Selected aspects of the particle vs wave nature of dark matter

Sebastian Hoof

PONT Conference, Avignon 5 May 2023

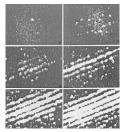
O msca_axitools

Outline

- Particle vs wave behaviour is a rich topic, potentially deeply philosophical; impossible to cover in 30 mins
- Focus on axions and axion-like particles (ALPs); biased, but class of DM where both behaviours are relevant

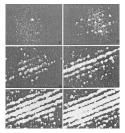
Outline

- Particle vs wave behaviour is a rich topic, potentially deeply philosophical; impossible to cover in 30 mins
- Focus on axions and axion-like particles (ALPs); biased, but class of DM where both behaviours are relevant
- Topics: some background, ultralight ALPs, DM simulations, observational opportunities
- Also: broader picture, complementary searches for ALPs and connections to other talks in this session, results from recent study of heavy ALPs in cosmology^{2205.13549}


Once upon a time...

1929 Louis de Broglie wins the Nobel prize "for his discovery of the wave nature of electrons" (after experimental demonstration)

Once upon a time...



1929 Louis de Broglie wins the Nobel prize "for his discovery of the wave nature of electrons" (after experimental demonstration)

1976 Merli, Missiroli, and Pozzi perform Young's double slit diffraction experiment with single electrons; according to *Physics World* readers, the most beautiful experiment ever performed

Once upon a time...

1929 Louis de Broglie wins the Nobel prize "for his discovery of the wave nature of electrons" (after experimental demonstration)

1976 Merli, Missiroli, and Pozzi perform Young's double slit diffraction experiment with single electrons; according to *Physics World* readers, the most beautiful experiment ever performed

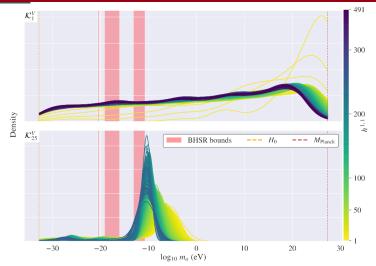
► Key observable for "wavy DM" (\UDM): interference effects

Where and how can we detect these?!

Fundamental scale for the regime of wavelike behaviour is the *de Broglie wavelength*:

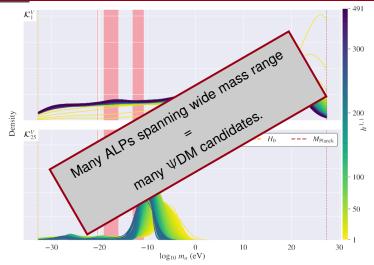
$$\lambda_{\mathsf{dB}} \equiv rac{2\pi\hbar}{
ho} \sim 1\,\mathsf{kpc}\left(rac{10^{-22}\,\mathsf{eV}}{m}
ight)\left(rac{100\,\mathsf{km/s}}{v}
ight)$$

Fundamental scale for the regime of wavelike behaviour is the *de Broglie wavelength*:


$$\lambda_{\mathsf{dB}} \equiv rac{2\pi\hbar}{
ho} \sim 1\,\mathsf{kpc}\left(rac{10^{-22}\,\mathsf{eV}}{m}
ight)\left(rac{100\,\mathsf{km/s}}{v}
ight)$$

- Depends on mass and speed i.e. the particle model and its context (creation, environment)
- CMB and galaxy surveys tell us a lot about the largest scales, need to look at effects on sub-galaxy scale
- Galaxy sizes \sim 1–100 kpc, so $m\gtrsim$ 10⁻²² eV^{astro-ph/0003365, 1610.08297}

Why study (ALPs as) Ψ DM?


.

