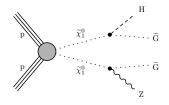


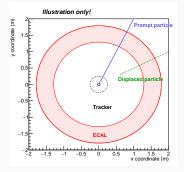
Search for long-lived particles decaying into displaced jets using a trackless and delayed jet tagger



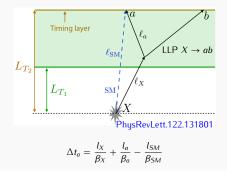
LLP 12 workshop, 31 Oct. - 4 Nov. 2022

Lisa Benato on behalf of the CMS Collaboration

Introduction


- New CMS result! (EXO-21-014 http://cds.cern.ch/record/2839046)
- Search for long-lived GMSB SUSY neutralino $\chi \rightarrow \tilde{G}H(Z) \rightarrow b\bar{b}(q\bar{q})$
- Gravitino \tilde{G} (LSP) light and undetected, provides $\vec{p}_T^{\text{miss}} \rightarrow \vec{p}_T^{\text{miss}}$ trigger
- Targeting neutralino lifetimes O(1) m
 - Shorter lifetimes: tracker-based analysis
 - Longer lifetimes: muon system-based analysis
 - This analysis: covering the gap!
- Unexplored phase-space → prompt neutralino analysis https://arxiv.org/abs/1709.04896 has no sensitivity

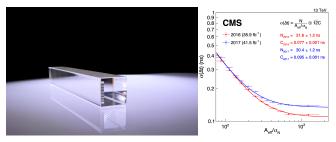
Introduction


Tracklessness

- CMS tracking efficiency decreases with displacement
- Jets appear as trackless, mostly consisting of neutral components (not actually neutral!)

Delay

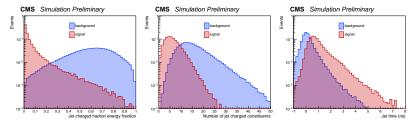
- Delay: slow-moving LLPs and/or path length increase due to displacement
- Excellent timing layer at CMS: ECAL *PbWO*₄ scintillating crystals



 Increase sensitivity (lower masses) combining ECAL delay with track information in a new DNN jet tagger

Event selections

- Data collected with missing momentum triggers ($\vec{p}_{T}^{\text{miss}} > 120 \text{ GeV}$)
- AK4 jets $p_T > 30$ GeV, $|\eta| < 1$ (better ECAL time calibration and tracking efficiency)
- Jet time: energy weighted time of ECAL crystals associated to jet



- Veto electrons, muons, taus: to suppress W+jets and tt
- Veto photons (fake trackless jets)
- Require minimum $\Delta \varphi$ (jets, $\vec{p}_{T}^{\text{miss}}$) > 0.5 to suppress multijet background
- Generator level matching: LLP decay within calorimeter volume: 30 < r < 184 cm

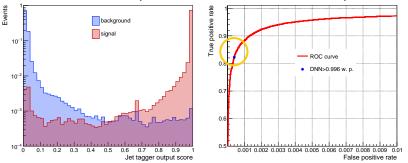
Trackless and delayed jet tagger

Input variables (21 in total):

- Jet composition (neutral/charged hadron, $e/\mu/\gamma$ energy fractions)
- Tracking variables comparing p_T of tracks associated to jet w.r.t. jet energy/p_T
- Minimum ΔR between a track and the jet itself
- Number of charged constituents
- Associated ECAL crystals in jet cone:
 - Multiplicity, relative energy and time stamp (energy weighted)

Trackless and delayed jet tagger

DNN architecture

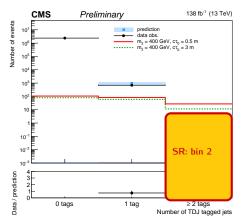

CMS

- 5 fully connected layers (64, 32, 16, 8 and 1 node)
- Training 1000 epochs on SM background processes and $m_{\chi} = 400$ GeV, $c \tau_0 = 1$ m signal, 2.5 M events (S/B = 1/8)

