Unfolding distributions of semileptonic decays

Implications of LHCb measurements and prospects

Marta Calvi, Mark Smith
20 October 2022

Universita \& INFN, Milano-Bicocca
Imperial College, London

A question of how we present our data

- Experiment could fit everything ourselves directly (FFs, WCs)
- No need to unfold or efficiency correct
- Difficult to combine separate measurements
- Difficult to re-interpret with new theory advances
- Results dependent on choices of analyst
- We can provide the data publicly
- Efficiency corrected, unfolded distributions
- Re-interpretable and combinable

Really this is a bigger conversation than just unfolding - it is what we provide publicly from our data.

- Always a missing neutrino \rightarrow limited $q^{2} /$ angular resolution.
- There are tricks we can play to help eg. [Ciezarek, Lupato, Rotondo, Vesterinen]

$$
B_{s}^{0} \rightarrow D_{s}^{*+} \mu \nu:[J H E P ~ 12,144 \text { (2020)] }
$$

Examples

Some examples from LHCb:

- $\Lambda_{b} \rightarrow \Lambda_{c}^{-} \mu^{+} \nu_{\mu}$
- $B_{s}^{0} \rightarrow D_{s}^{*-} \mu^{+} \nu_{\mu}$
- $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$
- $B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}$

$$
\Lambda_{b} \rightarrow \Lambda_{c}^{-} \mu^{+} \nu_{\mu}
$$

- $3 \mathrm{fb}^{-1}$: Provide unfolded spectrum $\frac{d \Gamma}{d q^{2}}$ and correlation matrix. Can be compared with theory predictions (two in the plot). Fit to measure the slope of the Isgur-Wise Function.
$B_{s}^{0} \rightarrow D_{s}^{*-} \mu^{+} \nu_{\mu}$
- $1.7 \mathrm{fb}^{-1}$: Provide unfolded spectrum $\frac{d \Gamma}{d q^{2}}$ and correlation matrix. Fit with CLN and BGL parametrization.

$B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$
- BF in two bins of q^{2}
- Includes effect of migration between bins
- $\left|V_{u b}\right| /\left|V_{c b}\right|$ extracted separately for each bin
\rightarrow discrepancy
- Ascribed to the FF calculations in each bin
- Ideally fit the differential shape to extract $\left|V_{u b}\right|$ [PRD 104, 114041 (2021)]

Examples

[PRD 101, 072004 (2020)]
$B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}$

- Measurement of $\left|V_{c b}\right|$ with B_{s}^{0} decays
- Fit the FF parameters as well using a 'proxy' variable: $p_{\perp}\left(D_{s}^{-}\right)$
- $p_{\perp}\left(D_{s}^{-}\right)$is highly correlated with q^{2}

Options

- Experimental fit
- We fit the data and provide parameters and uncertainties
- Do not unfold
- Provide bkg subtracted differential distributions in reconstructed variables
- Provide covariance and response matrices with measured yields, theorists fit
- Unfold
- Provide differential distributions in true variables
- Some systematic uncertainty from unfolding method
- Distributions of proxy variables
- Provide bkg subtracted differential distribution in eg. p_{\perp}
- Good experimental resolution - theorists can calculate and fit

Future measurement possibilities (no timescales)

- angular analysis of $B^{0} \rightarrow D^{(*)-} \mu^{+} \nu_{\mu}, B^{0} \rightarrow D^{(*)-} \tau^{+} \nu_{\tau}$
- $V_{c b}$ and differential distributions of $B \rightarrow D^{(*)} \mu \nu$
- $V_{u b}$ and shape of $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$

Practicalities

Where does this information go?

- CDS, HEPData

What is feasible experimentally?

- More data implies more dimensions

(9) HEPData

Repository for publication-related High-Energy Physics data

- Can we reliably provide unfolded distributions in $3 / 4$ dimensions?
- How many bins can we provide?