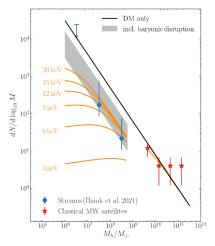
ALPs in string theory

The "string axiverse" contains many ALPs over a wide mass range.^{0905.4720} Explicit distributions have been computed for some type IIB compactifications.^{2011.08693, 2103.06812} (some caveats?^{2110.02964})

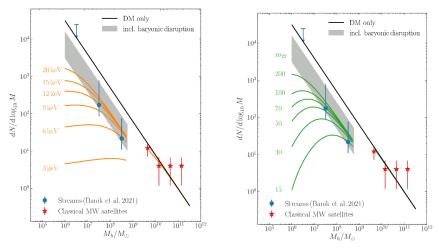
ALPs in string theory

The "string axiverse" contains many ALPs over a wide mass range.^{0905.4720} Explicit distributions have been computed for some type IIB compactifications.^{2011.08693, 2103.06812} (some caveats?^{2110.02964})

 "Missing satellites" – CDM sims predict many more subhalos than observed satellite galaxies in MW(?)

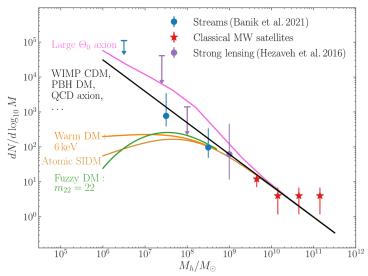

- "Missing satellites" CDM sims predict many more subhalos than observed satellite galaxies in MW(?)
- "Too big to fail" average central density of most massive CDM SHs much greater than density of most luminous dSphs (derived from kinematic data)

- "Missing satellites" CDM sims predict many more subhalos than observed satellite galaxies in MW(?)
- "Too big to fail" average central density of most massive CDM SHs much greater than density of most luminous dSphs (derived from kinematic data)
- "Cusps vs cores" (aka "missing inner mass") CDM sims predict cuspy density profile, but some dSphs have cores(?)

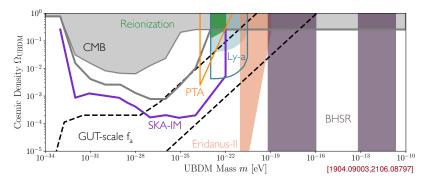

- "Missing satellites" CDM sims predict many more subhalos than observed satellite galaxies in MW(?)
- "Too big to fail" average central density of most massive CDM SHs much greater than density of most luminous dSphs (derived from kinematic data)
- "Cusps vs cores" (aka "missing inner mass") CDM sims predict cuspy density profile, but some dSphs have cores(?)
- "Plane of satellites" brightest MW satellites seem to be arranged on a thin plane (Gaia data seems to suggest that this is a transient, not extremely rare configuration^{2205.02860})

- "Missing satellites" CDM sims predict many more subhalos than observed satellite galaxies in MW(?)
- "Too big to fail" average central density of most massive CDM SHs much greater than density of most luminous dSphs (derived from kinematic data)
- "Cusps vs cores" (aka "missing inner mass") CDM sims predict cuspy density profile, but some dSphs have cores(?)
- "Plane of satellites" brightest MW satellites seem to be arranged on a thin plane (Gaia data seems to suggest that this is a transient, not extremely rare configuration^{2205.02860})
- ► Potentially "non-problems" or explained by galaxy formation history, baryonic physics; still, allow test of Ψ DM!

 ΨDM similar to warm DM: suppresses structures with smaller sizes or masses; e.g. halo distribution of subhalo mass function^{1911.02663}

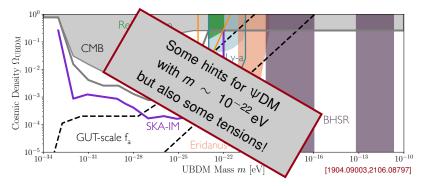


 Ψ DM similar to warm DM: suppresses structures with smaller sizes or masses; e.g. halo distribution of subhalo mass function^{1911.02663}



Effects of Ψ DM

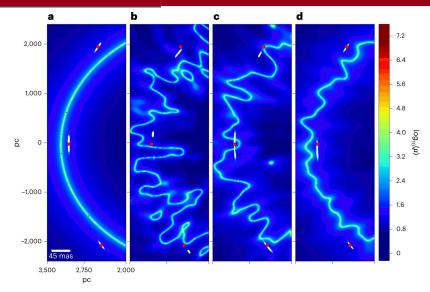
Shape of SHMF can be probed with different observables^{1911.02663}


Outlook on Ψ constraints

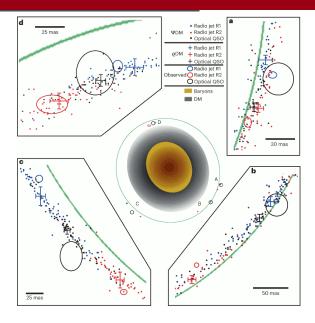
More details in talks by E. Kendall & B. Bucciotti, later today

- VDM solitons: tracer star dispersion, direct detection, axionova, exotic compact object in GWs
- BH(SR), (stimulated) decays, dSphs, Ly-α, PTAs, strong lensing, ...

