Uli Haisch, MPI Munich
Implications of LHCb measurements and future prospects, 21.10.22

Theory overview: high-pt searches for flavor

Plan of this talk

Assuming that well-known B anomalies are indeed due to new physics, I will discuss possible implications of these deviations in high-p searches @ LHC

B anomalies in a nutshell

Both sets of B anomalies challenge assumption of lepton flavor universality (LFU), which is usually taken for granted in high-energy physics

B anomalies in a nutshell

Mass/scale suppression of effective operators suggests that explanations of $b \rightarrow c$ anomalies should lead to testable high- p s signatures, while $b \rightarrow s$ case looks much less promising

Simplified models for B anomalies

$$
\lambda_{i j}^{q} \lambda_{\alpha \beta}^{l}\left(C_{T}\left(\bar{Q}_{L}^{i} \gamma_{\mu} \sigma^{a} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} L_{L}^{\beta}\right)+C_{S}\left(\bar{Q}_{L}^{i} \gamma_{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} L_{L}^{\beta}\right)\right)
$$

Model	Mediator	$b \rightarrow s$	$b \rightarrow c$
Colorless vectors	$B^{\prime}=(1,1,0)$	\checkmark	\mathbf{X}
	$W^{\prime}=(1,3,0)$	X	\checkmark
Scalar leptoquarks	$S_{1}=(\overline{3}, 1,1 / 3)$	X	\checkmark
	$S_{3}=(\overline{3}, 3,1 / 3)$	\checkmark	\mathbf{X}
Vector leptoquarks	$U_{1}=(3,1,2 / 3)$	\checkmark	\checkmark
	$U_{3}=(3,3,2 / 3)$	\checkmark	\mathbf{X}

$b \rightarrow s(b \rightarrow c)$ anomalies alone can be accommodated by several simple single-mediator models

Simplified models for B anomalies

$$
\lambda_{i j}^{q} \lambda_{\alpha \beta}^{l}\left(C_{T}\left(\bar{Q}_{L}^{i} \gamma_{\mu} \sigma^{a} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} L_{L}^{\beta}\right)+C_{S}\left(\bar{Q}_{L}^{i} \gamma_{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} L_{L}^{\beta}\right)\right)
$$

Model	Mediator	$b \rightarrow s$	$b \rightarrow c$
Colorless vectors	$B^{\prime}=(1,1,0)$	\checkmark	\mathbf{X}
	$W^{\prime}=(1,3,0)$	\mathbf{X}	\checkmark
Scalar leptoquarks	$S_{1}=(\overline{3}, 1,1 / 3)$	\mathbf{X}	\checkmark
	$S_{3}=(\overline{3}, 3,1 / 3)$	\checkmark	\mathbf{X}
Vector leptoquarks	$U_{1}=(3,1,2 / 3)$	\checkmark	\checkmark
	$U_{3}=(3,3,2 / 3)$	\checkmark	\mathbf{X}

U_{1} singlet vector leptoquark (LQ) is only single-mediator model that can explain both sets of anomalies

A digression on LQs

Both scalar \& vector LQ have important advantage with respect to other tree-level mediators that they do not induce tree-level contributions to B mixing \& $\tau \rightarrow \mu v v$

Well-known LQ search strategies @ LHC

pair production

t-channel Drell-Yan (DY)

Photon \& lepton content of proton

Resonant LQ production @ LHC

Non-zero lepton parton distribution functions allow for resonant LQ production @ LHC, but single lepton-jet final states are not part of exotics search canon of ATLAS \& CMS

Dilepton searches @ ATLAS: 13*

Dijet searches @ ATLAS: 12*

Lepton-jet final state searches @ ATLAS: 1*

LHC limits on $1^{\text {st }} \& 2^{\text {nd }}$ generation LQs

pair production (PP)

