

Uli Haisch, MPI Munich Implications of LHCb measurements and future prospects, 21.10.22

Theory overview: high-pt searches for flavor

Plan of this talk

Assuming that well-known B anomalies are indeed due to new physics, I will discuss possible implications of these deviations in high-p_T searches @ LHC

B anomalies in a nutshell

Both sets of B anomalies challenge assumption of lepton flavor universality (LFU), which is usually taken for granted in high-energy physics

B anomalies in a nutshell

Mass/scale suppression of effective operators suggests that explanations of b \rightarrow c anomalies should lead to testable high-p_T signatures, while b \rightarrow s case looks much less promising

Simplified models for B anomalies

 $\lambda_{ij}^q \lambda_{\alpha\beta}^l \left(C_T \left(\bar{Q}_L^i \gamma_\mu \sigma^a Q_L^j \right) (\bar{L}_L^\alpha \gamma^\mu \sigma^a L_L^\beta) + C_S \left(\bar{Q}_L^i \gamma_\mu Q_L^j \right) (\bar{L}_L^\alpha \gamma^\mu L_L^\beta) \right)$

[see for instance Buttazzo, Greljo, Isidori & Marzocca, 1706.07808]

Model	Mediator	$b \rightarrow s$	$b \rightarrow c$
	B' = (1, 1, 0)	\checkmark	X
Colorless vectors	W' = (1, 3, 0)	×	\checkmark
Scalar leptoquarks	$S_1 = (\overline{3}, 1, 1/3)$	×	\checkmark
	$S_3 = (\bar{3}, 3, 1/3)$	\checkmark	X
Vector leptoquarks	$U_1 = (3, 1, 2/3)$	\checkmark	\checkmark
	$U_3 = (3, 3, 2/3)$	\checkmark	×

 $b \rightarrow s$ ($b \rightarrow c$) anomalies alone can be accommodated by several simple single-mediator models

Simplified models for B anomalies

 $\lambda_{ij}^q \lambda_{\alpha\beta}^l \left(C_T \left(\bar{Q}_L^i \gamma_\mu \sigma^a Q_L^j \right) (\bar{L}_L^\alpha \gamma^\mu \sigma^a L_L^\beta) + C_S \left(\bar{Q}_L^i \gamma_\mu Q_L^j \right) (\bar{L}_L^\alpha \gamma^\mu L_L^\beta) \right)$

[see for instance Buttazzo, Greljo, Isidori & Marzocca, 1706.07808]

Model	Mediator	$b \rightarrow s$	$b \rightarrow c$
	B' = (1, 1, 0)	\checkmark	×
Colorless vectors	W' = (1, 3, 0)	×	\checkmark
Scalar leptoquarks	$S_1 = (\bar{3}, 1, 1/3)$	×	\checkmark
Scalar leptoquarks	$S_3 = (\bar{3}, 3, 1/3)$	\checkmark	×
Vector leptoquarks	$U_1 = (3, 1, 2/3)$	\checkmark	\checkmark
	$U_3 = (3, 3, 2/3)$	\checkmark	X

U₁ singlet vector leptoquark (LQ) is only single-mediator model that can explain both sets of anomalies

A digression on LQs

Both scalar & vector LQ have important advantage with respect to other tree-level mediators that they do not induce tree-level contributions to B mixing & $\tau \rightarrow \mu v v$

Well-known LQ search strategies @ LHC

[sketch adopted from Dorsner & Greljo, 1801.07641]

t-channel Drell-Yan (DY)

Photon & lepton content of proton

[Manohar et al., 1607.04266, 1708.01256; Buonocore et al., 2005.06477]

Resonant LQ production @ LHC

[Buonocore, UH, Nason, Tramontano & Zanderighi, 2005.06475; Greljo & Selimovic, 2012.02092; Buonocore et al., 2209.02599]

Non-zero lepton parton distribution functions allow for resonant LQ production @ LHC, but single lepton-jet final states are not part of exotics search canon of ATLAS & CMS

Dilepton searches @ ATLAS: 13*

*number based on https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

charged

lepton

Dijet searches @ ATLAS: 12*

*number based on https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

Lepton-jet final state searches @ ATLAS: 1*

*i.e. the quantum-black-hole search published as 1311.2006

[Buonocore, UH, Nason, Tramontano & Zanderighi, 2005.06475]

Singlet vector LQ models for B anomalies

 $\mathcal{L} \supset \frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \bar{Q}_L^{i,a} \gamma_\mu L_L^j + \beta_R^{ij} \bar{d}_R^{i,a} \gamma_\mu \ell_R^j \right] U^{\mu,a} + \text{h.c.},$ $\left|\beta_L^{22}\right| \lesssim \left|\beta_L^{32}\right| \ll \left|\beta_L^{23}\right| \lesssim \left|\beta_L^{33}\right| = \mathcal{O}(1)$