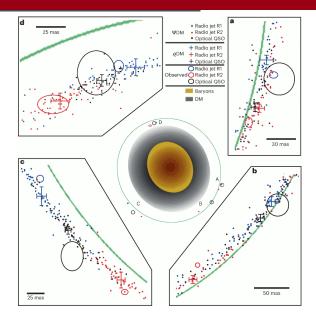
Outlook on Ψ constraints


More details in talks by E. Kendall & B. Bucciotti, later today

- VDM solitons: tracer star dispersion, direct detection, axionova, exotic compact object in GWs
- BH(SR), (stimulated) decays, dSphs, Ly-α, PTAs, strong lensing, ...


- There exist anomalies between the predicted and observed brightnesses and positions of multiply-lensed images
- Residual density fluctuations due to ΨDM ?^{2002.10473}

- There exist anomalies between the predicted and observed brightnesses and positions of multiply-lensed images
- Residual density fluctuations due to \UDM?^{2002.10473}
- The addition of subhalos can improve the agreement, but perhaps not fully


- There exist anomalies between the predicted and observed brightnesses and positions of multiply-lensed images
- Residual density fluctuations due to \UDM?^{2002.10473}
- The addition of subhalos can improve the agreement, but perhaps not fully
- ➤ \U00c0 \u00c0 \u00c0 \u00e0 \u0
- New study^{2304,09895} looks at quadruply-lensed quasistellar object + 2 radio jets in HS 0810+2554

Lensing magnification for (a) particle DM, (b)–(d) ΨDM with increasing number of baryons $^{2304.09895}$

- Claim: VDM gives better fit^{2304.09895}
- However: how good is the fit really in absolute terms? Modelling with Gaussian random fields realistic?

- Claim: VDM gives better fit^{2304.09895}
- However: how good is the fit really in absolute terms? Modelling with Gaussian random fields realistic?
- Let's be cautious, but could be getting interesting!

- String theory predicts many ALPs with many different masses; could be ΨDM
- Bosons/ALPs with $m \sim 10^{-22}$ eV affect structure formation and are testable in many ways
- Bosons do not suffer from the Pauli exclusion principle; fermions have $m_f \lesssim {\rm keV^{Tremaine \& Gunn '79}}$
- Many other theoretically appealing properties, ^{1510.07633, 2003.01100} numerous ongoing and planned ALP searches^{1602.00039}

Simulations

Schrödinger–Poisson (SP) eq. describes ΨDM (with AMR techniques)^{talk by E. Kendall

$$\mathrm{i}\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2ma}\nabla^2\psi + mV\psi, \quad \nabla^2 V = \frac{4\pi G_{\mathrm{N}}}{a}\left(|\psi|^2 - \langle|\psi|^2\rangle\right)$$

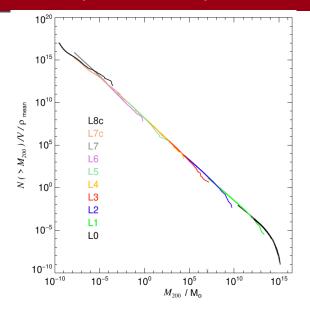
Schrödinger–Poisson (SP) eq. describes ΨDM (with AMR techniques)^{talk by E. Kendall

$$\mathrm{i}\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2ma}\nabla^2\psi + mV\psi, \quad \nabla^2 V = \frac{4\pi G_{\mathsf{N}}}{a}\left(|\psi|^2 - \langle|\psi|^2\rangle\right)$$

