

Rationalizing Tier 2 Traffic and Utilizing the Existing Resources (T/A Bandwidth)

What We Have Here is a Traffic Engineering Problem

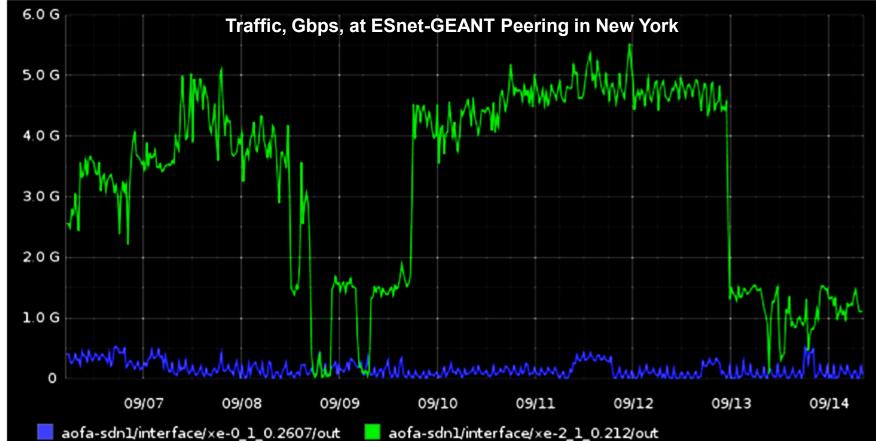
LHC Tier 2 Technical Meeting – CERN 13 January 2011

> William E. Johnston (wej@es.net)

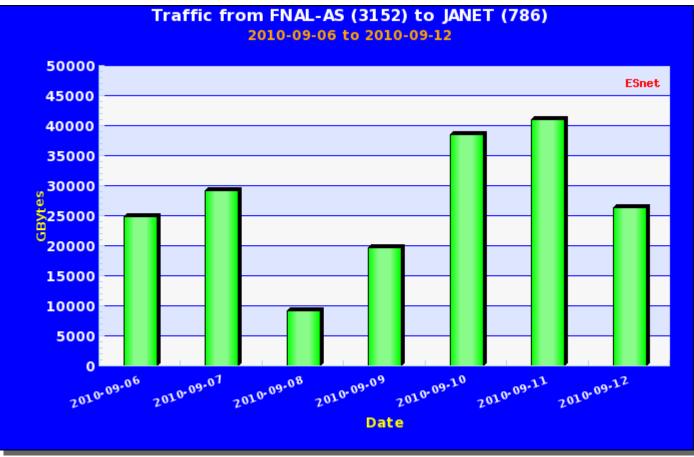
Chin Guok, Joe Metzger, Kevin Oberman, Chris Tracy, et al

Rationalizing Tier 2 Networking

- The view of the problem from the U.S. is somewhat different than from Europe
- In the U.S.
 - The two Tier 1 centers are large: Fermilab holds about 40% of the CMS data and Brookhaven holds 100% of the ATLAS data
 - Fermi is on a dark fiber ring to StarLight and currently has 50G configured to the ESnet core
 - BNL currently has 40G to ESnet/MAN LAN , and within two months will be on an ESnet owned dark fiber ring
 - All of the Tier 2 centers are connected to either StarLight or MAN LAN with dedicated 10G circuits, and several have their own fiber
 - ESnet handles all Tier 2 traffic (world-wide) to and from Fermi and BNL
 - ESnet sees all transatlantic traffic headed to Fermi and BNL
 - ESnet sees none of the U.S. Tier 2 out-bound traffic as that is university traffic that is handled by the Regionals, Internet2, NLR, etc.

