

Searches for hidden sector physics with the NA62 experiment

Jan Jerhot *

Center for Cosmology, Particle Physics and Phenomenology Université Catholique de Louvain

Long-Lived Particle Community Workshop; November 2, 2022

*On behalf of the NA62 Collaboration

<ロト < 母ト < 目ト < 目ト < 目ト のへの</p>

Introduction

Direct search for New Physics (NP) at intensity frontier with fixed-target experiments:

- Complementary to energy frontier (LHC) and indirect searches (precision measurements, LNV, etc.);
- Smaller masses (typically MeV-GeV scale) but much lower couplings accessible (large statistics);
- Not a direct search for Dark Matter (DM) particles but for a SM-DM mediator (hidden sector portal):

NP Particle	$_{\mathrm{type}}$	SM portal (dim ≤ 5)	
HNL (N_I)	fermion	$F_{\alpha I}(\bar{L}_{\alpha}H)N_I$	
dark photon (A'_{μ})	vector	$-(\epsilon/2\cos heta_W)F'_{\mu u}B^{\mu u}$	
dark Higgs (S)	scalar	$(\mu S + \lambda S^2) H^{\dagger} H$	
axion/ALP (a)	pseudoscalar	$(C_{aX}/\Lambda)aX_{\mu\nu}\tilde{X}^{\mu\nu}, (C_{af}/\Lambda)\partial_{\mu}a\bar{f}\gamma^{\mu}\gamma^{5}f$	

Introduction

Direct search for New Physics (NP) at intensity frontier with fixed-target experiments:

- Complementary to energy frontier (LHC) and indirect searches (precision measurements, LNV, etc.);
- Smaller masses (typically MeV-GeV scale) but much lower couplings accessible (large statistics);
- Not a direct search for Dark Matter (DM) particles but for a SM-DM mediator (hidden sector portal):

NP Particle	type	SM portal (dim ≤ 5)
HNL (N_I)	fermion	$F_{\alpha I}(\bar{L}_{\alpha}H)N_I$
dark photon (A'_{μ})	vector	$-(\epsilon/2\cos\theta_W)F'_{\mu u}B^{\mu u}$
dark Higgs (S)	scalar	$(\mu S + \lambda S^2) H^{\dagger} H$
axion/ALP(a)	pseudoscalar	$(C_{aX}/\Lambda)aX_{\mu\nu}\tilde{X}^{\mu\nu}, (C_{af}/\Lambda)\partial_{\mu}a\bar{f}\gamma^{\mu}\gamma^{5}f$

Two types of direct searches for NP particles at fixed-target experiments:

- NP particle decay to SM particles reconstruction of original particle from the SM final states
- NP particle production in SM particle decays reconstruction from both initial and final state particles

NA62 experiment can do both in two modes of operation - kaon mode and beam-dump mode + indirect searches from testing the SM predictions at NA62

NA62 experiment

- Fixed-target experiment at CERN SPS (north area), ~ 300 participants (~ 30 institutions);
- Main goal: measure ultra-rare $K^+ \to \pi^+ \nu \bar{\nu}$ with 10% precision, yet NA62 covers a broad kaon and beam-dump physics program;
- Data-taking period 2016-18 (Run 1): $K^+ \to \pi^+ \nu \bar{\nu}$ analysis of Run 1 data set published,¹ 2021-LS3(2025): Run 2 ongoing.