Vlasov–Poisson (VP) eq. describes particle DM using N-body techniques; "(simulation) particle" have masses orders of magnitude larger than the DM particle mass and "softer" gravitational potential *V*

$$\frac{\partial f}{\partial t} = -\frac{1}{ma^2} \mathbf{p} \cdot \nabla f + \nabla V \cdot \frac{\partial f}{\partial \mathbf{p}}, \quad \dots$$

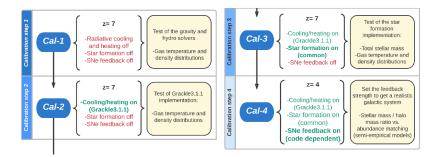
Schrödinger–Poisson (SP) eq. describes ΨDM (with AMR techniques)^{talk by E. Kendall

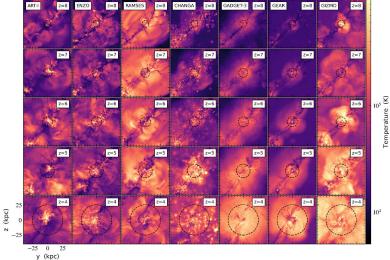

$$\mathrm{i}\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2ma}\nabla^2\psi + mV\psi\,,\quad \nabla^2 V = \frac{4\pi G_{\mathsf{N}}}{a}\left(|\psi|^2 - \langle|\psi|^2\rangle\right)$$

Vlasov–Poisson (VP) eq. describes particle DM using N-body techniques; "(simulation) particle" have masses orders of magnitude larger than the DM particle mass and "softer" gravitational potential *V*

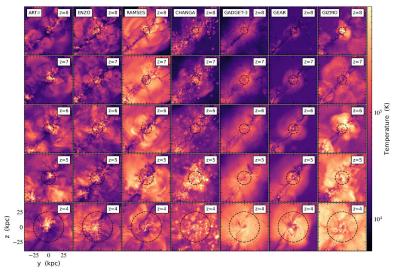
$$\frac{\partial f}{\partial t} = -\frac{1}{ma^2} \mathbf{p} \cdot \nabla f + \nabla V \cdot \frac{\partial f}{\partial \mathbf{p}}, \quad \dots$$

SP-VP correspondence: on larger-than-halo scales, the two approaches are found to be in agreement; deviations $O(\hbar^2/m^2)$. See Snowmass community report for current status of sims^{2203.07049} ¹⁴

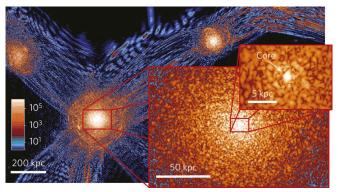

Status of pure CDM N-Body sims


- Pure particle CDM case "solved" now across all masses with zoom-in simulations^{1911.09720}
- Currently: refine hydro, baryonic effects, SN feedback,

Can we trust the DM sims? Can baryonic effects successfully explain the observations? Sims are expensive – better make sure that we all agree on the outcome/conclusions.


Goal of the AGORA project. Systematically calibrate software codes and compare results

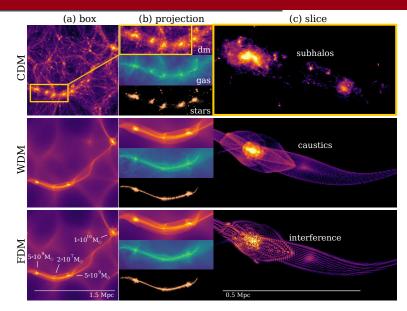
The AGORA project


The AGORA project

➤ Calibration ensures agreement on "basics" – consolidation of codes; remaining differences due to more complex physics

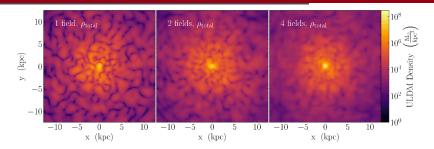
Simulations of ΨDM

Do we see wavelike effects of Ψ DM in simulations?



