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m Particle vs wave behaviour is a rich topic, potentially deeply
philosophical; impossible to cover in 30 mins

m Focus on axions and axion-like particles (ALPs); biased, but
class of DM where both behaviours are relevant


https://arxiv.org/abs/2205.13549

m Particle vs wave behaviour is a rich topic, potentially deeply
philosophical; impossible to cover in 30 mins

m Focus on axions and axion-like particles (ALPs); biased, but
class of DM where both behaviours are relevant

m Topics: some background, ultralight ALPs, DM simulations,
observational opportunities

m Also: broader picture, complementary searches for ALPs and
connections to other talks in this session, results from recent
study of heavy ALPs in cosmology?°'%#?


https://arxiv.org/abs/2205.13549

Once upon a time...

1929 Louis de Broglie wins the Nobel prize
“for his discovery of the wave nature of elec-
trons” (after experimental demonstration)
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Once upon a time...

1929 Louis de Broglie wins the Nobel prize
“for his discovery of the wave nature of elec-
trons” (after experimental demonstration)

1976 Merli, Missiroli, and Pozzi perform
Young’s double slit diffraction experiment
with single electrons; according to Physics
World readers, the most beautiful experi-
ment ever performed

» Key observable for “wavy DM” (WDM): interference effects

Where and how can we detect these?!
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Manifestation of wavelike effects

Fundamental scale for the regime of wavelike behaviour is the
de Broglie wavelength:

2 10722eV\ /100k
AdBEM~1kpc<o e)(OO m/s)
p m

v
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Manifestation of wavelike effects

Fundamental scale for the regime of wavelike behaviour is the
de Broglie wavelength:

2 10722eV\ /100k
AdBEM~1kpc<o e)<00 m/s)
p m

v

®m Depends on mass and speed i.e. the particle model and its
context (creation, environment)

= CMB and galaxy surveys tell us a lot about the largest scales,
need to look at effects on sub-galaxy scale

n Galaxy sizes ~ 1—-100 kpc, som Z 10 —22 g\/astro-ph/0003365, 1610.08297


https://arxiv.org/abs/astro-ph/0003365
https://arxiv.org/abs/1610.08297

Why study (ALPs as) VDM?



ALPs in string theory
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Further motivation from “small-scale crisis”?

Several “problems” have been discussed in pastes 70704256

m “Missing satellites” — CDM sims predict many more subhalos
than observed satellite galaxies in MW(?)


https://arxiv.org/abs/1707.04256
https://arxiv.org/abs/2205.02860
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Further motivation from “small-scale crisis”?

Several “problems” have been discussed in pastes 70704256

m “Missing satellites” — CDM sims predict many more subhalos
than observed satellite galaxies in MW(?)

® “Too big to fail” — average central density of most massive
CDM SHs much greater than density of most luminous dSphs
(derived from kinematic data)

m “Cusps vs cores” (aka “missing inner mass”) — CDM sims
predict cuspy density profile, but some dSphs have cores(?)

= “Plane of satellites” — brightest MW satellites seem to be
arranged on a thin plane (Gaia data seems to suggest that
this is a transient, not extremely rare configuration?5028¢0)

» Potentially “nhon-problems” or explained by galaxy formation
history, baryonic physics; still, allow test of WDM!
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https://arxiv.org/abs/2205.02860

Effects of VDM

WDM similar to warm DM: suppresses structures with smaller sizes
or masses; e.g. halo distribution of subhalo mass function'"'23
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Effects of VDM

Shape of SHMF can be probed with different observables''" 2%

¢  Streams (Bamk et al. 2021)
10°} . %  Classical MW satellites
I ¢  Strong lensing (Hezaveh et al. 2016)
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Outlook on W constraints
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m WDM solitons: tracer star dispersion, direct detection,
axionova, exotic compact object in GWs

m BH(SR), (stimulated) decays, dSphs, Ly-«, PTAs, strong
lensing, ...
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m WDM solitons: tracer star dispersion, direct detection,
axionova, exotic compact object in GWs

m BH(SR), (stimulated) decays, dSphs, Ly-a, PTAs, strong
lensing, ...


https://arxiv.org/abs/1904.09003
https://arxiv.org/abs/2106.08797
https://indico.cern.ch/event/1166693/contributions/5329625/
https://indico.cern.ch/event/1166693/contributions/5343153/

Strong gravitational lensing for VDM

®m There exist anomalies between the predicted and observed
brightnesses and positions of multiply-lensed images

m Residual density fluctuations due to WDM?2002-10473
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Strong gravitational lensing for VDM

®m There exist anomalies between the predicted and observed
brightnesses and positions of multiply-lensed images

m Residual density fluctuations due to WDM?2002-10473

®m The addition of subhalos can improve the agreement, but
perhaps not fully

» VDM predicts more SHs and underdensities due to
destructive interference: distinguishable!