Simulation Preliminary

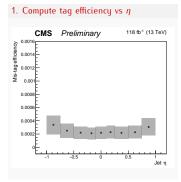
Performances

- At background rejection 4 × 10⁻⁴
- Tagger: 82% signal efficiency
- Jet is trackless and delayed if DNN score > 0.996



CMS Simulation Preliminary

Signal region definition



- Background: Z+jets (64%), W+jets (29%), multijet (3%), top (3%), dibosons (1%)
- SR definition optimised in order to have $\lesssim 1$ background event
 - **SR**: *n*_{tags} ≥ 2
- Data-driven approach to predict bin 2: mistag efficiency in control regions (matrix method)

Collision background estimation

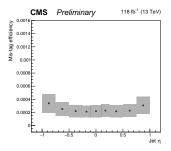
2. Prediction from bin 1

- Main background prediction
- Consider events with 1 tagged jet (bin 1)
- Loop on remaining untagged jets and compute probability of having 1 additional tagged jet

$$p_2 = \sum_{i \in \text{untagged j bin1}} \epsilon(\eta_i | 1 \text{ j tagged})$$

- Probability → event weight → predict bin 2 yield
- Ansatz: mistag for each jet is independent to other jets, verified with closure tests (in simulation and data control regions)

Mistag in control regions


CMS

Measurement region (MR): $W \rightarrow \ell v$

- 1 lepton (trigger), no signal contamination
- Includes true $\vec{p}_{T}^{\text{miss}}$ (like SR)
- High statistics
- Mistag rate used to predict bin 2 SR yield

Alternative measurement regions

- Potential systematic uncertainty: process/jet composition dependence
- · Measurement performed in alternative samples
 - $Z \rightarrow \ell \ell$ as a proxy for $Z \rightarrow \nu \nu$
 - eµ as a proxy for tt
 - Single jet trigger + $\vec{p}_{\rm T}^{\rm miss}$ < 25 GeV as a proxy for multijet background
- Discrepancies w.r.t. MR taken as background composition uncertainty

Collision background estimation method uncertainty

Prediction from bin 0

• Alternative prediction to extract method systematic uncertainty

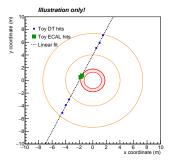
$$p_2 = \sum_{(i,j) \in \text{untagged j bin0}} \epsilon(\eta_i) \cdot \epsilon(\eta_j)$$

• Predict bin 2: difference w.r.t main bin 2 prediction as method uncertainty

Two non-collision backgrounds (not included in MC sample) potentially affecting bin 2

- Cosmic muons tangentially grazing the calorimeter
- Beam halo particles grazing the calorimeter tangentially along beam line
- In both cases: trackless jets, large time delay \rightarrow large DNN score

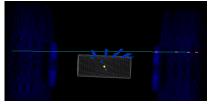
Cosmic muon background



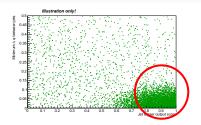
Cosmic veto design

- A cosmic muon that hits the surface of the ECAL can mimic a trackless jet
- Observed hits in Drift Tubes (barrel muon detector) line up with trajectory of cosmic muons
- Simple geometric approach based on cosmic muon distance to the ECAL
 - Reconstruct each cosmic leg by clustering DT hits (segments) with DBSCAN
 - Linear fit in 3D of DT hits
 - If dist_{ECAL,cosmic} < 0.5 m, reject the event

Residual cosmic background

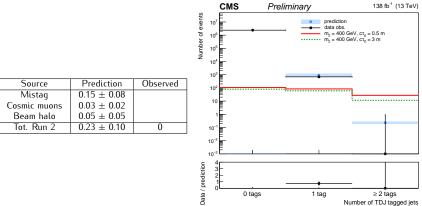

- We measure cosmic veto efficiency and cosmic reconstruction inefficiency due to gaps in DT muon system in control regions \rightarrow correction factor F_{cosmic}
- Residual cosmic background in SR: cosmic bkg = F_{cosmic} · n_{obs} (events rejected by cosmic veto)

Beam halo background


- Beam halo particles (proton collisions with material or beam gas) mostly parallel to the beam direction can generate calo clusters
- Standard CMS-BH filter associates calorimeter patterns to Cathode Strip Chambers hits (forward muon detector) → some events can escape!