Yes! Simulations^{1406.6586} find interference fringes; halos with NFW in outer region, solitonic cores (standing waves) in inner region:

$$ho_* \propto \left[1 + 0.09 \left(rac{r}{r_*}
ight)^2
ight]^{-8}, \quad M_* \propto M_{
m halo}^{-1/3}$$


18

Simulations of ΨDM

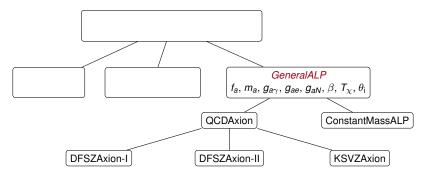
Large-scale structure for different DM types^{1910.01653}

Simulations of multi-field ΨDM

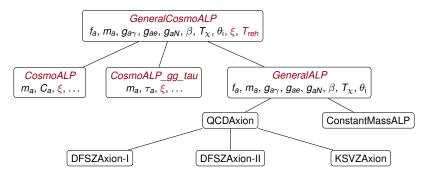
- Recall: string theory predicts many (light) axion fields; what if they interact gravitationally?^{2301.07114}
- Interference pattern/granular structure washes out (unless there is an extreme mass hierarchy)
- Observable effects on stellar velocity dispersion:

$$\Delta \sigma^2 \propto N^{-2} \sum_i m_i^{-3} \sim N^{-2} \min_i \{m_i\}$$

See also similar simulation studies^{2212.14288, 2302.04302}


MeV-scale ALPs in cosmology

High-mass ALPs – cosmologically excluded?


Now: $m \sim \text{MeV}$; explore connections to cosmo and astro^{2205.13549} 10^{-6} SN1987A ν burst 10^{-8} ALP-photon coupling $g_{a\gamma}$ [GeV⁻¹ HB stars SN energy deposition 10^{-10} SN1987A ALP decays + N_{eff} Ionisation fraction 10^{-12} H+Y SDS 10^{-14} [hep-ph/9503293] [astro-ph/0603660] 10^{-16} trays 1110.2895 EBI [1406.6053] [2002.08370] 10^{-18} C. O'Hare's Github repo 10^{-5} 10^{-4} 0.0010.010.110 1001 ALP mass m_a [MeV]

ALP models in GAMBIT

Can extend "family tree" of ALP models in GAMBIT^{1705.07908} from previous study^{1810.07192} and "CosmoBit" extension^{2009.03286, 2009.03287}

Can extend "family tree" of ALP models in GAMBIT^{1705.07908} from previous study^{1810.07192} and "CosmoBit" extension^{2009.03286, 2009.03287}

- New params: abundance ξ and reheating temperature T_{reh}
- Automatic parameter translation: can use pre-existing axion likelihoods out of the box

The ALP model

 $\begin{array}{c} \textit{GeneralCosmoALP}\\ \textit{8 model parameters:}\\ \textit{f}_{a}, \textit{m}_{a}, \textit{g}_{a\gamma}, \textit{g}_{ae}, \textit{g}_{aN}, \textit{\beta}, \textit{T}_{\chi}, \textit{\theta}_{i}, \textit{\xi}, \textit{T}_{reh} \end{array}$

• Only interaction: coupling to photons via $\mathcal{L} \propto g_{a\gamma} \vec{E} \cdot \vec{B}$

The ALP model

 $\begin{array}{c} \textit{GeneralCosmoALP} \\ \textit{6 model parameters:} \\ \textit{f}_{a}, \textit{m}_{a}, \textit{g}_{a\gamma}, \textit{g}_{ae}, \textit{g}_{aN}, \textit{\beta}, \textit{T}_{\chi}, \textit{\theta}_{i}, \textit{\xi}, \textit{T}_{reh} \end{array}$

- Only interaction: coupling to photons via $\mathcal{L} \propto g_{a\gamma} \vec{E} \cdot \vec{B}$
- Simple ALP: *m_a* const.

The ALP model

- Only interaction: coupling to photons via $\mathcal{L} \propto g_{a\gamma} \vec{E} \cdot \vec{B}$
- Simple ALP: *m_a* const.
- Thermal and realignment contributions to ξ but we focus on irreducible freeze-in mechanism^{0911.1120}

$$\xi_{\text{FI}} \sim \left(rac{m_a}{50\,\text{MeV}}
ight) \left(rac{T_{\text{reh}}}{5\,\text{MeV}}
ight) \left(rac{g_{a\gamma}}{10^{-10}\,\text{GeV}^{-1}}
ight)^2\,\mathrm{e}^{-m_a/T_{\text{reh}}}$$

```
\begin{array}{c} \hline \textbf{GeneralCosmoALP}\\ \textbf{3 model parameters:}\\ f_a, \textit{m}_a, \textit{g}_{a\gamma}, \textit{g}_{ae}, \textit{g}_{aN}, \beta, \textit{T}_{\chi}, \theta_{i}, \xi, \textit{T}_{reh} \end{array}
```