Parameters		Branching ratios			
β_L^{33}	eta_L^{23}	$BR\left(U \to b\tau^+\right)$	$\mathrm{BR}\left(U \to t\bar{\nu}_{\tau}\right)$	$\mathrm{BR}\left(U\to s\tau^+\right)$	$\mathrm{BR}\left(U \to c \bar{\nu}_{\tau}\right)$
1	0	51%	49%	0%	0%
1	1	25%	22%	25%	27%

Possible singlet vector LQ signatures

Flavor structure as suggested by $b \rightarrow c$ anomalies singles out $pp \rightarrow \tau^+\tau^-$, $b\tau$ as most interesting channels — $pp \rightarrow \tau\mu$, $\tau\nu$, $\mu^+\mu^-$, $t\nu$, $c\nu$ may be important as well in case of discovery or if $b \rightarrow c$ anomalies disappear

Three different ditau LHC Run II analyses, all considering events without & with an extra b-jet

[ATLAS, 2002.12223; CMS, 2208.02717; CMS PAS HIG-21-001]

ATLAS data agrees with background predictions but both CMS analyses see a 3o excess

[ATLAS, 2002.12223; CMS, 2208.02717; CMS PAS HIG-21-001]

Non-resonant (resonant) excess in b-tag (b-veto) sample fits (does not fit) LQ explanation

[ATLAS, 2002.12223; CMS, 2208.02717; CMS PAS HIG-21-001]

ATLAS ditau limits on singlet vector LQs

[NLO+PS accurate results for t-channel ditau production in LQ models obtained in UH, Schnell & Schulte, 2207.00356; 2209.12780]

ATLAS ditau limits on singlet vector LQs

[NLO+PS accurate results for t-channel ditau production in LQ models obtained in UH, Schnell & Schulte, 2207.00356; 2209.12780]

HL-LHC projections for singlet vector LQs

[UH & Polesello, 2012.11474; Cornella, Fuentes-Martin, Faroughi, Isidori & Neubert, 2103.16558]

HL-LHC projections for singlet vector LQs

weaker but complementary information provided by searches for resonant 3rdgeneration LQ signatures

[UH & Polesello, 2012.11474; Cornella, Fuentes-Martin, Faroughi, Isidori & Neubert, 2103.16558]

Beyond simplified LQ models

Ultraviolet complete LQ models typically contain new degrees of freedom besides LQ such as a heavy gluon G', a Z', vector-like leptons (VLLs) L, additional Higgses, etc. New states cannot be arbitrarily heavy in models that address $b \rightarrow c$ anomalies

Bounds on G' motivated by $b \rightarrow c$ anomalies

[Cornella, Fuentes-Martin, Faroughi, Isidori & Neubert, 2103.16558]

VLLs in gauged vector LQ models

[Cornella, Fuentes-Martin, Faroughi, Isidori & Neubert, 2103.16558]

Curbing LQ contributions to B_s mixing requires VLLs with mass M_L not far from 1 TeV

VLLs in gauged vector LQ models

is expected to lead to high-multiplicity final states with τ , b, t & E_{T,miss}

[see for instance Di Luzio et al., 1808.0094; Cornella, Fuentes-Martin, Faroughi, Isidori & Neubert, 2103.16558]

VLL production in context of gauged vector LQ models addressing $b \rightarrow c$ anomalies

VLLs searches triggered by B anomalies

Tau	VLL production	Final
multiplicity	+ decay mode	state
	$\mathrm{EE} \to \mathrm{b}(\mathrm{t}\nu_{\tau})\mathrm{b}(\mathrm{t}\nu_{\tau})$	4b + 4j + 2
0 au	$\mathrm{EN} \to \mathrm{b}(\mathrm{t}\nu_{\tau})\mathrm{t}(\mathrm{t}\nu_{\tau})$	4b + 6j + 2
	$NN \to t(t\nu_{\tau})t(t\nu_{\tau})$	4b + 8j + 2
	$\mathrm{EE} \rightarrow \mathrm{b}(\mathrm{b}\tau)\mathrm{b}(\mathrm{t}\nu_{\tau})$	$4b + 2j + \tau$
1 au	$\mathrm{EN} \rightarrow \mathrm{b}(\mathrm{t}\nu_{\tau})\mathrm{t}(\mathrm{b}\tau)$	$4b+4j+\tau$
Ιί	$\text{EN} \rightarrow b(b\tau)t(t\nu_{\tau})$	$4b+4j+\tau$
	$NN \rightarrow t(b\tau)t(t\nu_{\tau})$	$4b+6j+\tau$
	$EE \rightarrow b(b\tau)b(b\tau)$	$4b + 2\tau$
2τ	$EN \rightarrow b(b\tau)t(b\tau)$	4b + 2j + 2
	$NN \rightarrow t(b\tau)t(b\tau)$	4b + 4j + 2