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideEJTermBeamHalold

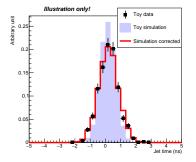
Residual beam halo background


- Beam halo (BH) veto design
 - BH deposits: soft jets, φ ~ 0, π, few ECAL deposits
 - Correlation between jets close in φ and their DNN score (not present in collision data!)
 - Additional custom BH veto: min∆φ(tag jets) < 0.05 & low ECAL crystals multiplicity

- We measure custom BH veto efficiency and inefficiency due to gaps in CSC muon system in BH enriched sample \rightarrow correction factor F_{BH}
- Residual beam halo background in SR: BH bkg = $F_{BH} \cdot n_{obs}$ (events rejected by BH veto)

Background yield

· Final background prediction, collision and non-collision

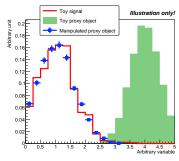


Data/MC modeling of DNN input variables

CMS

- $t\bar{t} \rightarrow e\mu + X$ control region to study DNN input variables in MC:
 - All well modeled except jet time

- Perform a crystal ball fit on data/MC
- · Correct/smear MC jet time (mean/width) and recompute DNN output after smearing

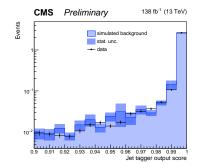

Data/MC modeling of DNN score: photon and electron proxy objects

Photon proxy object

- · SM photon: object that closely resembles LLP signal jet
- Define region $Z \rightarrow \ell \ell \gamma$
- Require 1 photon faking a trackless jet
 - Tracking variables close to signal
 - Jet composition and ECAL variables different
- \rightarrow Produce a trackless + delayed jet sample by shifting/smearing DNN inputs to match signal
- Good for modeling low-p_T jets

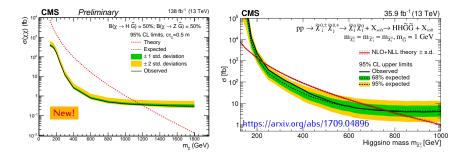
Electron proxy object

- Electrons as a proxy for high-*p*_T signal-like jets if we pretend the electron is a photon
- Require 1 electron faking 1 jet \rightarrow manipulation to make the jet trackless
 - Same approach as photon proxy object
- Good for modeling high-p_T jets



Data/MC modeling DNN score

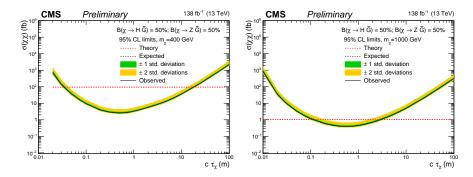
- Data/MC mistag ratio as SF used to correct jets in signal
 - if jet p_T < 70 GeV: use photon SF
 - if jet p_T > 70 GeV: use electron SF
- SF flat vs η and p_T, and they agree within uncertainty
- Evaluate data/MC jet tagger score for electron proxy objects (after corrections on inputs in MC), very good agreement


Uncertainties

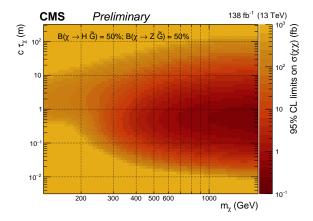
Uncertainty source	Process	Uncertainty size [%]
Background MR sample size	Background	4
Jet tagger misidentification process dependence	Background	30
Background estimation method	Background	13
Non-collision background	Background	23
Jet tagger efficiency modeling	Signal	8–29
Jet energy scale	Signal	0.1–11
Jet energy resolution	Signal	0.2–10
PDFs	Signal	1–16
Missing higher-order QCD corrections	Signal	4–15
Pileup	Signal	0.3-6.3
Luminosity	Signal	2.5
Signal sample size	Signal	5–8
Lepton and photon veto efficiency	Signal	< 1