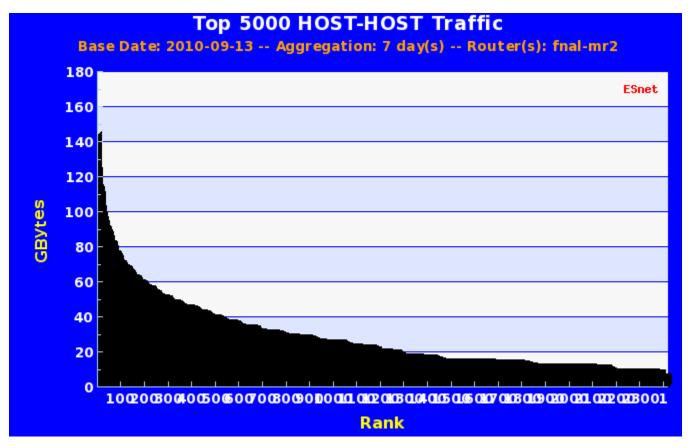

Rationalizing Tier 2 Networking

- Therefore, Tier 2 traffic within the U.S. is not now, nor is it every likely to be, an issue
 - Tier 3 traffic is still largely uncharacterized
- However, Tier 2 traffic across the Atlantic (in both directions) requires careful attention
 - the way the IP networking across the Atlantic is currently structured results in most general traffic (including almost all LHC non-OPN traffic) to use a small number of paths – the same paths used by most other R&E traffic
 - this situation will get better as the ACE infrastructure comes on-line, but Tier 2 traffic will be ramping up at the same time


- The LHC community has developed applications and tools that enable very high network data transfer rates over intercontential distances
- This is necessary in order to accomplish their science
- On the LHC OPN a private optical network designed to facilitate data transfers from Tier 0 (CERN) to Tier 1 (National experiment data centers) – the HEP data transfer tools are essential
 - These tools are mostly parallel data movers typically GridFTP
 - The related applications run on hosts that have modern TCP stacks that are appropriately tuned for high latency WAN transfers (e.g. international networks)
 - the Tier 2 sites use the same highly tuned WAN transfer software

- Recently, the Tier 2 (mostly physics analysis groups at universities) have abandoned the old hierarchical data distribution model
 - Tier 0 -> Tier 1 -> Tier 2, with attendant data volume reductions as you move down the hierarchy
 - in favor of a chaotic model
 - get whatever data you need from wherever it is available
- This has resulted in enormous site to site data flows on the general IP infrastructure that have never been seen before apart from DDOS attacks

- GÉANT observed a big spike on their transatlantic peering connection with ESnet (9/2010)
 - headed for Fermilab the U.S. CMS Tier 1 data center
- ESnet observed the same thing on their side



• At FNAL is was apparent that the traffic was going to the UK

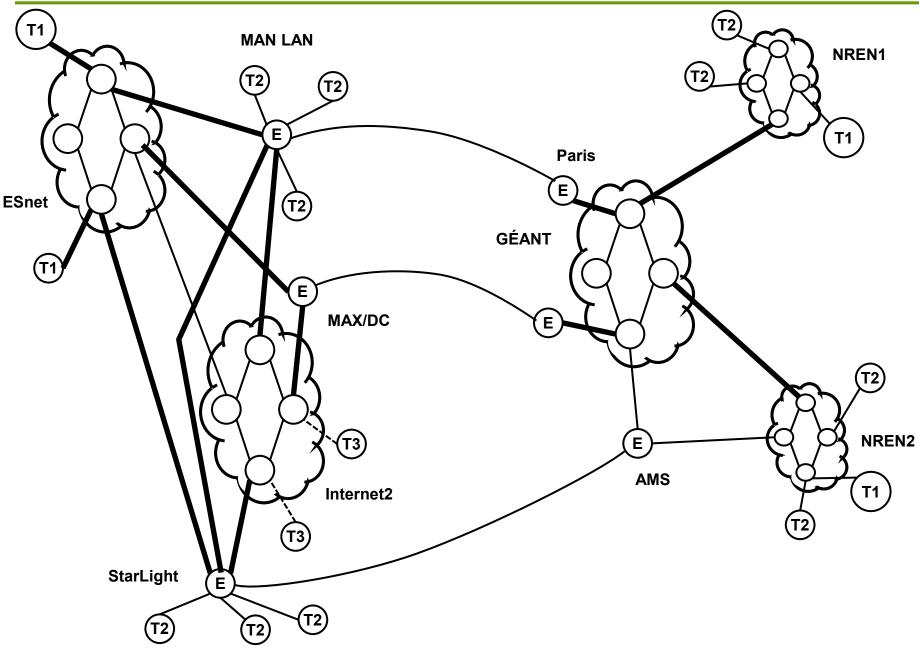
 Recalling that moving 10 TBy in 24 hours requires a data throughput of about 1 Gbps, the graph above implies 2.5 to 4+ Gbps of data throughput – which is what was being observed at the peering point