Singlet vector LQ models for B anomalies

$$
\begin{aligned}
& \mathcal{L} \supset \frac{g_{U}}{\sqrt{2}}\left[\beta_{L}^{i j} \bar{Q}_{L}^{i, a} \gamma_{\mu} L_{L}^{j}+\beta_{R}^{i j} \bar{d}_{R}^{i, a} \gamma_{\mu} \mu_{R}^{j}\right] U^{\mu, a}+\text { h.c. }, \\
& \left|\beta_{L}^{22}\right| \lesssim\left|\beta_{L}^{32}\right| \ll\left(\beta_{L}^{23}|\lesssim| \beta_{L}^{33} \mid=\mathcal{O}(1)\right.
\end{aligned}
$$

Parameters		Branching ratios			
β_{L}^{33}	β_{L}^{23}	$\mathrm{BR}\left(U \rightarrow b \tau^{+}\right)$	$\mathrm{BR}\left(U \rightarrow t \bar{\nu}_{\tau}\right)$	$\mathrm{BR}\left(U \rightarrow s \tau^{+}\right)$	$\mathrm{BR}\left(U \rightarrow c \bar{\nu}_{\tau}\right)$
1	0	51%	49%	0%	0%
1	1	25%	22%	25%	27%

Possible singlet vector LQ signatures

Flavor structure as suggested by $b \rightarrow c$ anomalies singles out $p p \rightarrow \tau^{+} \tau^{-}$, bt as most interesting channels $-\mathrm{pp} \rightarrow \tau \mu, \mathrm{\tau v}, \mu^{+} \mu^{-}, \mathrm{tv}, \mathrm{cv}$ may be important as well in case of discovery or if $b \rightarrow c$ anomalies disappear

Ditau searches @ LHC Run II

Three different ditau LHC Run II analyses, all considering events without \& with an extra b-jet

Ditau searches @ LHC Run II

ATLAS data agrees with background predictions but both CMS analyses see a 3σ excess

Ditau searches @ LHC Run II

Non-resonant (resonant) excess in b-tag (b-veto) sample fits (does not fit) LQ explanation

ATLAS ditau limits on singlet vector LQs

ATLAS ditau limits on singlet vector LQs

HL-LHC projections for singlet vector LQs

HL-LHC projections for singlet vector LQs

weaker but complementary information provided by searches for resonant 3rd_ generation LQ signatures

95\% CL region favoured by b c anomalies
probably all singlet vector LQ explanations of $b \rightarrow c$ anomalies can be tested via ditau searches @ HL-LHC

Beyond simplified LQ models

Ultraviolet complete LQ models typically contain new degrees of freedom besides LQ such as a heavy gluon G^{\prime}, a Z^{\prime}, vector-like leptons (VLLs) L, additional Higgses, etc. New states cannot be arbitrarily heavy in models that address $b \rightarrow c$ anomalies

Bounds on \mathbf{G}^{\prime} motivated by b $\boldsymbol{\rightarrow} \mathbf{c}$ anomalies

VLLs in gauged vector LQ models

Curbing LQ contributions to B_{s} mixing requires VLLs with mass $M\llcorner$ not far from 1 TeV

VLLs in gauged vector LQ models

VLL production in context of gauged vector LQ models addressing $b \rightarrow c$ anomalies is expected to lead to high-multiplicity final states with $\tau, b, t \& E_{T, \text { miss }}$