» New study®*%%% |ooks at quadruply-lensed quasistellar
object + 2 radio jets in HS 0810+2554


https://arxiv.org/abs/2002.10473
https://arxiv.org/abs/2304.09895

Strong gravitational lensing for VDM

3,500 2,750 2,000
pc

Lensing magnification for (a) particle DM, (b)—(d) WDM with
increasing number of baryong?3°+098%
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Strong gravitational lensing for VDM

« Radio jet R1
WOM - Radio jet R2
* Optical QSO
+ Radio jet R1
@DM  + Radio jet R2
T + Optical Q50
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Observed O Radio jet R2
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= Claim: WDM gives
better fit2304.09895

= However: how
good is the fit
really in absolute
terms? Modelling
with Gaussian
random fields
realistic?
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Strong gravitational lensing for VDM

« Radio jet R1
WOM - Radio jet R2
* Optical QSO

+ Radio jet R1

@DM  + Radio jet R2
T + Optical Q50

* O Radio jet R1
Observed O Radio jet R2
Q Optical Q5O

W Baryons

= Claim: WDM gives
better fit2304.09895

= However: how
good is the fit
really in absolute
terms? Modelling
with Gaussian
random fields
realistic?

» | et’'s be cautious,
but could be
getting interesting!

12
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The case for ALPs as (V)DM

m String theory predicts many ALPs with many different masses;
could be VDM

m Bosons/ALPs with m ~ 10722 eV affect structure formation
and are testable in many ways

m Bosons do not suffer from the Pauli exclusion principle;
fermions have my < ke\/Temane & Gun'7s

= Many other theoretically appealing properties,'®'0-07633. 2003.01100
numerous ongoing and planned ALP searches'®%>%0%%


https://doi.org/10.1103/PhysRevLett.42.407
https://arxiv.org/abs/1510.07633
https://arxiv.org/abs/2003.01100
https://arxiv.org/abs/1602.00039

Simulations




Numerical description for DM sims

Schrédinger—Poisson (SP) eq. describes WDM (with AMR
techniques)'a b & Kendal
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Numerical description for DM sims

Schrédinger—Poisson (SP) eq. describes WDM (with AMR
techniques)'a b & Kendal

oy =~ (10 = ()
Vlasov—Poisson (VP) eq. describes particle DM using N-body
techniques; “(simulation) particle” have masses orders of
magnitude larger than the DM particle mass and “softer”
gravitational potential V
of 1 of

= = f _
ot mapV+VV op’

2
V2 + mVip, V2V = 47TGN
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Numerical description for DM sims

Schrédinger—Poisson (SP) eq. describes WDM (with AMR
techniques)'a b & Kendal

oy =~ (10 = ()
Vlasov—Poisson (VP) eq. describes particle DM using N-body
techniques; “(simulation) particle” have masses orders of
magnitude larger than the DM particle mass and “softer”
gravitational potential V
of 1 of

= = f _
ot mapV+VV op’

2
V2 + mVip, V2V = 47TGN

SP-VP correspondence: on larger-than-halo scales, the two
approaches are found to be in agreement; deviations O(h2?/m?).
See Snowmass community report for current status of simg2030704° 14
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Status of pure CDM N-Body sims
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https://arxiv.org/abs/1911.09720

The AGORA project

Can we trust the DM sims? Can baryonic effects successfully
explain the observations? Sims are expensive — better make sure
that we all agree on the outcome/conclusions.

Goal of the AGORA project. Systematically calibrate software
codes and compare results

Calibration step 1
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z=7

-Radiative cooling
and heating off
-Star formation off
-SNe feedback off

z=7

-Cooling/heating on
(Grackle3.1.1)
-Star formation off
-SNe feedback off

Y

Test of the gravity and
hydro solvers

-Gas temperature and
density distributions

~ 7

—
Test of Grackle3.1.1
implementation:

-Gas temperature and
density distributions

~—

Calibration step 3

Calibration step 4

.1

2=7

-Cooling/heating on
(Grackle3.1.1)
-Star formation on
{common)

L -SNe feedback off

=4

-Cooling/heating on
(Grackle3.1.1)
-Star formation on
(commeon)
-SNe feedback on

L (code dependent)

A T

Test of the star
formation
implementation:

-Total stellar mass

~Gas temperature and

density distributions

Set the feedback
strength to get a realistic
galactic system

-Stellar mass [ halo
mass raio vs.

abundance matching
{semi-empirical models)
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The AGORA project
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The AGORA project
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»» Calibration ensures agreement on “basics” — consolidation of
codes; remaining differences due to more complex physics




Simulations of W

Do we see wavelike effects of WDM in simulations?