- Further digging revealed the site and nature of the traffic
- The nature of the traffic was as expected parallel data movers, but with an uncommonly high degree of parallelism: 33 hosts at the UK site and about 170 at FNAL

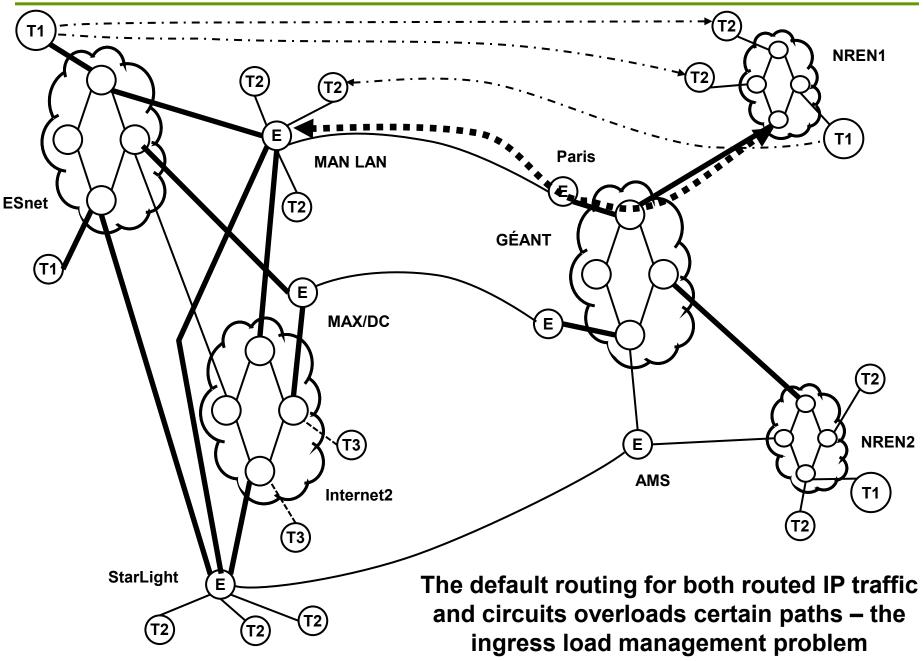
- This high degree of parallelism means that the largest hosthost data flow rate is only about 2 Mbps, but in aggregate this data mover farm is doing 860 Mbps (seven day average) and has moved 65 TBytes of data
 - this also makes it hard to identify the sites involved by looking at all of the data flows at the peering point – nothing stands out as an obvious culprit
- THE ISSUE:
- This clever physics group is consuming 60% of the available bandwidth on the primary U.S. – Europe general R&E IP network link – for weeks at a time!
- This is obviously an unsustainable situation and this is the sort of thing that will force the R&E network operators to mark such traffic on the general IP network as scavenger to ensure other uses of the network

- In this case marking the traffic as scavenger probably would not have made much difference for the UK traffic (from a UK LHC Tier 2 center) as the net was not congested
- However, this is only one Tier 2 center operating during a period of relative quiet for the LHC - when other Tier 2s start doing this things will fall apart quickly and this will be bad news for everyone:
 - For the NOCs to identify and mark this traffic without impacting other traffic from the site is labor intensive
 - The Tier 2 physics groups would not be able to do their physics
 - It is the mission of the R&E networks to deal with this kind of traffic
- There are a number of ways to rationalize this traffic, but just marking it all scavenger is not one of them

