Fermilab Dus. Department of Science

Recent progress on searching for LLPs using the CMS detector and preparation for Run3

Martin Kwok(Fermilab)

31 Oct, 2022 LLP12 workshop

Run 3 has started !

- CMS Run 3 so far:
 - Completed various phase-1 upgrade over the past long shutdown
 - HCAL phase-1 completed
 - GEM demonstrator installed
 - Long awaited 13.6 TeV collision just after 10 years of Higgs discovery
- Collected ~10% of Run 3 data
 - Run 3 data has ~10% luminosity of final HL-LHC
 - Had to extend TS1 due to a RF problem

LLP in run 3

- CMS has gone through a "LLP upgrade" in run 3
 - >16 new LLP trigger paths, >100 Hz HLT bandwidth
 - New L1 + HLT capabilities
 - L1 Delayed Jets
 - L1 Muon Detector Shower (MDS)
 - LLP is one of the main focuses of CMS's physics program
- Perspectives for LLP directions
 - MDS (different categories+ cross triggers for future)
 - B-parking for LLP
 - Re-interpretation

Trigger for LLP in Run 2

- CMS had a few dedicated LLP triggers in Run 2
 - Covering some important signatures
 - e.g. displaced muons/non-pointing photons
- Limitations of these dedicated triggers:
 - Lack of dedicated L1 seeds
 - e.g. incorrect pT assignment of displaced muon due to beam spot constrains
 - Mostly rely on pixel/tracker
 Loses efficiency at larger displacement
- To extend beyond tracker, LLP searches rely on triggering with MET or associated prompt objects
 - Often pays the price of smaller cross sections/acceptance
 - e.g. Muon shower search (MET>200 GeV, signal acceptance ~O(1%))
 - Often limits sensitivity to low mass LLPs

Cosmic ray muon data

Efficiency

Trigger for LLP in Run 3

- CMS has gone through an "LLP upgrade" for run 3
 - More and Better
- A lot more dedicated LLP paths developed
 - Top-down: Physics coordination allocated trigger bandwidth and encouraged development very early on
 - Bottom-up: LLP is getting more attention in the community
- Better LLP triggers:
 - Developed dedicated L1 seeds (Hardware)
 - Adapt algorithms targeting LLPs (Software)
- Result: a comprehensive collection of displaced objects:
 - Displaced tracks
 - Displaced jets
 - Displaced electron/photon
 - Displaced tau
 - Displaced muon
 - New handle: Muon Detector Shower (MDS) + more...

Infrastructural improvement - GPU@HLT

- CMS deployed GPU@HLT for Run 3
 - Reduced ~80% of processing time/event!
 - Offloading ECAL/HCAL/Pixel local reconstruction to GPU
- More time for complicated HLT algorithms e.g. *displaced tracking*

Displaced Tracking

- Commonly used in offline event selection in LLP, first used in EXO-19-021 for displaced jets search
- Displaced tracking @HLT:
 - Start with global tracks
 - Veto prompt tracks formed by different pixel seedings iteratively
 - Gives very *pure* displaced tracks
- Run 3: Tuned to be more inclusive for LLP signals
 - Loosened definition of prompt tracks and displaced tracks
 - Tighten number of prompt tracks

From Jingyu Luo

Displaced Jets

- Multiple efforts to cover different displacements
 - Go beyond tracker!

Displaced tracks **Displaced jets** Displaced electron/photon Displaced tau Displaced muon Muon Detector Shower (MDS)

Displaced Jets - ECAL Timing

- ECAL Lead-tungstate crystals have excellent time-resolution ~O(100ps)
 - New software module developed @HLT
 - Can be used to tag delayed jets
 - Stay tuned for a new run 2 result by Lisa

Displaced Jets - HCAL Timing

- Utilize HCAL Phase-1 upgrade features: *TDC info* + *depth* segmentation
 - Frontend electronics gives digitized timing info in 0.5 ns steps(TDC)
- New L1 development!
 - HCAL backend electronics uses 4 spare bits to encode extra info per 4x4 HCAL cells
 - Energy in deeper HCAL layers
 - Veto prompt cells
 - Flag delayed cells
 - L1 delayed jets = at least 2 LLP towers in a jet
 - Rejects 99% QCD
- Hugh effort to develop multiple FWs and commission the L1 delay jets object!
- Fruitful reward at HLT:
 - Mix and match with delayed ECAL timing and/or displaced tracking

From Gillian Kopp

Soft displaced di-photon

- ECAL timing *alone* can be very powerful
 - SM background tend to fall sharply after ~1ns
 - Together with EM shower variables (e.g. shower shape, H/E etc) can bring pT thresholds as low as 10 GeV
- Covers LLP models with soft photons
 - Feature of compressed dark sector

Displaced tracks Displaced jets **Displaced electron/photon** Displaced tau Displaced muon Muon Detector Shower (MDS)

Displaced taus

- The "missing" displaced object
 - Challenging to build dedicated hadronic tau triggers
- Seeded by L1Taus
 - Based on calorimeters => No inefficiency of small tau displacement
- HLT: borrow offline algorithms to online
 - Run extra tracking iteration to build displaced tracks
 - Run HPS algorithm with *displaced* PF candidates
- Lowers tau pT thresholds

Displaced tracks Displaced jets Displaced electron/photon **Displaced tau** Displaced muon Muon Detector Shower (MDS)

