One loop phenomenology

Matchmakereft

A. Carmona, A. Lazopoulos, PO, J. Santiago 2112.10787

Automatic full one loop matching
One loop phenomenology
$\mathrm{F}[105]=$ ¢
ClassName
\rightarrow FH
Indices \rightarrow \{Index[C.olourr],Index[SU2W] \},
SelfConjugate \rightarrow False,
QuantumNumbers \rightarrow \{ $\mathbf{Y} \rightarrow-4 / 3\}$,
FullName \rightarrow "heavy",
Mass \rightarrow MF,
Width $\rightarrow 0$
Matchma
F[107] == \{
ClassName \rightarrow HTri
Indices \rightarrow \{Index [SU2W] \},
SelfConjugate \rightarrow False,
QuantumNumbers \rightarrow \{ $\mathrm{Y} \rightarrow-1$ \},
FullName $->$ "heavy",
Mass
Width -> MT,
\},
S[107] == \{
ClassName \rightarrow SH,
Indices \rightarrow \{Index[CColourr], Index[SU2W]\},
SelfConjugate \rightarrow False,
QuantumNumbers $\rightarrow>$ \{Y $\rightarrow-1 / 3\}$,
FullName \rightarrow "heavy",
Mass
Width
\rightarrow MS, -> 0
\}

One loop phenomenology

lag =

yT[ff1] LLbar[sp1,i,i,ff1].HTri[ssp1, nn] Phi[jj] 2*Ta[nn,i,i, jij]

+ yQ[ff1] FHbar[șp1,cc, ini].LR[sp1,ffi] SH[cc, ii]
+ Ybridgel HTribar[șp1, nn]. left[FH[ș1, ccce,ii]] SHbar [ccc,jj]
I*fsu2 [nn, ii, jj]
 I*fsu2[nn, ii, jj]
+ lamS[ff1,ff2] CC[QLbar[sp1, ii, ff1, ccc]]. LL[sp1, kk,ff2]

One loop phenomenology

Matchmakereft

alphaOeW $[2,2] \rightarrow \frac{3 \mathrm{~g} 2 \mathrm{MF} \mathrm{YbridgeR}\left(\mathrm{MF}^{2}-\mathrm{MS}^{2}-\mathrm{MS}^{2} \log \left[\frac{M F^{2}}{\mu^{2}}\right]+\mathrm{MS}^{2} \log \left[\frac{M S^{2}}{\mu^{2}}\right]\right) \mathrm{yQ}[2] \times \mathrm{yT}[2]}{16\left(\mathrm{MF}^{2}-\mathrm{MS}^{2}\right)^{2} \mathrm{MT} \pi^{2}}$
Automatic full one loop matching

One loop phenomenology

Matchmakereft
A. Carmona, A. Lazopoulos, PO, J. Santiago
2112.10787

Automatic full one loop matching

sme11i

P. Stangl 2012.12211

Fit to observables

One loop phenomenology

$$
\begin{aligned}
& \mathcal{L} \supset y_{Y}^{i} \bar{\ell}_{L i} \phi \sigma^{I} \Sigma_{R}^{I}+y_{Q}^{i} \bar{\Psi}_{Q L}^{I} S_{3}^{I} \ell_{R i}+y_{b}^{L} \epsilon^{I J K} \bar{\Sigma}_{R}^{I} \Psi_{Q, L}^{J} S_{3}^{K \dagger} \\
& \quad+y_{b}^{R} \epsilon^{I J K} \bar{\Sigma}_{L}^{I} \Psi_{Q, R}^{J} S_{3}^{K \dagger}+\lambda_{S}^{i j} \bar{Q}_{L i}^{c} \sigma^{2} \sigma^{I} \ell_{L j} S_{3}^{I \dagger}+\text { h.c. }
\end{aligned}
$$

One loop phenomenology

$+y_{b}^{R} \epsilon^{I J K} \bar{\Sigma}_{L}^{I} \Psi_{Q, R}^{J} S_{3}^{K \dagger}+\lambda_{S}^{i j} \bar{Q}_{L i}^{c} i \sigma^{2} \sigma^{I} \ell_{L j} S_{3}^{I \dagger}+$ h.c.