VLLs searches triggered by B anomalies

Tau multiplicity	VLL production + decay mode	Final state
0τ	$\mathrm{EE} \rightarrow \mathrm{b}\left(\mathrm{t} v_{\tau}\right) \mathrm{b}\left(\mathrm{t} \nu_{\tau}\right)$	$4 \mathrm{~b}+4 \mathrm{j}+2 v_{\tau}$
	$\mathrm{EN} \rightarrow \mathrm{b}\left(\mathrm{t} v_{\tau}\right) \mathbf{t}\left(\mathrm{t} \nu_{\tau}\right)$	$4 \mathrm{~b}+6 \mathrm{j}+2 \nu_{\tau}$
	$\mathrm{NN} \rightarrow \mathrm{t}\left(\mathrm{t} v_{\tau}\right) \mathrm{t}\left(\mathrm{t} v_{\tau}\right)$	$4 \mathrm{~b}+8 \mathrm{j}+2 \nu_{\tau}$
1τ	$\mathrm{EE} \rightarrow \mathrm{b}(\mathrm{b} \tau) \mathrm{b}\left(\mathrm{t} \nu_{\tau}\right)$	$4 \mathrm{~b}+2 \mathrm{j}+\tau+v_{\tau}$
	$\mathrm{EN} \rightarrow \mathrm{b}\left(\mathrm{t} v_{\tau}\right) \mathrm{t}(\mathrm{b} \tau)$	$4 \mathrm{~b}+4 \mathrm{j}+\tau+\nu_{\tau}$
	$\mathrm{EN} \rightarrow \mathrm{b}(\mathrm{b} \tau) \mathrm{t}\left(\mathrm{t} v_{\tau}\right)$	$4 \mathrm{~b}+4 \mathrm{j}+\tau+v_{\tau}$
	$\mathrm{NN} \rightarrow \mathrm{t}(\mathrm{b} \tau) \mathrm{t}\left(\mathrm{t} v_{\tau}\right)$	$4 \mathrm{~b}+6 \mathrm{j}+\tau+\nu_{\tau}$
2τ	$\mathrm{EE} \rightarrow \mathrm{b}(\mathrm{b} \tau) \mathrm{b}(\mathrm{b} \tau)$	$4 \mathrm{~b}+2 \tau$
	$\mathrm{EN} \rightarrow \mathrm{b}(\mathrm{b} \tau) \mathrm{t}(\mathrm{b} \tau)$	$4 \mathrm{~b}+2 \mathrm{j}+2 \tau$
	$\mathrm{NN} \rightarrow \mathrm{t}(\mathrm{b} \tau) \mathrm{t}(\mathrm{b} \tau)$	$4 \mathrm{~b}+4 \mathrm{j}+2 \tau$

Recently CMS performed first dedicated search for VLLs in gauged vector LQ model, exploring final states with at least three b-jets \& two 3rd-generation leptons

VLLs searches triggered by B anomalies

Tau multiplicity	VLL production + decay mode	Final state
0τ	$\mathrm{EE} \rightarrow \mathrm{b}\left(\mathrm{t} v_{\tau}\right) \mathrm{b}\left(\mathrm{t} \nu_{\tau}\right)$	$4 \mathrm{~b}+4 \mathrm{j}+2 \nu_{\tau}$
	$\mathrm{EN} \rightarrow \mathrm{b}\left(\mathrm{t} v_{\tau}\right) \mathrm{t}\left(\mathrm{t} v_{\tau}\right)$	$4 \mathrm{~b}+6 \mathrm{j}+2 \nu_{\tau}$
	$\mathrm{NN} \rightarrow \mathrm{t}\left(\mathrm{t} \nu_{\tau}\right) \mathrm{t}\left(\mathrm{t} v_{\tau}\right)$	$4 \mathrm{~b}+8 \mathrm{j}+2 \nu_{\tau}$
1τ	$\mathrm{EE} \rightarrow \mathrm{b}(\mathrm{b} \tau) \mathrm{b}\left(\mathrm{t} v_{\tau}\right)$	$4 \mathrm{~b}+2 \mathrm{j}+\tau+v_{\tau}$
	$\mathrm{EN} \rightarrow \mathrm{b}\left(\mathrm{t} v_{\tau}\right) \mathrm{t}(\mathrm{b} \tau)$	$4 \mathrm{~b}+4 \mathrm{j}+\tau+\nu_{\tau}$
	$\mathrm{EN} \rightarrow \mathrm{b}(\mathrm{b} \tau) \mathrm{t}\left(\mathrm{t} v_{\tau}\right)$	$4 \mathrm{~b}+4 \mathrm{j}+\tau+\nu_{\tau}$
	$\mathrm{NN} \rightarrow \mathrm{t}(\mathrm{b} \tau) \mathrm{t}\left(\mathrm{t} v_{\tau}\right)$	$4 \mathrm{~b}+6 \mathrm{j}+\tau+\nu_{\tau}$
2τ	$\mathrm{EE} \rightarrow \mathrm{b}(\mathrm{b} \tau) \mathrm{b}(\mathrm{b} \tau)$	$4 \mathrm{~b}+2 \tau$
	$\mathrm{EN} \rightarrow \mathrm{b}(\mathrm{b} \tau) \mathrm{t}(\mathrm{b} \tau)$	$4 \mathrm{~b}+2 \mathrm{j}+2 \tau$
	$\mathrm{NN} \rightarrow \mathrm{t}(\mathrm{b} \tau) \mathrm{t}(\mathrm{b} \tau)$	$4 \mathrm{~b}+4 \mathrm{j}+2 \tau$