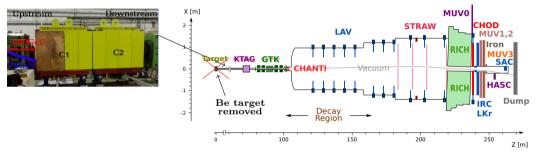
¹Measurement of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay. NA62 Collaboration. JHEP 06 (2021) 093 [2103] 5389] $\Rightarrow \exists z = 0.0$ (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay. NA62 Collaboration. JHEP 06 (2021) 093 [2103] 5389] $\Rightarrow \exists z = 0.0$ (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay. NA62 Collaboration. JHEP 06 (2021) 093 [2103] 5389] $\Rightarrow \exists z = 0.0$ (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay. NA62 Collaboration. JHEP 06 (2021) 093 [2103] 5389] $\Rightarrow \exists z = 0.0$ (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay. NA62 Collaboration. JHEP 06 (2021) 093 [2103] 5389] $\Rightarrow \exists z = 0.0$ (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay. NA62 Collaboration. JHEP 06 (2021) 093 [2103] 5389] $\Rightarrow \exists z = 0.0$ (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay. NA62 Collaboration. JHEP 06 (2021) 093 [2103] 5389] $\Rightarrow \exists z = 0.0$ (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay. NA62 Collaboration. JHEP 06 (2021) 093 [2103] 5389] $\Rightarrow \exists z = 0.0$ (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay. NA62 Collaboration. JHEP 06 (2021) 093 [2103] 5389] $\Rightarrow \exists z = 0.0$ (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay. NA62 Collaboration. JHEP 06 (2021) 093 [2103] 5389] $\Rightarrow \exists z = 0.0$ (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay. NA62 Collaboration. JHEP 06 (2021) 093 [2103] 5389] $\Rightarrow \exists z = 0.0$ (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay. NA62 Collaboration. JHEP 06 (2021) 093 [2103] 5389] $\Rightarrow \exists z = 0.0$ (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay. NA62 Collaboration. JHEP 06 (2021) 093 [2103] 5389] $\Rightarrow \exists z = 0.0$ (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ (CP3 - Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$) (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$) (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$) (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$) (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$) (Variable of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$) (Variabl

NA62 experiment in kaon mode

- 400 GeV/c primary p^+ beam impinges Be target, 75 GeV/c secondary beam selected (~ 6% of K^+) using **TAX** collimators
- K^+ decay-in-flight in 60 m long fiducial volume (FV)²;

- K⁺ tagged by **KTAG** and 3-mom. determined by **GTK**;
- Decay products' 3-mom. measured by **STRAW**, time measured by **CHOD** PID given by **LKr**, **MUV1**, **MUV2** and **RICH**;

 μ ID provided by **MUV3**;


• Photons can be vetoed by **LKr** and at large angles by 12 **LAV** stations or by **SAC/IRC** at small angles;

• Overall experimental time resolution reaches $\mathcal{O}(100)$ ps

²The beam and detector of the NA62 experiment at CERN. NA62 Collaboration. 2017 *HNST***12** P05025, [1703:08501] Jan Jerhot (CP3 - UCLouvain) Searches for hidden sector physics with the NA62 experiment LLP12 Workshop; Nov. 2, 2022 3 / 17

NA62 experiment in beam-dump mode

• target removed and TAX closed;

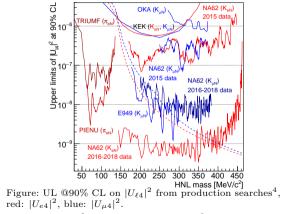
- KTAG and GTK not used;
- improved sweeping from magnets between TAX and FV to reduce muon halo background;
- beam intensity $\times 1.5$ of nominal;
- two trigger lines for charged particles: Q1/20 (≥ 1 hits in CHOD), H2 (> 1 in-time hit in CHOD)
- $(1.4 \pm 0.28) \times 10^{17}$ protons on target (POT) collected in 2021 from 10^{18} POT to be collected in Run 2;

4 / 17

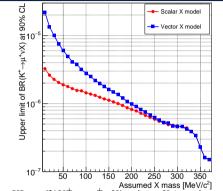
Search for heavy neutral leptons (HNL)

General form of the portal: $\mathcal{L} \supset F_{\alpha I}(\bar{L}_{\alpha}H)N_I$

• from diagonalizing mass terms for neutrinos \Rightarrow mixing $\nu_{\alpha} - N_I$, which can be parametrized by $U_{\alpha I}$


Search for N production in K^+ decays: $\mathcal{B}(K^+ \to \ell^+ N) = \mathcal{B}(K^+ \to \ell^+ \nu) \cdot \rho_\ell(m_N) \cdot |U_{l4}|^2, \rho_\ell$... kin. factor

