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Outline

■ Particle vs wave behaviour is a rich topic, potentially deeply

philosophical; impossible to cover in 30 mins

■ Focus on axions and axion-like particles (ALPs); biased, but

class of DM where both behaviours are relevant

2
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Outline

■ Particle vs wave behaviour is a rich topic, potentially deeply

philosophical; impossible to cover in 30 mins

■ Focus on axions and axion-like particles (ALPs); biased, but

class of DM where both behaviours are relevant

■ Topics: some background, ultralight ALPs, DM simulations,

observational opportunities

■ Also: broader picture, complementary searches for ALPs and

connections to other talks in this session, results from recent

study of heavy ALPs in cosmology2205.13549
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Once upon a time. . .

1929 Louis de Broglie wins the Nobel prize

“for his discovery of the wave nature of elec-

trons” (after experimental demonstration)
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Once upon a time. . .

1929 Louis de Broglie wins the Nobel prize

“for his discovery of the wave nature of elec-

trons” (after experimental demonstration)

1976 Merli, Missiroli, and Pozzi perform

Young’s double slit diffraction experiment

with single electrons; according to Physics

World readers, the most beautiful experi-

ment ever performed

➼ Key observable for “wavy DM” (ΨDM): interference effects

Where and how can we detect these?!
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Manifestation of wavelike effects

Fundamental scale for the regime of wavelike behaviour is the

de Broglie wavelength:

λdB ≡
2πℏ

p
∼ 1 kpc

(

10−22 eV

m

)(

100 km/s

v

)
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Manifestation of wavelike effects

Fundamental scale for the regime of wavelike behaviour is the

de Broglie wavelength:

λdB ≡
2πℏ

p
∼ 1 kpc

(

10−22 eV

m

)(

100 km/s

v

)

■ Depends on mass and speed i.e. the particle model and its

context (creation, environment)

■ CMB and galaxy surveys tell us a lot about the largest scales,

need to look at effects on sub-galaxy scale

■ Galaxy sizes ∼ 1–100 kpc, so m ≳ 10−22 eVastro-ph/0003365, 1610.08297
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Why study (ALPs as) ΨDM?



ALPs in string theory

The “string axiverse” contains many ALPs over a wide mass

range.0905.4720 Explicit distributions have been computed for some

type IIB compactifications.2011.08693, 2103.06812 (some caveats?2110.02964)
5
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ALPs in string theory

Many ALPs spanning wide mass range

=

many Ψ
DM

candidates.

The “string axiverse” contains many ALPs over a wide mass

range.0905.4720 Explicit distributions have been computed for some

type IIB compactifications.2011.08693, 2103.06812 (some caveats?2110.02964)
5

https://arxiv.org/abs/0905.4720
https://arxiv.org/abs/2011.08693
https://arxiv.org/abs/2103.06812
https://arxiv.org/abs/2110.02964


Further motivation from “small-scale crisis”?

Several “problems” have been discussed in paste.g. 1707.04256

■ “Missing satellites” – CDM sims predict many more subhalos

than observed satellite galaxies in MW(?)
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Further motivation from “small-scale crisis”?

Several “problems” have been discussed in paste.g. 1707.04256

■ “Missing satellites” – CDM sims predict many more subhalos

than observed satellite galaxies in MW(?)

■ “Too big to fail” – average central density of most massive

CDM SHs much greater than density of most luminous dSphs

(derived from kinematic data)

■ “Cusps vs cores” (aka “missing inner mass”) – CDM sims

predict cuspy density profile, but some dSphs have cores(?)

■ “Plane of satellites” – brightest MW satellites seem to be

arranged on a thin plane (Gaia data seems to suggest that

this is a transient, not extremely rare configuration2205.02860)

➼ Potentially “non-problems” or explained by galaxy formation

history, baryonic physics; still, allow test of ΨDM!
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Effects of ΨDM

ΨDM similar to warm DM: suppresses structures with smaller sizes

or masses; e.g. halo distribution of subhalo mass function1911.02663
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ΨDM similar to warm DM: suppresses structures with smaller sizes

or masses; e.g. halo distribution of subhalo mass function1911.02663
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Effects of ΨDM

Shape of SHMF can be probed with different observables1911.02663
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Outlook on Ψ constraints
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More details in talks by E. Kendall & B. Bucciotti, later today

■ ΨDM solitons: tracer star dispersion, direct detection,

axionova, exotic compact object in GWs

■ BH(SR), (stimulated) decays, dSphs, Ly-α, PTAs, strong

lensing, . . .
9
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Some hints for ΨDM

with m
∼

10 −22
eV

but also some tensions!