Expected limit on VLL mass of 650 GeV but CMS observes 2.8σ excess for VLL mass hypothesis of 600 GeV \& as a result no VLL masses are excluded at 95\% CL

Z^{\prime} for $b \rightarrow s$ anomalies: $L_{\mu}-L_{\tau}$ models

b \rightarrow s anomalies explained

excluded by
B_{s} mixing

Z^{\prime} for $b \rightarrow s$ anomalies: $L_{\mu}-L_{\tau}$ models

Dilepton searches in $L_{\mu}-L_{\tau}$ models

Z' couplings that follow minimal flavor violating (MFV) pattern excluded by dilepton searches

Dilepton searches in $L_{\mu}-L_{\tau}$ models

Gauging $L_{\mu}-L_{\tau}$ gives gives Z^{\prime} with vectorial couplings to $\mu, \tau \&$ corresponding v. Introduce vector-like quarks Q to generate bsZ' coupling \& suppress Z^{\prime} couplings to light quarks

Searches for bs $\mu \mu$ contact interactions

[ATLAS-CONF-2021-012]

First search for bs $\mu \mu$ four-Fermi operator by ATLAS, but bounds on suppression scale are a factor of $\mathrm{O}(20)$ below sensitivity needed to test $\mathrm{b} \rightarrow \mathrm{s}$ anomalies model independently

Testing LFU with dilepton events @ LHC

CMS observes good agreement with LFU up to masses of 1.5 TeV , but above 1.8 TeV there is slight excess in dielectron channel leading to a deviation of LFU ratio from 1

Testing LFU with dilepton events @ LHC

CMS recently also measured difference between dimuon \& dielectron forwardbackward asymmetry ($\mathrm{A}_{\text {FB }}$). Result is found to agree with zero within 2.4б. Like rate measurement, also AFB results show a slight dielectron excess

Conclusions \& outlook

- Beyond SM models that explain all B-physics anomalies generically lead to signatures (e.g. pp $\rightarrow \tau^{+} \tau^{-}, b \tau, t_{t} \&$ high-multiplicity final states with $\left.\tau, b, t \& E_{T, \text { miss }}\right)$ testable @ LHC. If b \rightarrow c anomalies persist, IMHO likely that LHC sees something
- BSM models that explain only $b \rightarrow s$ anomalies can be easily hidden from leaving imprint on high-pT LHC physics. Still, searches for bs $\mu \mu$ contact interactions, LFU violation in dilepton production, etc. may shed light on origin of anomalies
- Signals in Higgs \& diboson physics connected to anomalies possible (e.g. $h \rightarrow \tau \mu$ \& exotics decays of heavy Higgses) but model dependent - cf. backup for details

Backup

A digression on LFU

Decay	Precision	Channels	Deviation
Z	0.3%	e, μ, τ	-
W	0.8%	e, μ	-
W	3%	τ	2.8σ
μ, τ	0.15%	e, μ	-
π	0.3%	e, μ	-
K	0.4%	e, μ	-
J / ψ	0.65%	e, μ	-
D_{s}	6%	μ, τ	-

Before 2012, stringent experimental test of LFU in B-meson decays did not exist

Combined LEP results hint towards LFU violation in W-boson decay with significance of 2.8σ
[LEPEWWG, hep-ex/0511027]

LFU violation in W decays?