- Only interaction: coupling to photons via $\mathcal{L} \propto g_{a\gamma} \vec{E} \cdot \vec{B}$
- Simple ALP: *m_a* const.
- Thermal and realignment contributions to ξ but we focus on irreducible freeze-in mechanism^{0911.1120}

$$\xi_{\mathsf{FI}} \sim \left(rac{m_a}{50\,\mathsf{MeV}}
ight) \left(rac{\mathcal{T}_{\mathsf{reh}}}{5\,\mathsf{MeV}}
ight) \left(rac{g_{a\gamma}}{10^{-10}\,\mathsf{GeV}^{-1}}
ight)^2\,\mathrm{e}^{-m_a/\mathcal{T}_{\mathsf{reh}}}$$

• Choose ξ as free parameter (multi-component DM model), fix $T_{reh} = 5 \,\text{MeV}$ to ignore degeneracies

CosmoALP gg tau 3 model parameters: $f_a, m_a, \tau_a, g_{ae}, g_{aN}, \beta, T_{\chi}, \theta_i, \xi, T_{reh}$

- Only interaction: coupling to photons via $\mathcal{L} \propto g_{a\gamma} \vec{E} \cdot \vec{B}$
- Simple ALP: *m_a* const.
- Thermal and realignment contributions to ξ but we focus on irreducible freeze-in mechanism^{0911.1120}

$$\xi_{\mathsf{FI}} \sim \left(rac{m_a}{50\,\mathsf{MeV}}
ight) \left(rac{\mathcal{T}_{\mathsf{reh}}}{5\,\mathsf{MeV}}
ight) \left(rac{g_{a\gamma}}{10^{-10}\,\mathsf{GeV}^{-1}}
ight)^2\,\mathrm{e}^{-m_a/\mathcal{T}_{\mathsf{reh}}}$$

- Choose ξ as free parameter (multi-component DM model), fix
 *T*_{reh} = 5 MeV to ignore degeneracies
- ▶ Parameters: mass m_a , lifetime $\tau_a \leftrightarrow g_{a\gamma}$, abundance ξ

The cosmological model (target region)

- 6-parameter Λ CDM model: ω_{b} , ω_{c} , H_{0} , z_{re} , A_{s} , n_{s}
- In total 12 parameters: 3 ALP, 6 LCDM, 2 experimental parameters, neutron lifetime

The cosmological model (target region)

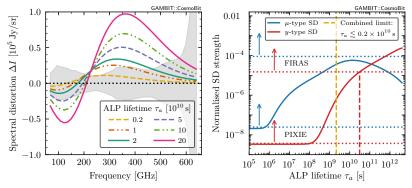
- 6-parameter Λ CDM model: ω_{b} , ω_{c} , H_{0} , z_{re} , A_{s} , n_{s}
- In total 12 parameters: 3 ALP, 6 LCDM, 2 experimental parameters, neutron lifetime
- Can the ⁷Li problem^{1203.3551} be improved by ALPs?^{2011.06519}
- ROI: 0.01 MeV < m_a < 200 MeV; 10⁴ s < τ_a < 10¹³ s, i.e. decays between BBN and CMB formation

Cosmology

- CMB anisotropies (modification of recombination history)
- CMB spectral distortions (SDs/energy injection from ALPs)
- BBN element abundances (photodisintegration)
- ΔN_{eff} , η_{b} (photon injection/higher T_{γ})
- BAO (structure formation)

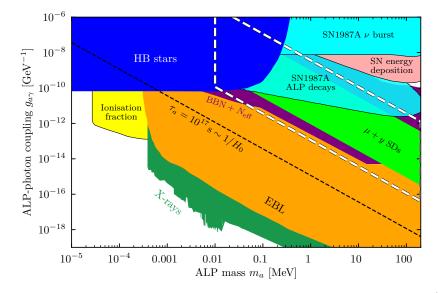
Astrophysics (see other talks later today!)