More details in talks by E. Kendall & B. Bucciotti, later today

■ ΨDM solitons: tracer star dispersion, direct detection,

axionova, exotic compact object in GWs

■ BH(SR), (stimulated) decays, dSphs, Ly-α, PTAs, strong

lensing, . . .
9
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Strong gravitational lensing for ΨDM

■ There exist anomalies between the predicted and observed

brightnesses and positions of multiply-lensed images

■ Residual density fluctuations due to ΨDM?2002.10473
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Strong gravitational lensing for ΨDM

■ There exist anomalies between the predicted and observed

brightnesses and positions of multiply-lensed images

■ Residual density fluctuations due to ΨDM?2002.10473

■ The addition of subhalos can improve the agreement, but

perhaps not fully

➼ ΨDM predicts more SHs and underdensities due to

destructive interference: distinguishable!

➼ New study2304.09895 looks at quadruply-lensed quasistellar

object + 2 radio jets in HS 0810+2554
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Strong gravitational lensing for ΨDM

Lensing magnification for (a) particle DM, (b)–(d) ΨDM with

increasing number of baryons2304.09895
11
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Strong gravitational lensing for ΨDM

■ Claim: ΨDM gives

better fit2304.09895

■ However: how

good is the fit

really in absolute

terms? Modelling

with Gaussian

random fields

realistic?
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Strong gravitational lensing for ΨDM

■ Claim: ΨDM gives

better fit2304.09895

■ However: how

good is the fit

really in absolute

terms? Modelling

with Gaussian

random fields

realistic?

➼ Let’s be cautious,

but could be

getting interesting!
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The case for ALPs as (Ψ)DM

■ String theory predicts many ALPs with many different masses;

could be ΨDM

■ Bosons/ALPs with m ∼ 10−22 eV affect structure formation

and are testable in many ways

■ Bosons do not suffer from the Pauli exclusion principle;

fermions have mf ≲ keVTremaine & Gunn ’79

■ Many other theoretically appealing properties,1510.07633, 2003.01100

numerous ongoing and planned ALP searches1602.00039
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Simulations



Numerical description for DM sims

Schrödinger–Poisson (SP) eq. describes ΨDM (with AMR

techniques)talk by E. Kendall

iℏ
∂ψ

∂t
= −

ℏ
2

2ma
∇2ψ + mVψ , ∇2V =

4πGN

a

(

|ψ|2 − ⟨|ψ|2⟩
)
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techniques)talk by E. Kendall

iℏ
∂ψ

∂t
= −

ℏ
2

2ma
∇2ψ + mVψ , ∇2V =

4πGN

a

(

|ψ|2 − ⟨|ψ|2⟩
)

Vlasov–Poisson (VP) eq. describes particle DM using N-body

techniques; “(simulation) particle” have masses orders of

magnitude larger than the DM particle mass and “softer”

gravitational potential V

∂f

∂t
= −

1

ma2
p · ∇f +∇V ·

∂f

∂p
, . . .
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Numerical description for DM sims

Schrödinger–Poisson (SP) eq. describes ΨDM (with AMR

techniques)talk by E. Kendall

iℏ
∂ψ

∂t
= −

ℏ
2

2ma
∇2ψ + mVψ , ∇2V =

4πGN

a

(

|ψ|2 − ⟨|ψ|2⟩
)

Vlasov–Poisson (VP) eq. describes particle DM using N-body

techniques; “(simulation) particle” have masses orders of

magnitude larger than the DM particle mass and “softer”

gravitational potential V

∂f

∂t
= −

1

ma2
p · ∇f +∇V ·

∂f

∂p
, . . .

SP-VP correspondence: on larger-than-halo scales, the two

approaches are found to be in agreement; deviations O(ℏ2/m2).

See Snowmass community report for current status of sims2203.07049 14
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Status of pure CDM N-Body sims

■ Pure particle CDM

case “solved” now

across all masses

with zoom-in

simulations1911.09720

■ Currently: refine

hydro, baryonic

effects, SN feedback,

. . .

15
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The AGORA project

Can we trust the DM sims? Can baryonic effects successfully

explain the observations? Sims are expensive – better make sure

that we all agree on the outcome/conclusions.