^{*}0/2√10⁶ 10^{9} Data $K^+ \rightarrow \mu^+ \nu(\nu)$ • assuming lifetime of N exceeds 50 ns non-Gaussian tail) 10⁸ $K^* \rightarrow \mu^* \nu$ $\pi^* \rightarrow \mu^* \nu$ (upstream) Events / (0.002 G $\zeta^+ \rightarrow \mu^+ \nu (\nu)$ (can be considered detector-stable) $\rightarrow \pi^{+}\pi^{+}\pi^{-}$ 107 $\langle ^{+} \rightarrow \pi^{0} u^{+} \rangle$ strategy: search for a spike above a Incertainty on the 10⁶ estimated background continuous missing mass spectrum 10⁵ $m_{\rm mine}^2 = (P_K - P_\ell)^2$ 10 - scan m_N in steps of $\mathcal{O}(1)$ MeV/ c^2 10 10 in range m_N : 144–462 $\,{\rm MeV}/c^2$ for $K^+ \to e^+ N^{-3}$ 10^{2} 200–384 MeV/ c^2 for $K^+ \rightarrow \mu^+ N^{-4}$ Ω 0.05 0.1 0.15 0.2 m²... [GeV²/c⁴ -0.05 -0.10.1 0.15 m²_{mise} [GeV²/c⁴]


³Search for heavy neutral lepton production in K^+ decays to positrons. NA62 Collaboration. *Phys.Lett.B* 807 (2020) 135599, [2005.09575]

⁴Search for K^+ decays to μ and invisible particles. NA62 Collaboration. Phys.Lett. B 816 (2021) 136259, [2101.12304] $\circ \circ$

Search for heavy neutral leptons (HNL)

- For $|U_{e4}|^2$: UL at the level 10^{-9}
- For $|U_{\mu4}|^2$, UL at the level 10^{-8}

 $\begin{array}{c} \text{Assumed X mass [MeV/c^2]}\\ \text{Figure: UL on } \mathcal{B}(K^+ \to \mu^+ \nu X), \text{ where } X \text{ is scalar or vector.} \end{array}$

• Search for $K^+ \to \mu^+ \nu X$ decay performed at the same dataset obtaining UL on the BR for various m_X hypotheses assuming X is scalar or vector.

• New UL:
$$\mathcal{B}(K^+ \to \mu_{\Box}^+ \nu \bar{\nu}_{D}) < 1.0 \times 10^{-6}$$
 and $\mathcal{B} \to \infty$

Search for heavy neutral leptons (HNL)

Search for HNL decay in beam-dump mode:⁵

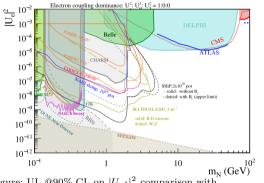


Figure: UL @90% CL on $|U_{e4}|^2$ comparison with beam-dump searches. Blue contour: projected NA62 sensitivity at 10¹⁸ POT.

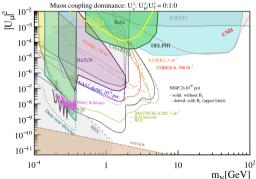
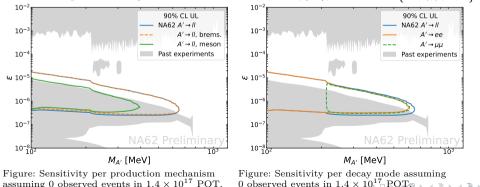



Figure: UL @90% CL on $|U_{\mu4}|^2$ comparison with beam-dump searches. Blue contour: projected NA62 sensitivity at 10^{18} POT.

Jan Jerhot (CP3 - UCLouvain) Searches for hidden sector physics with the NA62 experiment LLP12 Workshop; Nov. 2, 2022 7 / 17

Model of DP A' with kinetic mixing with the SM hypercharge: $\mathcal{L} \supset -\frac{\epsilon}{2\cos\theta_W}F'_{\mu\nu}B^{\mu\nu} \Rightarrow$ Two DP production mechanisms in the beam-dump setup (in TAX):

- Bremsstrahlung production: $p + N \rightarrow X + A'$
- meson-mediated production: $p + N \to X + M$, $M \to A' + \gamma(\pi^0)$, where $M \in \{\pi^0, \eta, \rho, \omega, ..\}$

Search strategy:

- $\ell^+\ell^-$ vertex reconstructed in FV;
- primary production vertex close to TAX.

