Searching for long-lived particles at the LHC and beyond: Twelfth workshop of the LLP Community October 31, 2022 to November 4, 2022 # Impact of the High Level Trigger for detecting Long-Lived Particles at LHCb - L. Calefice, A. Hennequin, L. Henry, B. Jashal, **Diego Mendoza**, A. Oyanguren, - I. Sanderswood, C. Vázquez Sierra, J. Zhuo, C. Agapopoulou, V. Svintozelskyi part of LHCb-RTA Collaboration 04/11/2022 #### **Outline** Talk based on the recent publication: Oyanguren et al. (2022) #### Introduction - X LHCb detector in Run 3 - X Tracking system and track types - * The High Level Trigger (HLT) - X LLPs at LHCb Physics case: Sensitivity studies of long-lived particles - **x** Standard Model: Λ^0 and \mathbf{K}^0 - Beyond the Standard Model: Dark Boson and Composite scalar Higgs Prospects: the SciFi seeding algorithm Conclusions #### LHCb detector in Run 3 - X Single-arm spectrometer in the **forward** direction - X Originally designed for specialised study of beauty and charm hadrons - **X** Detector design: - Excellent secondary vertex resolution - Low- p_{T} cut for tracking (0.5 GeV/c) - Dipole magnet - Particle ID: calorimeters, muon systems and Ring Imaging Cherenkov (RICH) detectors Alves et al. (2018) LHCb (2014a) #### **X** Upgrade: - $L = 2x10^{33} \text{ cm}^{-2}\text{s}^{-1}$ - Purely software-based trigger @ 30 MHz **First time in a LHC experiment** #### LHCb tracking system and track types - X Three sub-detectors: VELO, UT and SciFi + magnet - Estimation of particle momentum and track origin - Main track types for physics analysis: - Long: signal in VELO and SciFi (minimum) + UT (full) - **Downstream:** signal in UT and SciFi - T: hits only in SciFi - In simulations, reconstructible tracks meet certain threshold in each subsystem: - VELO: 3 pixel sensors with 1 digit each - UT: two clusters from layers 1-2 and 3-4 - SciFi: 1 hit per cluster and 1 stereo cluster per station #### Aaij et al. (2020) #### The HLT trigger #### HLT1 (GPUs): - Event rate reduction: 30 MHz to 1 MHz - Fast and partial reconstruction, real-time calibration and alignment - Need for efficiency and low latency #### HLT2 (CPU) - gives a flow of 2-5 Gb/s to storage - Relies on offline-quality reconstructed objects - Full reconstruction, must be complete for further analysis | Track type | Long | Downstream | Т | |------------|------|------------|----------| | HLT1 | Used | Not used | Not used | | HLT2 | Used | Used | Not used | | Efficiency | High | Low | Very low | How relevant can downstream and T tracks be in reconstruction of events? #### LLPs at LHCb - **X** LLPs present in SM and many BSM extensions - Expected track types depend on LLP flight distance - Mean flight distance of LLPs at LHCb? Not only depends on lifetime - lower mass larger boost higher flight distance Lee et al. (2019) K_s and Λ^0 do not travel that far, and already an impact in sensitivity. Can we really hunt for LLPs? **Downstream** and **T** tracks: Not considered in HLT1 decision, signal lost! **Long** tracks: what HLT1 relies on # Physics case: LLPs in the Standard Model ## LLPs in the SM: Λ^0 and K_s^0 - X Lifetime around 100 ps - X Involved in many studies of observables $$\chi$$ Case 1: $\Lambda_b \to \Lambda^0 [\to p \pi^-] \gamma$ - Rare decay - Related to models with non-standard righthanded currents: G. Martínez et al. (2019) - Suppressed decay in the SM, not measured experimentally yet - Related to BSM scenarios: SUSY: Zhu (2019) leptoquarks: Bobeth et al. (2018) ## Sensitivity to Λ^0 and K_s^0 - **X** Generation of 10000 events each - X Estimation of displaced vertices type (LL, DD, TT) - **X** HLT1 reconstruction efficiency (trigger on the signal, TOS) - General lines: OneTrackMVA and TwoTrackMVA | | LL | DD | TT | HLT1 eff