Recently CMS performed first dedicated search for VLLs in gauged vector LQ model, exploring final states with at least three b-jets & two 3rd-generation leptons [CMS, 2208.09700]

VLLs searches triggered by B anomalies

Tau	VLL production	Final
multiplicity	+ decay mode	state
	$\mathrm{EE} \to \mathrm{b}(\mathrm{t}\nu_{\tau})\mathrm{b}(\mathrm{t}\nu_{\tau})$	4b + 4j + 2
$0 \ au$	$\mathrm{EN} \to \mathrm{b}(\mathrm{t}\nu_{\tau})\mathrm{t}(\mathrm{t}\nu_{\tau})$	4b + 6j + 2
	$NN \to t(t\nu_{\tau})t(t\nu_{\tau})$	4b + 8j + 2
	$EE \rightarrow b(b\tau)b(t\nu_{\tau})$	$4b + 2j + \tau$
$1 \ au$	$\mathrm{EN} \rightarrow \mathrm{b}(\mathrm{t}\nu_{\tau})\mathrm{t}(\mathrm{b}\tau)$	$4b+4j+\tau$
	$\mathrm{EN} \rightarrow \mathrm{b}(\mathrm{b}\tau)\mathrm{t}(\mathrm{t}\nu_{\tau})$	$4b+4j+\tau$
	$NN \rightarrow t(b\tau)t(t\nu_{\tau})$	$4b+6j+\tau$
	$EE \rightarrow b(b\tau)b(b\tau)$	$4b + 2\tau$
2 au	$EN \rightarrow b(b\tau)t(b\tau)$	4b + 2j + 2
	$NN \rightarrow t(b\tau)t(b\tau)$	4b + 4j + 2

Expected limit on VLL mass of 650 GeV but CMS observes 2.8σ excess for VLL mass hypothesis of 600 GeV & as a result no VLL masses are excluded at 95% CL [CMS, 2208.09700]

Dilepton searches in L_{\mu}-L_{\tau} models

[Greljo & Marzocca, 1704.09015]

Z' couplings that follow minimal flavor violating (MFV) pattern excluded by dilepton searches

Gauging $L_{\mu}-L_{\tau}$ gives gives Z' with vectorial couplings to μ , τ & corresponding v. Introduce vector-like quarks Q to generate bsZ' coupling & suppress Z' couplings to light quarks

[see for instance Altmannshofer et al., 1403.1269, 1508.07009 & 1902.06765]

Searches for bsµµ contact interactions

First search for bsµµ four-Fermi operator by ATLAS, but bounds on suppression scale are a factor of O(20) below sensitivity needed to test b \rightarrow s anomalies model independently

[CMS, 2103.02708 & for interpretations see for instance Crivellin et al., 2103.12003, 2104.06417]

CMS observes good agreement with LFU up to masses of 1.5 TeV, but above 1.8 TeV there is slight excess in dielectron channel leading to a deviation of LFU ratio from 1

Testing LFU with dilepton events @ LHC

CMS recently also measured difference between dimuon & dielectron forwardbackward asymmetry (A_{FB}). Result is found to agree with zero within 2.4 σ . Like rate measurement, also A_{FB} results show a slight dielectron excess

Conclusions & outlook

- Beyond SM models that explain all B-physics anomalies generically lead to signatures (e.g. pp → τ⁺τ⁻, bτ, tt̄ & high-multiplicity final states with τ, b, t & E_{T,miss}) testable @ LHC. If b → c anomalies persist, IMHO likely that LHC sees something
- BSM models that explain only b → s anomalies can be easily hidden from leaving imprint on high-p_T LHC physics. Still, searches for bsµµ contact interactions, LFU violation in dilepton production, etc. may shed light on origin of anomalies
- Signals in Higgs & diboson physics connected to anomalies possible (e.g. $h \rightarrow \tau \mu$ & exotics decays of heavy Higgses) but model dependent — cf. backup for details

Backup

A digression on LFU

Decay	Precision	Channels	Deviation
Z	0.3%	e, μ, au	
W	0.8%	e,μ	
W	3%	au	2.8σ
μ, au	0.15%	e,μ	
π	0.3%	e,μ	
K	0.4%	e,μ	
J/ψ	0.65%	e,μ	
D_s	6%	μ, au	

Summer 2011

Before 2012, stringent experimental test of LFU in B-meson decays did not exist

Combined LEP results hint towards LFU violation in W-boson decay with significance of 2.8σ

[LEPEWWG, hep-ex/0511027]

LFU violation in W decays?