Exclusion limits vs m_{χ}

- Combination of Run 2 data
- Branching ratio scan of the neutralino decay modes; limits compatible within 10%
- Limits at 1 fb level for m_χ > 550 GeV
- Complementary to prompt analysis, big improvement at lower masses!
- Exclude m_{χ} up to 1.18 TeV at $c\tau_0 = 0.5$ m

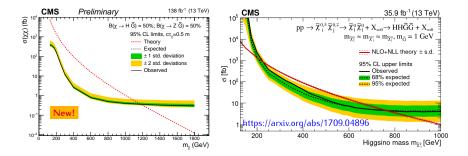


Exclusion limits vs $c\tau$



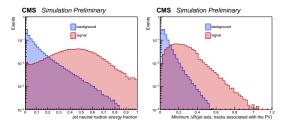
• Peak sensitivity for 0.03–15 (0.1–3) m lifetimes at $m_{\chi} = 400$ (1000) GeV

Exclusion limits



Summary

- We presented a search for long-lived particles with trackless and delayed jets
- Achieved very strong background suppression by using a DNN tagger
- Observe 0 events, in agreement with prediction
- Compared to previous searches for promptly decaying χ , sensitivity 20–10 times better at m_{χ} = 400–600 GeV
- Exclude m_x up to 1.18 TeV
- Plenty of ideas and opportunities for Run 3!

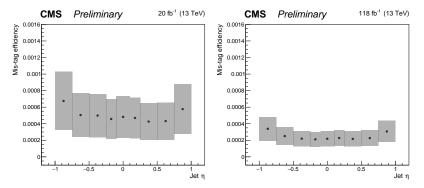

Backup slides

Search for long-lived particles decaying into displaced jets using a trackless and delayed jet tagger

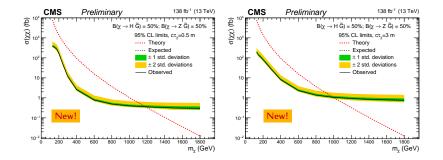
Trackless and delayed jet tagger

Input variables (21 in total):

- Jet composition (neutral/charged hadron, ele/mu/photon energy fractions)
- Tracking variables (α, β, γ max) comparing p_T of tracks associated to jet w.r.t. jet energy/p_T
- ΔR between a track (associated to a PV), and the jet itself
- Number of charged constituents
- Associated ECAL rec-hits in a cone ΔR < 0.4 w.r.t. jet:
 - Mutiplicity, relative energy and time stamp (weighted with rec hit energy)



Mistag in control regions



• Mistag in 2016 B-F (left); in 2016 H - 2018 (right)

Exclusion limits vs m_{χ}

Residual cosmic background

- 1. Cosmic veto efficiency estimation:
 - Use non-collision cosmic data to measure cosmic veto efficiency $\epsilon_{
 m cosmic veto}$
- 2. Cosmic reconstruction inefficiency due to gaps in DT muon system

Residual cosmic background in SR:

 $\operatorname{cosmic} \operatorname{bkg} = \frac{(1 - \epsilon_{\operatorname{cosmic} \operatorname{veto}}) \cdot n_{obs}(\operatorname{events} \operatorname{rejected} \operatorname{by} \operatorname{cosmic} \operatorname{veto})}{\epsilon_{\operatorname{cosmic} \operatorname{muon} \operatorname{reco} \operatorname{MC}}}$

N. of vetoed events	Cosmic background prediction
6	0.034 ± 0.018

Residual beam halo (BH) background

- 1. Custom BH veto efficiency estimation:
 - Measure custom BH veto inefficiency for tagged jet pairs close in φ in BH enriched sample $\epsilon_{BH veto}$
- 2. BH filter inefficiency due to gaps in CSC muon system:

Residual beam halo background in SR:

beam halo bkg = $\frac{(1 - \epsilon_{BH veto}) \cdot n_{obs}$ (events rejected by beam halo veto) $\epsilon_{\text{CSC-BH filter}}$

N. of vetoed events	Beam halo background prediction
1	0.05 ± 0.05