One loop phenomenology

$$
\dot{\phi}
$$

$$
\begin{aligned}
& \mathcal{L} \supset y_{T}^{i} \bar{C}_{L i} \phi \sigma^{I} \Sigma_{R}^{I}+y_{Q}^{\tau} \bar{\Psi}_{Q L}^{I}{ }^{-} S_{3}^{\bar{I}} \widehat{\ell}_{R i} * y_{b}^{L} \epsilon^{I J K} \bar{\Sigma}_{R}^{I} \Psi_{Q, L}^{J} S_{3}^{K \dagger} \\
& +y_{b}^{R} \epsilon^{I J K} \bar{\Sigma}_{L}^{I} \Psi_{Q, R}^{J} S_{3}^{K \dagger}+\lambda_{S}^{i \bar{j}} \bar{Q}_{L i}^{c} i \sigma^{2} \sigma^{I} \ell_{L j} S_{3}^{I \dagger}+\text { hic. }
\end{aligned}
$$

One loop phenomenology

$\mathcal{L} \supset y_{T}^{i} \bar{\ell}_{L i} \phi \sigma_{-}^{I} \Sigma_{R}^{I}+y_{Q}^{i} \bar{\Psi}_{Q L}^{I} S_{3}^{I} \ell_{R i}+\overline{y_{b}^{L}}-\overline{I J K} \bar{\Sigma}_{R}^{I} \Psi_{Q, L}^{J} S_{3}^{K \mathcal{H}}$
$+y_{b}^{R} \epsilon_{-}^{I J} \bar{\Sigma}_{L}^{I} \Psi_{Q, R}^{J} \bar{S}_{3}^{K \dagger}+\lambda_{S}^{i j} \bar{Q}_{L i}^{c} i \sigma^{2} \bar{\sigma}^{I} \bar{\ell}_{L_{j}} \bar{S}_{3}^{I I^{\dagger}}+$ hic.
$\dot{\phi}=\Sigma \Sigma$

One loop phenomenology

$$
\begin{aligned}
& \mathcal{L} \supset y_{T}^{i} \bar{\ell}_{L i} \phi \sigma^{I} \Sigma_{R}^{I}+y_{Q}^{i} \bar{\Psi}_{Q L}^{I} S_{3}^{I} \ell_{R i}+y_{b}^{L} I^{I J K} \bar{\Sigma}_{R}^{I} \Psi_{Q, L}^{J} S_{3}^{K \dagger} \\
& \quad+y_{b}^{R} \epsilon^{I J K} \bar{\Sigma}_{L}^{I} \Psi_{Q, R}^{J} S_{3}^{K \dagger}+\lambda_{S}^{i j} \bar{Q}_{L i}^{c} \sigma^{2} \sigma^{I} \ell_{L j} S_{3}^{I \dagger}+\text { h.c. }
\end{aligned}
$$

One loop phenomenology

$\mathcal{L} \supset y_{T}^{i} \bar{C}_{L i} \phi \sigma^{I} \Sigma_{R}^{I}+y_{Q}^{i} \bar{\Psi}_{Q L}^{I} S_{3}^{I} \ell_{R i}+\underline{y}_{b}^{L} \underline{\epsilon}^{I J K} \bar{\Sigma}_{R}^{I} \Psi_{Q, L}^{J} S_{3}^{K \dagger}$ $+y_{b}^{R} \epsilon^{I J K} \bar{\Sigma}_{L}^{I} \Psi_{Q, R}^{J} S_{3}^{K \dagger}+\left(\lambda_{S}^{i j} \underline{\bar{Q}}_{-}^{c} \underline{-}_{-}^{c} i \sigma^{2} \sigma^{I} \ell_{L j}{\underset{S}{3}}_{I \dagger}^{I}+\right.$ h.c.
$y_{q_{L}}^{q_{L}}===-S_{3}$
$x_{l_{L}}$