Goal of the AGORA project. Systematically calibrate software

codes and compare results

16
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The AGORA project

17



The AGORA project

➼ Calibration ensures agreement on “basics” – consolidation of

codes; remaining differences due to more complex physics 17



Simulations of ΨDM

Do we see wavelike effects of ΨDM in simulations?

Yes! Simulations1406.6586 find interference fringes; halos with NFW in

outer region, solitonic cores (standing waves) in inner region:

ρ∗ ∝

[

1 + 0.09

(

r

r∗

)2
]

−8

, M∗ ∝ M
−1/3

halo
18
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Simulations of ΨDM

(a) box              (b) projection                            (c) slice
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Simulations of multi-field ΨDM

■ Recall: string theory predicts many (light) axion fields; what if

they interact gravitationally?2301.07114

■ Interference pattern/granular structure washes out (unless

there is an extreme mass hierarchy)

■ Observable effects on stellar velocity dispersion:

∆σ2 ∝ N−2
∑

i

m−3
i ∼ N−2 min

i
{mi}

See also similar simulation studies2212.14288, 2302.04302
20
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MeV-scale ALPs in cosmology



High-mass ALPs – cosmologically excluded?

Now: m ∼ MeV; explore connections to cosmo and astro2205.13549
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C. O’Hare’s Github repo
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ALP models in GAMBIT

Can extend “family tree” of ALP models in GAMBIT1705.07908 from pre-

vious study1810.07192 and “CosmoBit” extension2009.03286, 2009.03287

GeneralALP

fa, ma, gaγ , gae, gaN , β, Tχ, θi

QCDAxion

DFSZAxion-I DFSZAxion-II KSVZAxion

ConstantMassALP

22
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ALP models in GAMBIT

Can extend “family tree” of ALP models in GAMBIT1705.07908 from pre-

vious study1810.07192 and “CosmoBit” extension2009.03286, 2009.03287

GeneralCosmoALP

fa, ma, gaγ , gae, gaN , β, Tχ, θi, ξ, Treh

CosmoALP

ma, Ca, ξ, . . .

CosmoALP_gg_tau

ma, τa, ξ, . . .

GeneralALP

fa, ma, gaγ , gae, gaN , β, Tχ, θi

QCDAxion

DFSZAxion-I DFSZAxion-II KSVZAxion

ConstantMassALP

■ New params: abundance ξ and reheating temperature Treh

■ Automatic parameter translation: can use pre-existing axion

likelihoods out of the box
22

https://arxiv.org/abs/1705.07908
https://arxiv.org/abs/1810.07192
https://arxiv.org/abs/2009.03286
https://arxiv.org/abs/2009.03287


The ALP model

GeneralCosmoALP

8 model parameters:

fa, ma, gaγ , gae, gaN , β, Tχ, θi, ξ, Treh

■ Only interaction: coupling to photons via L ∝ gaγ E⃗ · B⃗

23
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The ALP model

GeneralCosmoALP

6 model parameters:

fa, ma, gaγ , gae, gaN , β, Tχ, θi, ξ, Treh

■ Only interaction: coupling to photons via L ∝ gaγ E⃗ · B⃗

■ Simple ALP: ma const.
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The ALP model

GeneralCosmoALP

4 model parameters:

fa, ma, gaγ , gae, gaN , β, Tχ, θi, ξ, Treh

■ Only interaction: coupling to photons via L ∝ gaγ E⃗ · B⃗

■ Simple ALP: ma const.

■ Thermal and realignment contributions to ξ but we focus on

irreducible freeze-in mechanism0911.1120

ξFI ∼
( ma

50 MeV

)

(

Treh

5 MeV

)(

gaγ

10−10 GeV−1

)2

e
−ma/Treh
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The ALP model

GeneralCosmoALP

3 model parameters:

fa, ma, gaγ , gae, gaN , β, Tχ, θi, ξ, Treh

■ Only interaction: coupling to photons via L ∝ gaγ E⃗ · B⃗

■ Simple ALP: ma const.

■ Thermal and realignment contributions to ξ but we focus on

irreducible freeze-in mechanism0911.1120

ξFI ∼
( ma

50 MeV

)

(

Treh

5 MeV

)(

gaγ

10−10 GeV−1

)2

e
−ma/Treh

■ Choose ξ as free parameter (multi-component DM model), fix

Treh = 5 MeV to ignore degeneracies
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The ALP model

CosmoALP_gg_tau

3 model parameters:

fa, ma, τa, gae, gaN , β, Tχ, θi, ξ, Treh

■ Only interaction: coupling to photons via L ∝ gaγ E⃗ · B⃗

■ Simple ALP: ma const.