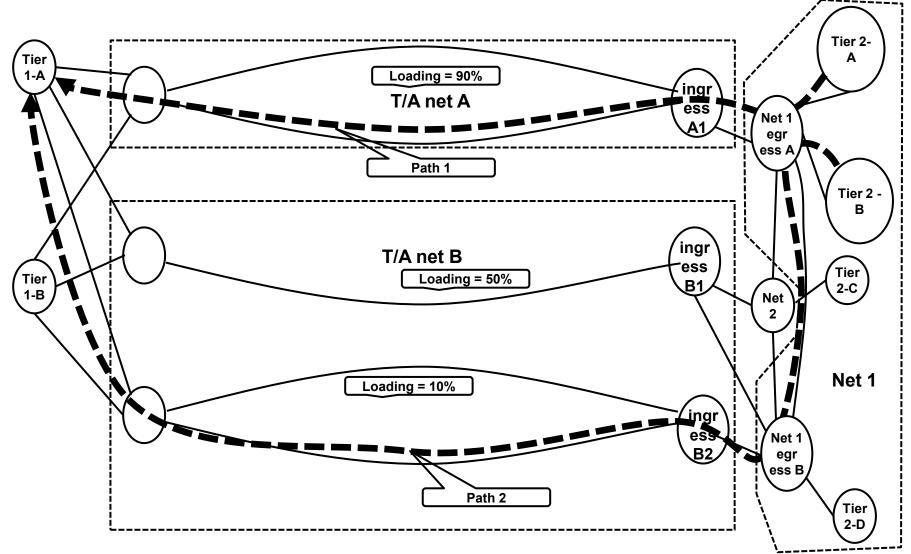
Transatlantic Networking


- The transatlantic capacity available to the community is probably sufficient in the near term if it used optimally
- Current R&E T/A circuits (John S. Graham, Global Research NOC)

Number	Endpoints		0	Oranatar	D
	USA	Europe	Owner	Operator	Purpose
1	New York	Amsterdam	Indiana University	SURFNet	Geant IP Peerings
2	Washington	Frankfurt	Geant	Geant	
3	New York	Paris	Geant	Geant	Lightpaths
4	New York	London	Internet2	Internet2	Lightpaths
5	New York	Amsterdam	CANARIE	SURFNet	Lightpaths
6	New York	Amsterdam	SURFNet	SURFNet	Lightpaths
7	New York	Amsterdam	NLR	SURFNet(?)	Unknown
8	New York	Amsterdam	NorduNet	NorduNet	IP Peerings
9	New York	??	SINET	SINET	IP Peerings


Transatlantic Networking

- The question is how to optimize the use of the available capacity
 - satisfy the LHC needs while accommodating all other R&E traffic at the same time
 - this point is critical because the available non-OPN capacity is funded for the benefit of the entire R&E community, not just the LHC


Roughly Today's Situation

The Problem

What you would like to do is spread the load to avoid congestion (e.g. at the ingress of net A)