One loop phenomenology

$$
\begin{aligned}
& \mathcal{L} \supset y_{T}^{i} \bar{\ell}_{L i} \phi \sigma^{I} \Sigma_{R}^{I}+y_{Q}^{i} \bar{\Psi}_{Q L}^{I} S_{3}^{I} \ell_{R i}+y_{b}^{L} \epsilon^{I J K} \bar{\Sigma}_{R}^{I} \Psi_{Q, L}^{J} S_{3}^{K \dagger} \\
& \quad+y_{b}^{R} \epsilon^{I J K} \bar{\Sigma}_{L}^{I} \Psi_{Q, R}^{J} S_{3}^{K \dagger}+\lambda_{S}^{i j} \bar{Q}_{L i}^{c} \sigma^{2} \sigma^{I} \ell_{L j} S_{3}^{I \dagger}+\text { h.c. }
\end{aligned}
$$

Defining the ratios:

$$
x_{T} \equiv y_{T}^{\mu} / M_{T} \quad x_{F} \equiv y_{Q}^{\mu} / M_{F} \quad x_{S} \equiv \lambda_{S}^{* s \mu} \lambda_{S}^{b \mu} / M_{S}^{2}
$$

Some considerations:

- x_{T} bounded from EWPO:
$v x_{T} \leq 0.1(0.11)$
- No correction to the muon Yukawa!

One loop phenomenology

$$
\begin{aligned}
& \mathcal{L} \supset y_{T}^{i} \bar{\ell}_{L i} \phi \sigma^{I} \Sigma_{R}^{I}+y_{Q}^{i} \bar{\Psi}_{Q L}^{I} S_{3}^{I} \ell_{R i}+y_{b}^{L} \epsilon^{I J K} \bar{\Sigma}_{R}^{I} \Psi_{Q, L}^{J} S_{3}^{K \dagger} \\
& \quad+y_{b}^{R} \epsilon^{I J K} \bar{\Sigma}_{L}^{I} \Psi_{Q, R}^{J} S_{3}^{K \dagger}+\lambda_{S}^{i j} \bar{Q}_{L i}^{c} i \sigma^{2} \sigma^{I} \ell_{L j} S_{3}^{I \dagger}+\text { h.c. }
\end{aligned}
$$

$$
\text { Defining the ratios: } \quad x_{T} \equiv y_{T}^{\mu} / M_{T} \quad x_{F} \equiv y_{Q}^{\mu} / M_{F} \quad x_{S} \equiv \lambda_{S}^{* s \mu} \lambda_{S}^{b \mu} / M_{S}^{2}
$$

We find the best fit point:

$$
\begin{aligned}
& M_{S_{3}}=2 \mathrm{TeV} \\
& M_{\Sigma}=3.4 \mathrm{TeV} \\
& M_{\Psi_{Q}}=4.6 \mathrm{TeV}
\end{aligned}
$$

$$
\begin{array}{ll}
x_{F}=0.2 \mathrm{TeV}^{-1} & \\
x_{S}=0.00078 \mathrm{TeV}^{-2} \\
x_{T}=0.17 \mathrm{TeV}^{-1} & \\
\lambda_{S}^{b \mu}=0.07 \\
y_{b}^{L}=0.10 &
\end{array} y_{b}^{R}=0.13
$$

One loop phenomenology

- Results as expected from treelevel solutions.

One loop phenomenology

- Results as expected from treelevel solutions.
- Broad parameter space for couplings entering at one-loop.

Conclusions

- We have classified and computed all possible bridge contributions to g-2.
- This opens new possibilities for SM extensions explaining this anomaly.
- A thorough classification still needed at one-loop.
- A complete classification of one-loop solutions to anomalies can be helpful to connect tree-level ones.

Mam
 Hanks for your attention!