■ Thermal and realignment contributions to ξ but we focus on

irreducible freeze-in mechanism0911.1120

ξFI ∼
( ma

50 MeV

)

(

Treh

5 MeV

)(

gaγ

10−10 GeV−1

)2

e
−ma/Treh

■ Choose ξ as free parameter (multi-component DM model), fix

Treh = 5 MeV to ignore degeneracies

➼ Parameters: mass ma, lifetime τa ↔ gaγ , abundance ξ
23
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The cosmological model (target region)

■ 6-parameter ΛCDM model: ωb, ωc, H0, zre, As, ns

■ In total 12 parameters: 3 ALP, 6 LCDM, 2 experimental

parameters, neutron lifetime

24
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The cosmological model (target region)

■ 6-parameter ΛCDM model: ωb, ωc, H0, zre, As, ns

■ In total 12 parameters: 3 ALP, 6 LCDM, 2 experimental

parameters, neutron lifetime

■ Can the 7Li problem1203.3551 be improved by ALPs?2011.06519

■ ROI: 0.01 MeV < ma < 200 MeV; 104 s < τa < 1013 s, i.e.

decays between BBN and CMB formation

24
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Constraints & likelihoods in target region

Cosmology

■ CMB anisotropies (modification of recombination history)

■ CMB spectral distortions (SDs/energy injection from ALPs)

■ BBN element abundances (photodisintegration)

■ ∆Neff, ηb (photon injection/higher Tγ)

■ BAO (structure formation)

Astrophysics (see other talks later today!)

■ SN1987A missing gamma-ray burst (ALP decays); update of

[1702.02964], see also [2212.09764]

■ HB vs RGB star counts (stellar evolution, cooling)

■ Type-Ia SNe (Pantheon sample)

25
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Constraints & likelihoods in target region

Cosmology

■ CMB anisotropies (modification of recombination history)

■ CMB spectral distortions (SDs/energy injection from ALPs)

■ BBN element abundances (photodisintegration)

■ ∆Neff, ηb (photon injection/higher Tγ)

■ BAO (structure formation)

Astrophysics (see other talks later today!)

■ SN1987A missing gamma-ray burst (ALP decays); update of

[1702.02964], see also [2212.09764]

■ HB vs RGB star counts (stellar evolution, cooling)

■ Type-Ia SNe (Pantheon sample)

➼ Not all constraints are equally relevant in this study
25
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ALP constraints from spectral distortions (SDs)
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Combined limit:

τa . 0.2 × 10
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s

■ ALPs with τa ≲ 1010 s induce larger-than-observed SDs

■ Total SD shape (from CLASS/MontePython) is significantly

more constraining than µ or y SDs individually

■ Proposed future CMB missions (e.g. PIXIE) could give orders

of magnitude stronger constraints
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Results – ALP limits
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Where to find out more?

Open-access textbook

with exercises:
■ Slides from FDM Workshop 2020

■ Many good reviews on ΨDM:

[1912.07064, 2005.032544,

2101.11735, 2203.07049, . . . ]

■ Talks at this conference on PTAs

light particles and stellar or

extreme astrophysical

environments, UL/ΨDM

constraints

■ Ask questions now!
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Some take-home messages

■ Wave DM? Particle DM? Depends on m and v !

■ ALP models span many orders of magnitude in mass;

wavelike effects can occur

■ ΨDM suppresses structure formation, solitons form in

centre of halos, interference → density fluctuations

■ Observable/distinguishable with dSphs, (strong) lensing,

PTAs, Ly-α, . . . , BHSR and other astro constraints

■ Heavy ALPs are still viable in cosmology, but cannot

solve 7Li problem due to SD constraints



Backup slides



ALP searches
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C. O’Hare’s Github repo

https://cajohare.github.io/AxionLimits/


ALP DM from freeze-in
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■ Precalculate and tabulate freeze-in contribution to nonthermal

abundance (ξFI) with micrOMEGAs

■ Ensure consitently that ξ ≥ ξFI by invalidating points otherwise



Improvement of the MeV ALP fit

★

★

GAMBIT::CosmoBit
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■ ALPs slightly (< 1σ) improve fit

■ In ΛCDM: correlation between

Ωbh2 & [D/H]; for ΛCDM+ALPs:

no corr. due to photodisintegration
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