Yes! Simulations'%®* find interference fringes; halos with NFW in
outer region, solitonic cores (standing waves) in inner region:
r\? -
pe o [1+0.09 <—> Moo M

r, alo


https://arxiv.org/abs/1406.6586

Simulations of VDM

(a) box (b) projection (c) slice
- %, p

subhalos

caustics

u 3@ interference

0.5 Mpc

Large-scale structure for different DM types''%0%%


https://arxiv.org/abs/1910.01653

Simulations of multi-field VDM

1 field, piotal 2 ficlds, protar 4 fields, protal

x (kpe) x (kpc) x (kpe)

m Recall: string theory predicts many (light) axion fields; what if
they interact gravitationally?20".07114
m |nterference pattern/granular structure washes out (unless
there is an extreme mass hierarchy)
m Observable effects on stellar velocity dispersion:
Ac? o N72 Z m 3~ N2 miin{m,-}
I

See also similar simulation studieg??!214288. 2302.04302

20
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MeV-scale ALPs in cosmology




High-mass ALPs — cosmologically excluded?

Now: m ~ MeV; explore connections to cosmo and astro??0%1%%%9
1076

SN1987A v burst

1078
SN energy

deposition

SN1987A
ALP decays

10—10

Tonisation
fraction

1072 |

1074

[hep-ph/9503293]
16 [astro-ph/0603660]
10 [ [1110.2895]
[1406.6053]
[2002.08370]
10*18 |- C. O'Hare’s Github repo

ALP-photon coupling g4, [GeV "]

107° 107 0.001 0.01 0.1 1 10 100
ALP mass m, [MeV] 21
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https://cajohare.github.io/AxionLimits/

ALP models in GAMBIT

Can extend “family tree” of ALP models in GAMBIT'%*"*® from pre-
ViOUS Study1810.07192 and “CosmOBit” extension2009.03286, 2009.03287

GeneralALP
fa, Ma, Gavy, Gae, gan, B, Tx, 6i

QCDAXxion ConstantMassALP

DFSZAxion-I DFSZAxion-I| KSVZAxion

22
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ALP models in GAMBIT

Can extend “family tree” of ALP models in GAMBIT'%*"*® from pre-
ViOUS Study1810.07192 and “CosmOBit” extension2009.03286, 2009.03287

GeneralCosmoALP
fa, Ma, Gav;s Gae; JaN, s, TX, 0i, &, Tren

/

CosmoALP CosmoALP _gg_tau
Ma, Ca, &, ... Ma, Ta, &, ..

GeneralALP
fa, Ma, Gavy, Gae, gan, B, Tx, 6i

QCDAxion ConstantMassALP

DFSZAxion-I DFSZAxion-I| KSVZAxion

= New params: abundance £ and reheating temperature Tien

®m Automatic parameter translation: can use pre-existing axion

likelihoods out of the box
22
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The ALP model

GeneralCosmoALP
8 model parameters:

fas mas gam B! Tx,ei,£, Treh

= Only interaction: coupling to photons via £ « ga, E-B

23
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The ALP model

GeneralCosmoALP
6 model parameters:
fas mas gam ei; 55 Treh

= Only interaction: coupling to photons via £ « ga, E-B
= Simple ALP: m, const.

23
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The ALP model

GeneralCosmoALP
4 model parameters:
mas gam 55 Treh

= Only interaction: coupling to photons via £ « ga, E-B

= Simple ALP: m, const.

m Thermal and realignment contributions to ¢ but we focus on
irreducible freeze-in mechanism®"

§F| N ( mgy ) Tren Gay 2 e_ma/Treh
50MeV/ \5MeV ) \ 10-10GeV !

23
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The ALP model

GeneralCosmoALP
3 model parameters:

ma, ga’\/s 5

Only interaction: coupling to photons via £ « ga, E-B
Simple ALP: m, const.

Thermal and realignment contributions to ¢ but we focus on
irreducible freeze-in mechanism®''-'°

§F| N ( my ) Treh gafy 2 e_ma/Treh
50MeV/ \ 5MeV 10-10GeV !

Choose ¢ as free parameter (multi-component DM model), fix
Treh = 5MeV to ignore degeneracies

23


https://arxiv.org/abs/0911.1120

The ALP model

CosmoALP gg tau
3 model parameters:
ma, Ta, 5

= Only interaction: coupling to photons via £ « ga, E-B

= Simple ALP: m, const.

m Thermal and realignment contributions to ¢ but we focus on
irreducible freeze-in mechanism®"

§F| N ( mgy ) Tren Gay 2 e_ma/Treh
50MeV/ \5MeV ) \ 10-10GeV !

m Choose £ as free parameter (multi-component DM model), fix
Treh = 5MeV to ignore degeneracies