Event selection:

- good quality tracks with timing in coincidence with each other and the trigger
- particle ID with LKr and MUV3
- no in-time activity in LAV
- extrapolation of di-lepton momentum to TAX definition of signal region (SR) in terms of primary vertex location: CDA_{TAX} and z_{TAX}

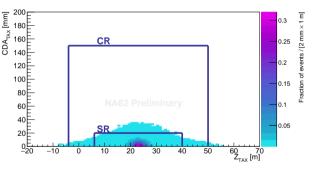
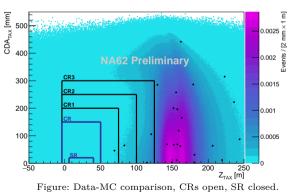



Figure: Signal MC and definition of control (CR) and signal regions (SR).

- SR: $6 < z_{\text{TAX}} < 40 \text{ m}$ and $\text{CDA}_{\text{TAX}} < 20 \text{ mm}$;
- both SR and CR kept blinded during the analysis

Search for $A' \to \mu^+ \mu^-$ decay - data and MC comparison, CRs opened:

	$N_{\rm exp} \pm \delta N_{\rm exp}$	$N_{\rm obs}$	$p_{N\geq N_{\rm obs}}$	$p_{L\leq L_{\rm obs}}$
outside CR	26.3 ± 3.4	28	0.41	0.74
CR3	1.70 ± 0.22	2	0.25	0.25
CR2	0.58 ± 0.07	1	0.44	0.44
CR1	0.29 ± 0.04	1	0.50	0.68
CR1+2+3	2.57 ± 0.33	4	0.26	0.24
CR	0.17 ± 0.02	0	1.0	1.0
SR	0.016 ± 0.002	-	-	-

 probability to observe 1 or more events in SR is 1.59%

Search for $A' \to \mu^+ \mu^-$ decay - data and MC comparison, CRs and SR opened:

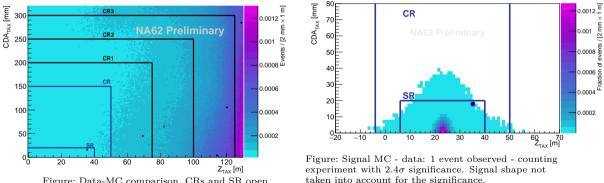
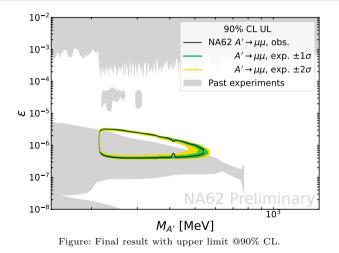
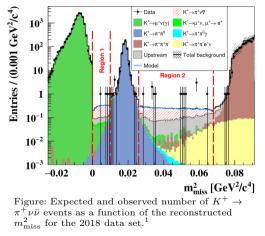



Figure: Data-MC comparison, CRs and SR open.

-

Search for dark scalars (DS)


Scalar portal: $\mathcal{L} \supset (\mu S + \lambda S^2) H^{\dagger} H$

• minimal scenario: $\lambda=0 \Rightarrow$ no pair production Below EW scale:

- *H* is substituted by $(v+h)/\sqrt{2}$
- non-zero $\mu \Rightarrow S$ -h mixing: $\sin \theta \simeq \theta = \frac{\mu v}{m_h^2 m_S^2}$

At loop level, S production in FCNC transitions:

• $B \to KS, K \to \pi S \Rightarrow$ Search at NA62 for a bump above the $K^+ \to \pi^+ \nu \bar{\nu}$ spectrum

¹Measurement of the very rare $K^+ \to \pi^+ \nu \bar{\nu}$ decay. NA62 Collaboration. JHEP 06 (2021) 093, [2103.15389] ⁶New Physics Searches at Kaon and Hyperon Factories. E. Goudzovski et al., [2201.07805], (\Im) (G) (\Im) (

Search for dark scalars (DS)

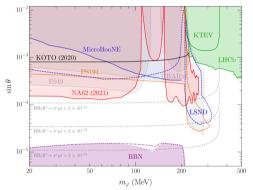
Scalar portal: $\mathcal{L} \supset (\mu S + \lambda S^2) H^{\dagger} H$