ATLAS LHC Run II measurement in full agreement with LFU as predicted in SM

Ditau limits on singlet vector LQs from CMS

LHC bounds: $p p \rightarrow \pi$ vs. $p p \rightarrow \pi v$

Z^{\prime} bounds in singlet vector LQ model

Z^{\prime} searches in general not competitive with limits obtained from LQ or G' searches

Another LQ search triggered by B anomalies

[ATLAS, 2101.11582]

Testing LFU with dilepton events @ LHC

Flavorful 2HDM with right-handed neutrinos

Box diagrams with a charged Higgs boson \& a right-handed neutrino are able to generate LFU violating effects needed to explain $b \rightarrow s$ anomalies

Flavorful 2HDM with right-handed neutrinos

In 2016 explanation of muon anomalous magnetic moment possible without violating $h \rightarrow \tau \mu$ bound if Higgs sector close to alignment. Now possibility even stronger constrained

Flavorful 2HDM with right-handed neutrinos

LHC phenomenology of model not worked out, but exotic decays such as $\mathrm{H}, \mathrm{A} \rightarrow \mathrm{tc}(\tau \mu)$ \& $H^{ \pm} \rightarrow \mathrm{cb}$ generically expected \& wait for interest of community. Challenging searches but may reveal first direct evidence of beyond SM physics \& unravel origin of flavor

Resonant LQ production @ the LHC

At 13 TeV LHC, 9 events per $100 \mathrm{fb}^{-1}$ for minimal scalar LQ of $\mathrm{M}=3 \mathrm{TeV} \& \lambda_{\mathrm{eu}}=1$

Resonant LQ production @ the LHC

Suppressed by $\mathrm{E}_{\mathrm{T}, \text { miss }}$ requirement \& jet veto

Resonant LQ production @ the LHC

Suppressed by $\mathrm{E}_{\mathrm{T}, \text { miss }}$ requirement \& jet veto

Resonant LQ production @ the LHC

Irreducible background particularly relevant @ high invariant lepton-jet mass

Resonant LQ production @ the LHC

Resonant LQ production @ the LHC

Suppressed by $\mathrm{E}_{\mathrm{T}, \text { miss }}$ requirement

Resonant LQ production @ the LHC

Sum over backgrounds is a steeply falling distribution, while signal exhibits a narrow peak

LHC limits on $\mathbf{1 s t}^{\text {st }} \boldsymbol{2} \mathbf{2}^{\text {nd }}$ generation LQs

LHC limits on $\mathbf{1 s t}^{\text {st }} \boldsymbol{2} \mathbf{2}^{\text {nd }}$ generation LQs

LHC limits on $1^{\text {st }} \boldsymbol{\&} \mathbf{2}^{\text {nd }}$ generation LQs

single LQ production (SP)

LHC limits on $\mathbf{1 s t}^{\text {st }} \mathbf{2}^{\text {nd }}$ generation LQs

resonant LQ production

LHC limits on $\mathbf{1 s t}^{\text {st }} \mathbf{2}^{\text {nd }}$ generation LQs

resonant LQ production

LHC limits on $\mathbf{1 s t}^{\text {st }} \mathbf{2}^{\text {nd }}$ generation LQs

LQ contributions to $\mathbf{b}+\mathbf{\tau}$ signature

For $\beta_{L}^{23}=0, b+\tau$ signal arises only from $2 \rightarrow 2$ process, while for $\beta_{L}^{23} \neq 0$ also $2 \rightarrow 3$ scattering is relevant. Since two topologies lead to final states with very different kinematic features, it is essential to develop two separate search strategies for them

Kinematic distributions of b+t signal

LHC $14 \mathrm{TeV}, \mathrm{b}+\tau$

LHC $14 \mathrm{TeV}, \mathrm{b}+\tau$

Kinematic distributions of b+t signal

Kinematic distributions of b+t signal

Mono-top \& mono-jet distributions

$b+\tau$ constraints from $2 \rightarrow 2 \& 2 \rightarrow 3$ signal

Constraints from new LQ search strategies

Constraints from new LQ search strategies

