

Unfolding distributions of semileptonic decays

Implications of LHCb measurements and prospects

Marta Calvi, Mark Smith 20 October 2022

Universita & INFN, Milano-Bicocca Imperial College, London

The issue

A question of how we present our data

- Experiment could fit everything ourselves directly (FFs, WCs)
 - No need to unfold or efficiency correct
 - Difficult to combine separate measurements
 - Difficult to re-interpret with new theory advances
 - Results dependent on choices of analyst
- We can provide the data publicly
 - Efficiency corrected, unfolded distributions
 - Re-interpretable and combinable

Really this is a bigger conversation than just unfolding - it is what we provide publicly from our data.

- Always a missing neutrino \rightarrow limited $q^2/$ angular resolution.
 - There are tricks we can play to help eg. [Ciezarek, Lupato, Rotondo, Vesterinen]

 $B_s^0 o D_s^{*+} \mu
u$: [JHEP 12, 144 (2020)]

Some examples from LHCb:

- $\Lambda_b \to \Lambda_c^- \mu^+ \nu_\mu$
- $B_s^0 \rightarrow D_s^{*-} \mu^+ \nu_\mu$
- $B_s^0 \to K^- \mu^+ \nu_\mu$
- $B_s^0 \rightarrow D_s^- \mu^+ \nu_\mu$

[PRD 96,112005 (2017)] [JHEP 12,144 (2020)]

 $\Lambda_b o \Lambda_c^- \mu^+
u_\mu$

 3fb⁻¹: Provide unfolded spectrum dΓ/dq² and correlation matrix. Can be compared with theory predictions (two in the plot). Fit to measure the slope of the Isgur-Wise Function.

 $B^0_s o D^{*-}_s \mu^+
u_\mu$

 1.7fb⁻¹: Provide unfolded spectrum dΓ/dq² and correlation matrix. Fit with CLN and BGL parametrization.

[PRL 126, 081804 (2021)]

 $B^0_s o K^- \mu^+
u_\mu$

- BF in two bins of q^2
 - Includes effect of migration between bins
- $|V_{ub}|/|V_{cb}|$ extracted separately for each bin
 - $\rightarrow \mathsf{discrepancy}$
 - Ascribed to the FF calculations in each bin
- Ideally fit the differential shape to extract |V_{ub}| [PRD 104, 114041 (2021)]

[PRD 101, 072004 (2020)]

$B_s^0 ightarrow D_s^- \mu^+ u_\mu$

- Measurement of $|V_{cb}|$ with B_s^0 decays
- Fit the FF parameters as well using a 'proxy' variable: $p_{\perp}(D_s^-)$
- $p_{\perp}(D_s^-)$ is highly correlated with q^2

Options

- Experimental fit
 - We fit the data and provide parameters and uncertainties
- Do not unfold
 - Provide bkg subtracted differential distributions in reconstructed variables
 - Provide covariance and response matrices with measured yields, theorists fit
- Unfold
 - Provide differential distributions in true variables
 - Some systematic uncertainty from unfolding method
- Distributions of proxy variables
 - Provide bkg subtracted differential distribution in eg. p_{\perp}
 - Good experimental resolution theorists can calculate and fit

Future measurement possibilities (no timescales)

- angular analysis of $B^0 \to D^{(*)-} \mu^+ \nu_\mu$, $B^0 \to D^{(*)-} \tau^+ \nu_\tau$
- V_{cb} and differential distributions of $B
 ightarrow D^{(*)} \mu
 u$
- V_{ub} and shape of $B^0_s o K^- \mu^+
 u_\mu$

Practicalities

Where does this information go?

• CDS, HEPData

What is feasible experimentally?

- More data implies more dimensions (implies more simulation)
- Can we reliably provide unfolded distributions in 3/4 dimensions?
- How many bins can we provide?

Repository for publication-related High-Energy Physics data