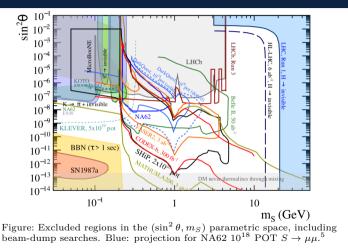
• minimal scenario: $\lambda=0 \Rightarrow$ no pair production Below EW scale:

- *H* is substituted by $(v+h)/\sqrt{2}$
- non-zero $\mu \Rightarrow S$ -h mixing: $\sin \theta \simeq \theta = \frac{\mu v}{m_h^2 m_S^2}$

At loop level, S production in FCNC transitions:

• $B \to KS, K \to \pi S \Rightarrow$ Search at NA62 for a bump above the $K^+ \to \pi^+ \nu \bar{\nu}$ spectrum




Figure: Excluded regions of $(\sin \theta, m_S)$ parameter space for S decaying only to visible SM particles. Red: exclusion from $K^+ \to \pi^+ + \text{inv.}$ and $\pi^0 \to \text{inv.}$ decays.⁶

¹Measurement of the very rare $K^+ \to \pi^+ \nu \bar{\nu}$ decay. NA62 Collaboration. *JHEP* 06 (2021) 093, [2103.15389] ⁶New Physics Searches at Kaon and Hyperon Factories. E. Goudzovski et al., [2201.07805], $\langle \vec{\sigma} \rangle = \langle \vec{\sigma} \rangle = \langle \vec{\sigma} \rangle$

Search for dark scalars (DS)

Probing higher m_S with the beam-dumps:

• search for charged 2-body decays $(S \rightarrow ee, \mu\mu, \pi\pi)$ can be performed at NA62 with 10¹⁸ POT statistics

⁵Feebly-interacting particles: FIPs 2020 workshop report. Prateek Agrawal et al., Eur.Phys.J.C 81 (2021) 11, 1015, [2102.12143]

Jan Jerhot (CP3 - UCLouvain) Searches for hidden sector physics with the NA62 experiment LLP12 Workshop; Nov. 2, 2022 14 / 17

Search for Axion-like particles (ALP)

Pseudoscalar (ALP) portals:

- gauge boson coupling: $\frac{C_{aX}}{\Lambda} a X_{\mu\nu} \tilde{X}^{\mu\nu}, X \in \{B, W, G\}$
- fermionic coupling: $\frac{C_{af}}{\Lambda} \partial_{\mu} a \bar{f} \gamma^{\mu} \gamma^5 f, f \in \{q, \ell\}$

At loop level, FCNC decays for $C_{aq}, C_{aG}, C_{aW} \neq 0$:

- ALP production in $B \to K^{(\star)}a, K \to \pi a$
- At NA62 kaon mode: re-interpretation of $K^+ \to \pi^+ \nu \bar{\nu}$ decay

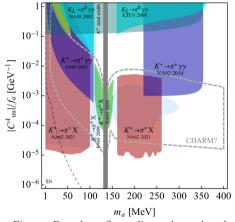


Figure: Bounds on flavor-diagonal pseudoscalar quark couplings: coupling of ALP to up quarks.⁶

⁶New Physics Searches at Kaon and Hyperon Factories. E. Goudzovski et al., [2201.07805] 0 > 0 > 0 > 0 > 0

Search for Axion-like particles (ALP)

NA62 sensitivity in beam-dump mode (10^{18} POT) in various coupling scenarios:

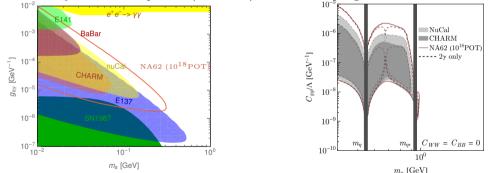


Figure: NA62 Run2 sensitivity w.r.t. past exclusions from $a \rightarrow 2\gamma$ search for $g_{a\gamma} = C_{a\gamma}/\Lambda$ coupling scenario⁷.