Displaced muon

Barrel (DT)

Homogeneous

Kalman filter tracking

B-field + simple input

make this possible

without vertex constrain

- One of the first LLP triggers in CMS
- Main limitation comes from L1 beam spot constrains
 - Add *displaced* L1 muon to all regions
 - Barrel region deployed in Run 3!
 Overlapped/Endcap region is under-development
- Extend efficiency to O(m)
 - 1.0 36.8° 40.4 52.8° 1.2 33.5 **R** (m) 1.3 30.5 RB4 Wheel 1 Wheel 0 Wheel 2 1.4 27.7 RB3 6 1.5 25.2 5 1.6 22.8 RB2 1.7 20.7 1.8 18.8 1.9 17.0 Solenoid magnet 2.0 15.4 3 2.1 14.0 2.2 12.6 2.3 11.5 HCAL 2.4 10.4° 2.5 9.4° 2 ECAL Steel 3.0 5.7° Silico track 4.0 2.1° 5.0 0.77 12 z (m)

Overlapped (CSC+RPC+DT)

Displaced tracks Displaced jets Displaced electron/photon Displaced tau **Displaced muon** Muon Detector Shower (MDS)

Endcap

(CSC+RPC+DT+GEM)

Muon Detector Shower (MDS)

- Neutral LLP decay in muon system and creates hadronic showers
- Powerful new signature for LLP search:
 - Outermost system -> longer lifetime
 - Good shielding (12-27 interaction length)
 - Unique to CMS muon system
- New L1 + HLT path implemented for the new signature
 - Almost unexplored dataset!

Muon Detector Shower (MDS) performance

- At L1, build shower candidates by hit-counting in CSC chambers
 - Only CSC has *spare bits* for LLP triggers (Up to 4 bits per chamber)
 - ~2% of L1 rate budget
 - Stable rates with good uniformity across CSC chambers
- At HLT, cluster offline shower object with CA algorithm
 - Cluster selections follow run 2 analysis as a baseline
 - Good efficiency w.r.t. offline cluster size

L1 efficiency v.s. HLT selection

Displaced tracks Displaced jets Displaced electron/photon Displaced tau Displaced muon Muon Detector Shower (MDS)

How do we make use of the "LLP" upgraded CMS? A few personal thoughts

Even more trigger developments

- We've just collected 10% of 10% of data
 - 4 spare bits could make a difference!
- Make good use of LLP-L1 objects@ HLT
 - Many handles for rates (Tracking/Timing/MDS etc...)
- Scouting
 - Reduced amount of information, but lower thresholds
 - EXO-20-014 starts with pT>3 GeV OS di-muon in run 2

HLT objects

B-parking dataset

- CMS collected ~10 billion unbiased b-hadron decays
- Suitable for LLP produced in association with b-hadrons
 - Can have very large cross section!
- B-parking @ Run 3
 Adding di-muon/di-electron triggers

lifetime

H->SS produced in b-meson

Re-interpretation

- LLP searches are signature-based search at heart
 - We designed our search to be as inclusive as possible
 => Make sure it can be used by others!
 - Hidden valley is a LARGE class of models with vastly different signatures
- We provide re-interpretation materials
 - CMS guidelines: link
 - Cut flow/Correlation/event yields are very helpful
- See nice <u>example</u> by C. Wang later with MDS!

credit: Matt Strassler

Conclusion

- Looking back at LLP11...
 - CMS made good progress to close down the major gaps
- CMS overcame many limitations of LLP analyses has faced in run 2
 - New dedicated LLP L1 seeds
 - Delayed Jet, MDS, displaced Muon
 - HLT software
- Exciting times ahead for LLP searches!

NOW: MAJOR GAPS

- Low-mass hadronic decays (especially at shorter lifetime)
- Singly produced LLPs, depending on search (lepton jets, ATLAS searches for decays in HCAL and MS)
- Low-mass (semi-)leptonic decays (especially < 20 GeV, in resonance regions)
- Slightly displaced leptons; displaced leptons not originating from vertex (depending on flavor structure)

Displaced taus

- Non-pointing/delayed photons, especially low mass, singly produced, or without MET
- LLPs produced in high multiplicities, confining hidden sectors
- Quirky signatures

24

Back up slides

Selected CMS LLP run 2 searches

	Signature	Triggers	Dedicated LLP trigger?
EXO-19-013	Jets with displaced vertices	HT>1050 GeV	No
EXO-19-021	Displaced Jets	HT+2 jets with displaced tracks	Yes (HLT)
EXO-18-003	Displaced leptons	Displaced-e: photon Displaced-mu: mu with no PV	Yes (HLT)
EXO-19-001	Delayed Jets +MET	MET >120 GeV	No
EXO-16-004	Stopped LLP	Empty bunch train triggers+Jet/Mu	No
EXO-19-010	Disappearing Tracks	MET>150GeV+isolated track>50GeV	Yes (L1+HLT)
EXO-19-005	Delayed photons	Non-pointing photons with elliptic EM shower	Yes (HLT)
EXO-21-006	Displaced di-muon	Displaced muons w/o vertex constrains	Yes (HLT)
EXO-20-003	Displaced Jet+Z	Trigger on Z->II signatures	No
EXO-18-001	Emerging jet+jet	HT>900GeV	No
EXO-20-014	Displaced di-muon with scouting	Scouting OS di-muon pT>3 GeV	No