» Parameters: mass mj, lifetime 7, <+ g, abundance §
23
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The cosmological model (target region)

m G-parameter ACDM model: wy, we, Ho, Zre, As, Ns

m /n total 12 parameters: 3 ALP, 6 LCDM, 2 experimental
parameters, neutron lifetime

24


https://arxiv.org/abs/1203.3551
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The cosmological model (target region)

6-parameter ACDM model: wp, we, Ho, Zre, As, Ns

In total 12 parameters: 3 ALP, 6 LCDM, 2 experimental
parameters, neutron lifetime

Can the "Li problem'3%' pe improved by ALPg?2011.06519

ROI: 0.01 MeV < m, < 200MeV; 10*s < 7, < 10'3s, i.e.
decays between BBN and CMB formation

24
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Constraints & likelihoods in target region

Cosmology

m CMB anisotropies (modification of recombination history)
CMB spectral distortions (SDs/energy injection from ALPS)
BBN element abundances (photodisintegration)

AN, mo (photon injection/higher T.,)

BAO (structure formation)

Astrophysics (see other talks later today!)

m SN1987A missing gamma-ray burst (ALP decays); update of
[1702.02964], see also [2212.09764]

m HB vs RGB star counts (stellar evolution, cooling)

m Type-la SNe (Pantheon sample)

25
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Constraints & likelihoods in target region

Cosmology

m CMB anisotropies (modification of recombination history)
m CMB spectral distortions (SDs/energy injection from ALPs)
m BBN element abundances (photodisintegration)

Astrophysics (see other talks later today!)

= SN1987A missing gamma-ray burst (ALP decays); update of
[1702.02964], see also [2212.09764]

» Not all constraints are equally relevant in this study
25
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ALP constraints from spectral distortions

GAMBIT::CosmoBit GAMBIT::CosmoBit

_ 10 e T e s e Smasus e s masisimt
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Frequency [GHz] ALP lifetime 7, [s]

m ALPs with 7, < 10'% s induce larger-than-observed SDs

m Total SD shape (from CLASS/MontePython) is significantly
more constraining than p or y SDs individually

® Proposed future CMB missions (e.g. PIXIE) could give orders

of magnitude stronger constraints 06



Results — ALP limits

ALP-photon coupling gq, [GeV "]
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Results — ALP limits

SN1987A v burst

107 HB stars S
stars S SN energy
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Where to find out more?

Open-access textbook

h os:
with exercises = Slides from FDM Workshop 2020

= Many good reviews on WDM:
[1912.07064, 2005.032544,

Kathan Bt Gt 2101.11735, 2203.07049, ...]

The Search for m Talks at this conference on PTAs

Ultralight Bosonic light particles and stellar or

Dark Matter extreme astrophysical

environments, UL/WVDM

constraints

®m Ask questions now!

@ Springer
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https://doi.org/10.1007/978-3-030-95852-7
https://indico.desy.de/event/25188/
https://arxiv.org/abs/1912.07064
https://arxiv.org/abs/2005.03254
https://arxiv.org/abs/2101.11735
https://arxiv.org/abs/2203.07049
https://indico.cern.ch/event/1166693/contributions/5292647/
https://indico.cern.ch/event/1166693/contributions/5281042/
https://indico.cern.ch/event/1166693/contributions/5281045/
https://indico.cern.ch/event/1166693/contributions/5329625/
https://indico.cern.ch/event/1166693/contributions/5329625/

Some take-home messages

= Wave DM? Particle DM? Depends on m and v!

= ALP models span many orders of magnitude in mass;
wavelike effects can occur

m WDM suppresses structure formation, solitons form in
centre of halos, interference — density fluctuations

= Observable/distinguishable with dSphs, (strong) lensing,
PTAs, Ly-«, ..., BHSR and other astro constraints

m Heavy ALPs are still viable in cosmology, but cannot
solve ’Li problem due to SD constraints



Backup slides




ALP searches
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https://cajohare.github.io/AxionLimits/

ALP DM from freeze-in

100 . : GAMBIT::CosmoBit 100 . GAMBIT::CosmoBi
L Tr 4 L Mg, 3
-t 1MeV W 1 MeV
g 1f 10 MeV 12 ' 10 MeV 3
S —— 100 MeV S E —— 100 Mev
~ -
= 001 T oo fT OV
4 -t
] ] 3
g g . _
= 107 1 Z0tE
- -
< L - < -
o o
—6 —6
S0k {1 510°E
< E i < [
1078 L L 1 1078 [
0.1 1 10 100 10% 1
ALP mass m, [MeV] Reheating temperature Tg [MeV]

m Precalculate and tabulate freeze-in contribution to nonthermal
abundance (£r) with micrOMEGAs

m Ensure consitently that & > & by invalidating points otherwise



Improvement of the MeV ALP fit

r G;‘\M_BFIT ‘Coslmol‘if
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. 0.4+
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no corr. due to photodisintegration
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