Figure: NA62 Run2 sensitivity (compared to past proton BD) from $a \rightarrow$ hadrons and $a \rightarrow 2\gamma$ search for C_{aG} coupling-only⁸.

⁷Light in the beam dump – ALP production from decay photons in proton beam-dumps. B. Döbrich et al., *JHEP* 05 (2019) 213, [1904.02091]

⁸ALPINIST: Axion-Like Particles In Numerous Interactions Simulated and Tabulated. J.J., B. Döbrich et al., JHEP 07 (2022) 094, [2201.05170]

Jan Jerhot (CP3 - UCLouvain) Searches for hidden sector physics with the NA62 experiment LLP12 Workshop; Nov. 2, 2022 16 / 17

Conclusion

- NA62 is a **multipurpose experiment**: besides the main goal $(K_{\pi\nu\bar{\nu}}, \text{ precision measurements, etc.}),$ it covers a wide program of direct searches for NP particles in both kaon and beam-dump mode
- NA62 can probe new regions in Hidden Sector mass-coupling parametric spaces many years before dedicated facilities are built **data being collected right now**:
 - data-taking ongoing with many software and hardware updates and increased beam intensity

Conclusion

- NA62 is a **multipurpose experiment**: besides the main goal $(K_{\pi\nu\bar{\nu}}, \text{ precision measurements, etc.}),$ it covers a wide program of direct searches for NP particles in both kaon and beam-dump mode
- NA62 can probe new regions in Hidden Sector mass-coupling parametric spaces many years before dedicated facilities are built **data being collected right now**:
 - data-taking ongoing with many software and hardware updates and increased beam intensity

Thank you for your attention!

Backup slides

・・

Jan Jerhot (CP3 - UCLouvain) Searches for hidden sector physics with the NA62 experiment LLP12 Workshop; Nov. 2, 2022

Search for dark photons - backgrounds details

Combinatorial background:

- background from random superposition of two uncorrelated halo muons;
- selected single tracks in a data sample orthogonal to the one used for the analysis;
- track pairs are artificially built to emulate a random superposition;
- each track pair weighted to account for the 10 ns time window → independent on the intensity;
- powerful statistical accuracy from combinatorial enhancement;

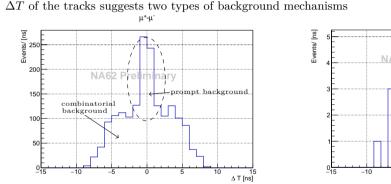
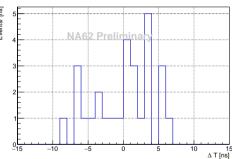
Prompt background:

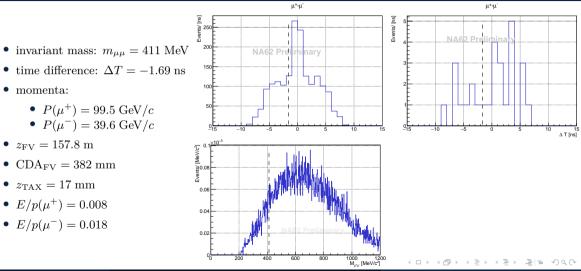
- background from secondaries of muon interactions with the traversed material (hadron photo-production);
- muon kinematic distributions extracted from selected single muons in data (backwards MC);
- to correct the spread induced by the backward-forward process (straggling, MS), an unfolding technique is applied to better reproduce the data distributions;
- relative uncertainty of MC expectation $\sim 100\%.$

同ト イヨト イヨト ヨヨ わらつ

Prompt background negligible with respect to combinatorial (UL @90% CL is 30% of combinatorial)

Search for dark photons - backgrounds details


Figure: ΔT before LAV veto is applied (CR, SR blinded).

μ+-μ

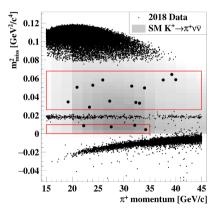
Figure: ΔT after full selection (CR, SR blinded).