(TOS) | |--------------------|------|------|------|-------------------| | Λ^0 | 12% | 51% | 37% | < 10% | | $K_{_{ m S}}^{~0}$ | 46 % | 38 % | 16 % | < 25% | # Physics case: LLPs Beyond the Standard Model (BSM) #### **Higgs portal to Dark Matter** - X State: SM 125 GeV Higgs boson (H) and one of unknown mass (H') $h = H \cos\theta + H' \sin\theta, \ \theta: mixing angle$ - X H' serving as mediator to the Dark Sector - \star b \rightarrow s H' vertex: interest in rare B meson decay - **X** Signature B \rightarrow K H' [\rightarrow f f] - Presence of displaced vertices - H' reconstruction from decay kinematics and decay particles - Sensitivity depends on H' lifetime If H' is long-lived, the two final decay particles would not be selected by HLT1 τ [ps] ## Sensitivity to $B^+ \rightarrow K^+ H' [\rightarrow \mu^+ \mu^-]$ Generation of 99 MC samples with 7000 events each: $\begin{cases} \tau \text{ in } [1 - 2000] \text{ ps} \\ M \text{ in } [500 - 4500] \text{ MeV} \end{cases}$ **X** Reconstructibility of H' decay vertices (LL, DD, TT): Similar results found for H' \rightarrow K⁺K⁻ and for the vector Higgs in B⁰ \rightarrow K^{*}(892) H' [\rightarrow μ ⁺ μ ⁻] X Relevance of DD and TT vertices for lifetimes τ > 10 ps How does this affect the signal reconstruction of LHCb trigger? ### **BSM:** sensitivity to $B^{\dagger} \rightarrow K^{\dagger} H' [\rightarrow \mu^{\dagger} \mu^{-}]$ LHCb HLT1 effect when triggering on the H' decay products (Trigger on Signal, TOS): - Decent efficiency (**30-50** %) for low lifetime - Poor efficiency (< **10** %) for τ > 100 ps - Loss in sensitivity for small H' mass # Sensitivity to $\mathbf{B}^{+} \rightarrow \mathbf{K}^{+} \ a_{_{1}} \left[\rightarrow \ \mu^{+} \mu^{-} \right] \ a_{_{2}} \left[\rightarrow \ \mu^{+} \mu^{-} \right]$ - X Composite scalar Higgs model of low mass (< 2500 MeV) Blance et al. (2019) - **X** Generation of 44 MC samples, 10000 events each - X Study of displaced vertices reconstructibility: M. Jiménez (2022) - Compatible with previous results: #### **Prospects: The SciFi seeding algorithm** ## The Hybrid Seeding strategy Aiola et al. (2021) - X An iterative reconstruction algorithm to reconstruct track segments - SciFi: three stations with x-u-v-x geometry u and v layers titled by +/- 5° stereo angle - **X** X-Z plane: parabolic trajectory with cubic correction - **x** Residual B_v field: easier to get y trajectory (straight line) - **X** Seeding in XZ: First assumption: origin in (0,0,0) and infinite momentum Open search windows in T3 from a hit in T1: <u>tolerance</u> window around the projected position But second hit is not aligned with first hit and (0,0,0) Δx allows to estimate charge and momentum narrower window to look for 3rd hit in T2 At least 5 hits to provide a track candidate (many ghosts!) ### The Hybrid Seeding strategy X X-Z trajectories provide x(z) track equations. How to find y coordinate? **V** U/V layers: Estimate of x-position in the first U layer from x(z) trajectory Assumption: trajectories coming from the origin \implies define \mathbf{t}_y slope Open search window in next U/V layer For each combination found, new hits are seek in further layers Minimum of 10 hits for track candidate Good quality tracks are used for further tracking, matching with: .. or to