- SN1987A missing gamma-ray burst (ALP decays); update of [1702.02964], see also [2212.09764]
- HB vs RGB star counts (stellar evolution, cooling)
- Type-Ia SNe (Pantheon sample)

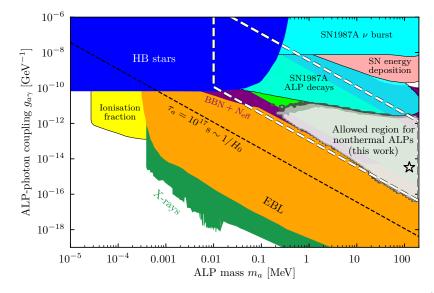

Cosmology

- CMB anisotropies (modification of recombination history)
- CMB spectral distortions (SDs/energy injection from ALPs)
- BBN element abundances (photodisintegration)
- ΔN_{eff}, η_b (photon injection/higher T_γ)
 BAO (structure formation)

Astrophysics (see other talks later today!)


- SN1987A missing gamma-ray burst (ALP decays); update of [1702.02964], see also [2212.09764]
- HB vs RGB star counts (stellar evolution, cooling)
- Type-Ia SNe (Pantheon sample)
- ➤ Not all constraints are equally relevant in this study

ALP constraints from spectral distortions (SDs)



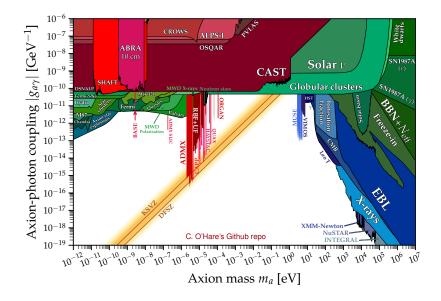
- ALPs with $\tau_a \lesssim 10^{10}$ s induce larger-than-observed SDs
- Total SD shape (from CLASS/MontePython) is significantly more constraining than μ or y SDs individually
- Proposed future CMB missions (e.g. PIXIE) could give orders of magnitude stronger constraints

Results – ALP limits

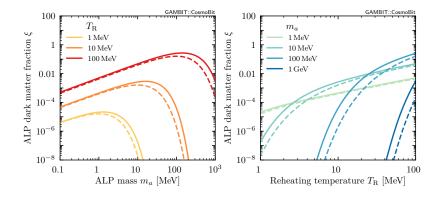
Results – ALP limits

Where to find out more?

Open-access textbook with exercises:

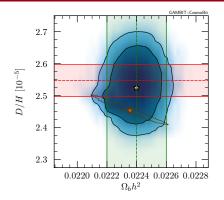

- Slides from FDM Workshop 2020
- Many good reviews on ΨDM:
 [1912.07064, 2005.032544,
 2101.11735, 2203.07049, ...]
- Talks at this conference on PTAs light particles and stellar or extreme astrophysical environments, UL/\UDM constraints
- Ask questions now!

Some take-home messages

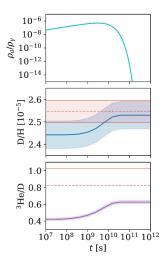

- Wave DM? Particle DM? Depends on m and v!
- ALP models span many orders of magnitude in mass; wavelike effects can occur
- VDM suppresses structure formation, solitons form in centre of halos, interference → density fluctuations
- Observable/distinguishable with dSphs, (strong) lensing, PTAs, Ly-α, ..., BHSR and other astro constraints
- Heavy ALPs are still viable in cosmology, but cannot solve ⁷Li problem due to SD constraints

Backup slides

ALP searches



ALP DM from freeze-in



- Precalculate and tabulate freeze-in contribution to nonthermal abundance (\$\xi_{FI}\$) with micrOMEGAs
- Ensure consitently that $\xi \ge \xi_{FI}$ by invalidating points otherwise

Improvement of the MeV ALP fit

- ALPs slightly (< 1σ) improve fit
- In ΛCDM: correlation between
 Ω_bh² & [D/H]; for ΛCDM+ALPs:
 no corr. due to photodisintegration