ATLAS LHC Run II measurement in full agreement with LFU as predicted in SM

Ditau limits on singlet vector LQs from CMS

[NLO+PS accurate results for t-channel ditau production in LQ models obtained in UH, Schnell & Schulte, 2207.00356; 2209.12780]

LHC bounds: $pp \rightarrow \tau \tau vs. pp \rightarrow \tau v$

[Baker, Fuentes-Martin, Isidori & König, 1901.10480]

Z' bounds in singlet vector LQ model

[Baker, Fuentes-Martin, Isidori & König, 1901.10480]

Z' searches in general not competitive with limits obtained from LQ or G' searches

Another LQ search triggered by B anomalies

[Bauer & Neubert, 1511.01900]

[ATLAS, 2101.11582]

Testing LFU with dilepton events @ LHC

Flavorful 2HDM with right-handed neutrinos

Box diagrams with a charged Higgs boson & a right-handed neutrino are able to generate LFU violating effects needed to explain $b \rightarrow s$ anomalies

[Crivellin, Müller & Wiegand, 1903.10440]

Flavorful 2HDM with right-handed neutrinos

In 2016 explanation of muon anomalous magnetic moment possible without violating $h \rightarrow \tau \mu$ bound if Higgs sector close to alignment. Now possibility even stronger constrained

[Crivellin, Müller & Wiegand, 1903.10440]

Flavorful 2HDM with right-handed neutrinos

LHC phenomenology of model not worked out, but exotic decays such as H, A \rightarrow tc ($\tau\mu$) & H[±] \rightarrow cb generically expected & wait for interest of community. Challenging searches but may reveal first direct evidence of beyond SM physics & unravel origin of flavor

[see Gori, Grojean, Juste & Paul, 1710.03752 for a related discussion]

[Buonocore, UH, Nason, Tramontano & Zanderighi, 2005.06475]

LHC, $\sqrt{s} = 13$ TeV

At 13 TeV LHC, 9 events per 100 fb⁻¹ for minimal scalar LQ of M = 3 TeV & $\lambda_{eu} = 1$

Suppressed by ET,miss requirement & jet veto

[Buonocore, UH, Nason, Tramontano & Zanderighi, 2005.06475]

LHC, $\sqrt{s} = 13$ TeV

Suppressed by ET,miss requirement & jet veto

[Buonocore, UH, Nason, Tramontano & Zanderighi, 2005.06475]

100 — WW $- W^-Z + tW$ events/bin/100 fb⁻¹ 10 — LQ 0.10 0.01 4000 1000 2000 3000 5000 m_{ej} [GeV]

LHC, $\sqrt{s} = 13$ TeV

Irreducible background particularly relevant @ high invariant lepton-jet mass

Suppressed by lepton veto

Suppressed by ET,miss requirement

[Buonocore, UH, Nason, Tramontano & Zanderighi, 2005.06475]

Sum over backgrounds is a steeply falling distribution, while signal exhibits a narrow peak

--- 36 fb⁻¹

[Buonocore, UH, Nason, Tramontano & Zanderighi, 2005.06475]

 \cdots 36 fb⁻¹ \longrightarrow 139 fb⁻¹ \longrightarrow 300 fb⁻¹ \cdots 3 ab⁻¹

e

[Buonocore, UH, Nason, Tramontano & Zanderighi, 2005.06475]

 $-\cdots$ 36 fb⁻¹ $-\cdots$ 139 fb⁻¹ $-\cdots$ 300 fb⁻¹ \cdots 3 ab⁻¹

LQ contributions to b + t signature

[UH & Polesello, 2012.11474]

For $\beta_L^{23} = 0$, b + τ signal arises only from 2 \rightarrow 2 process, while for $\beta_L^{23} \neq 0$ also 2 \rightarrow 3 scattering is relevant. Since two topologies lead to final states with very different kinematic features, it is essential to develop two separate search strategies for them

Kinematic distributions of b + τ signal

[UH & Polesello, 2012.11474]

Kinematic distributions of b + τ signal

 m_T^{τ} [GeV]

[UH & Polesello, 2012.11474]

 m_T^{τ} [GeV]

Kinematic distributions of b + τ signal

[UH & Polesello, 2012.11474]

 E_{T}^{miss} [GeV]

Mono-top & mono-jet distributions

b + τ constraints from 2 \rightarrow 2 & 2 \rightarrow 3 signal

[UH & Polesello, 2012.11474]

67

Constraints from new LQ search strategies

[UH & Polesello, 2012.11474]

Constraints from new LQ search strategies

[UH & Polesello, 2012.11474]