construct <u>T-tracks</u> (remaing tracklets) $x^{track}(z_{T-u}) = x_{Hit}(y^{track})$ Aiola et al. (2021) In development $x_{Hit}(y=0)$ #### The Hybrid Seeding performance - **X** Recent optimization and configuration in GPUs architecture of LHCb trigger - **✗** High parallelism and reimplementation of U/V hit addition - **X** Decay channel tested: $B_s \rightarrow \phi \phi$, with $\phi \rightarrow K^+K^-$ #### **Conclusions** - X LHCb major upgrade for Run 3, collecting data from proton-proton collision at 30 MHz - **X** First stage of the trigger is fully based on GPU software architecture for the first time (Allen project) - X Limited trigger efficiency expected for LLPs, in both SM and BSM cases - X Relevance of <u>Downstream and T tracks</u> for physics analysis - X The SciFi seeding, highly-parallelized algorithm on GPUs - Already running in Run3 using Long tracks - Under development for Downstream tracking - **X** Promising results to come, stay tuned! #### Searching for long-lived particles at the LHC and beyond: Twelfth workshop of the LLP Community October 31, 2022 to November 4, 2022 # Impact of the High Level Trigger for detecting Long-Lived Particles at LHCb L. Calefice, L. Pica, A. Hennequin, L. Henry, B. Jashal, <u>Diego Mendoza</u>, A. Oyanguren, I. Sanderswood, C. Vázquez Sierra, J. Zhuo, C. Agapopoulu, V. Svintozelskyi part of LHCb-RTA Collaboration 05/11/2022 ## **Backup slides** #### LHCb trigger upgrade #### LHCb trigger upgrade #### Data flow in HLT #### **Detailed information in MC generation** Use of LHCb simulation framework Gauss v55r0 - Generator phase: - PYTHIA 8, pp collision at 14 TeV, v = 7.6 - EvtGen for b-decays - Simulation phase: - Geant4 for particle interaction with the detector - Magnet configuration: down #### Changing particles masses/lifetimes - **X** Open one of the decay files provided by DecFiles package - X Change the event number to avoid conflict with already existing numbers in your workspace: Generation().EventType = myEventNum **X** Provide a .dec file in the same directory with a proper name: ToolSvc().EvtGenDecay.UserDecayFile = "./myEventNum.dec" X Change mass (MeV) and lifetime (ps) variables from particle properties ``` ParticlePropertySvc().Particles = ["H_10 87 25 0.0 0.235 1.0000e-10 Higgs0 25 0.000000e+000"] ``` X In our case, no change of other parameters: phase-space width, spin... ### Samples in mass and lifetime 2D region (H') - **X** Events are generated following the previous method for next parameters: - **X** Lifetime values (ps): [1,10,100,250,500,750,1000,1250,1500,1750,2000] - **X** Mass values (MeV): [500,1000,1500,2000,2500,3000,3500,4000,4500] - **X** 11 x 9 = 99 samples, 7000 events each - **X** A TGraph is filled with the desired information (i.e. LL vertex proportion) - From the Tgraph, 2D Delunay interpolation to create a 2D histogram of desired binning (Ref: ROOT_delunay_interp) #### MC samples of SM particles - Λ^{0} : M = 1115.683 ± 0.006 MeV, τ = (2.631±0.020)×10⁻¹⁰ s - **x** K_s^0 : M = 497.611±0.013 MeV, τ = (8.954±0.004)×10⁻¹¹ s - X 1 MC sample, 10000 events each #### **Decays in the VELO limit** - Particles decaying in the limit of VELO might not leave signal - Potential LL vertices, measured as DD - Relevent issue in relation to LLPs (see Lambda and kaon case) | | LL | DD | TT | |----------------------------------|------|------|------| | Λ^0 | 12% | 51% | 37% | | $K_{\!\scriptscriptstyle S}^{0}$ | 46 % | 38 % | 16 % | ## Sensitivity to $B^+ \rightarrow K^+ H' [\rightarrow K^+ K^-]$