Search for dark photons - details on observed event

Jan Jerhot (CP3 - UCLouvain) Searches for hidden sector physics with the NA62 experiment

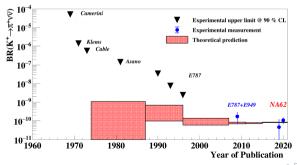
LLP12 Workshop; Nov. 2, 2022 3 / backup

- triggers used: $K_{\pi\nu\nu}$ for $K^+ \to e^+ N$ and control/400 (hit in CHOD) for $K^+ \to \mu^+ N$
- number of K^+ decays:
 - $N_K = (3.52 \pm 0.02) \times 10^{12}$ in $K^+ \to e^+ N$ case³
 - $N_K = (1.14 \pm 0.02) \times 10^{10}$ in $K^+ \to \mu^+ N$ case⁴
- event selection:
 - good quality track, decay vertex reconstructed as the point of closest distance of approach (CDA) of STRAW track with original K^+ track
 - particle ID based on E/p (LKr/STRAW), RICH pattern matching signal and associated hit in MUV3 (required for μ , veto for e)
 - additional veto conditions to suppress multibody K^+ decays


Jan Jerhot (CP3 - UCLouvain) Searches for hidden sector physics with the NA62 experiment LLP12 Workshop; Nov. 2, 2022 4 / backup

³Search for heavy neutral lepton production in K^+ decays to positrons. NA62 Collaboration. *Phys.Lett.B* 807 (2020) 135599, [2005.09575]

⁴Search for K⁺ decays to μ and invisible particles. NA62 Collaboration. Phys.Lett.B 816 (2021) 136259, [2101.12304])


$K^+ \to \pi^+ \nu \bar{\nu} \ 2018$

Background	Subset S1	Subset S2	
$\pi^+\pi^0$	0.23 ± 0.02	0.52 ± 0.05	
$\mu^+ u$	0.19 ± 0.06	0.45 ± 0.06	
$\pi^+\pi^-e^+\nu$	0.10 ± 0.03	0.41 ± 0.10	
$\pi^+\pi^+\pi^-$	0.05 ± 0.02	0.17 ± 0.08	
$\pi^+\gamma\gamma$	< 0.01	< 0.01	
$\pi^0 l^+ \nu$	< 0.001	< 0.001	
Upstream	$0.54\substack{+0.39 \\ -0.21}$	$2.76^{+0.90}_{-0.70}$	
Total	$1.11\substack{+0.40 \\ -0.22}$	$4.31_{-0.72}^{+0.91}$	

$K^+ \to \pi^+ \nu \bar{\nu}$ full Run 1

- Single event sensitivity: $(0.839 \pm 0.053_{\text{syst}}) \times 10^{11}$
- Expected SM events: $10.01 \pm 0.42_{\text{syst}} \pm 1.19_{ext}$
- Expected background events: $7.03_{-0.82}^{+1.05}$
- Observed events: 20
- $\mathcal{B}(K_{\pi\nu\bar{\nu}}) = (10.6^{+4.0}_{-3.8}|_{\text{stat}} \pm 0.9_{\text{syst}}) \times 10^{-11}$

Changes for Run 2 (2021-LS3)

- Beam intensity increased by $\sim 30\%$;
- Detectors:
 - Fourth GTK station;
 - Second HASC station;
 - VetoCounter for detecting upstream kaon decays;
 - ANTI0 for vetoing halo entering the decay volume;

Future - HIKE

- HIKE = *High-Intensity Kaon Experiments* rare kaon decay programme at SPS (operation of fixed-target at SPS foreseen until at least 2038)⁵;
- Series of K^+ and $K_{\rm L}$ decay experiments in the NA62 hall;
- Beam intensity in the kaon mode $\times 6$ of NA62 ($\sim 1.5 \times 10^{19}$ POT/year) and 5×10^{19} POT to be collected in the beam-dump mode;
- 3 phases:
 - A multi-purpose high-intensity K^+ experiment (main aim to measure $K^+ \to \pi^+ \nu \bar{\nu}$ at ~ 5% precision);
 - **2** A multi-purpose $K_{\rm L}$ experiment with charged particle detection (precision measurements of rare $K_{\rm L}$ decays and characterization of the neutral beam for the next phase)
 - **3** $K_{\rm L} \to \pi^0 \nu \bar{\nu}$ measurement with ~ 20% precision

 $^5\mathrm{LoI}$ to be submitted soon to the SPSC

► < E > E = < 0.00</p>