Europe

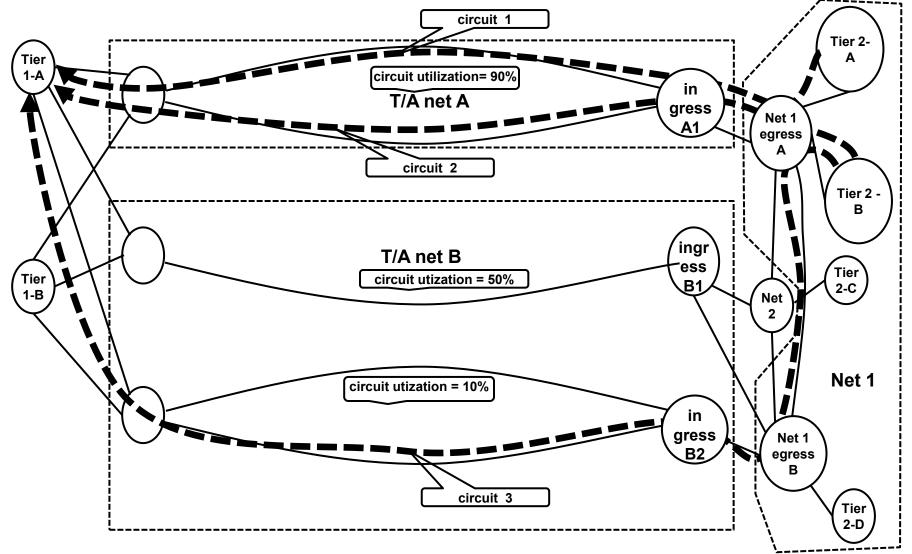
Traffic Engineering – Routed IP Traffic

- There are several ways that one could address this for IP traffic in a federated infrastructure such as we have now
- In a single domain such as net B, the operator can use MEDs that are dynamically established from transatlantic path loadings to direct traffic to a less loaded ingress point

- e.g. ingress B1 vs. B2 in the figure

- In the case of balancing across several independent domains (e.g. net A and net B) then the source must redirect traffic away from a congested (though perhaps closer) ingress point
 - This should be able to be done with BGP local preferences to control the exit path from an edge router
 - the local perfs would have to established and changed dynamically based on the loading of several available paths (e.g. forcing net 1, egress A traffic away from net A, ingress A1 and routing it to net B, ingress B2 – which is not the default route)

Traffic Engineering- Circuit Approaches


- One way to rationalize Tier 2 traffic is to set up virtual circuits that have guaranteed, but at the same time controlled, bandwidth that is isolated from general traffic, from the Tier 2 sites to the Tier 1 data centers
 - The number of such combinations per Tier 2 is probably relatively small (10s at most) due to the access patterns arising from the nature of the Tier 2 analysis interests and distribution of data in the Tier 1 centers
- This sort of multi-domain traffic engineering is what is done for almost all of the U.S. Tier 2 centers for accessing the U.S. Tier 1 centers
 - all of these circuits and all of the U.S. LHC OPN circuits are based on OSCARS virtual circuits
- With caveats, the DICE IDC protocol has the capability to do this in the international network arena

Traffic Engineering- Managing IDC Circuit Paths

- The situation with circuits is similar to the IP traffic problem: How to avoid "congestion" (fully committed paths is the circuit version of "congestion")
- The inter-domain IDCs have a global view of available topology, but not the current state of utilization, so cannot route around congestion
- In the next figure, with net A at full capacity, a successful circuit request must find and use a longer than normal circuit between T2-A and T1-A, which the current version of the IDC will not do automatically

Traffic Engineering- Managing IDC Circuit Paths

Tier 2-A and Tier 2-B circuits have exhausted the default IDC route capacity. Any further circuits will have to take non-default paths (e.g. circuit 3).

19

Traffic Engineering- Managing IDC Circuit Paths

- Even though the inter-domain IDCP cannot find a path from T2-A to T1-A, the path exists ("circuit 3")
- The hop-by-hop circuit path is defined by an MPLS construct called an Explicit Route Object (ERO)
- The IDC can return the ERO to the user, and the user can modify it and use the modified version to define a path (assuming it represents a valid path)
- Currently perfSONAR can return path utilization information on a by-node basis
 - this information can be used to manually modify an ERO to represent an alternate path that is not "congested" (i.e. has capacity for the requested circuit)
 - however, perfSONAR cannot report on temporal circuit commitments on the path – this is being worked on
- This sounds like a "heavy weight" approach, and it is, but not impractically so if the circuit will be long-lived, as almost all production circuits are
 - DICE group is looking at tools to simplify the process
 - automation of the process is an active research topic that is seeing some progress

Traffic Engineering as a Solution for Tier 2 T/A Traffic

- At some level, adequate transatlantic R&E capacity is sufficient for the near future, if it can be managed in a federated way that distributes the LHC load across the available capacity
- Tools exist to accomplish or at least to prototype this approach
- Can a suitable federation be established?
 - Probably if an acceptable governance model can be agreed to that addresses capacity sharing and operational cooperation