

Gravitational-wave science from the 3rd observing run of Advanced LIGO, Virgo and KAGRA

Rachel Gray author for the LIGO-Virgo-KAGRA collaboration

Progress on Old and New Themes in Cosmology 2nd May 2023

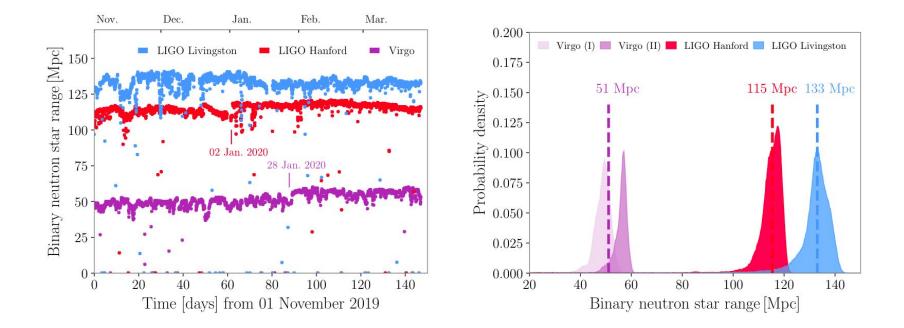
Outline

- The third observing run
- What did we see in O3?
- The population of compact binaries
- Cosmological analyses with standard sirens
- What's next?

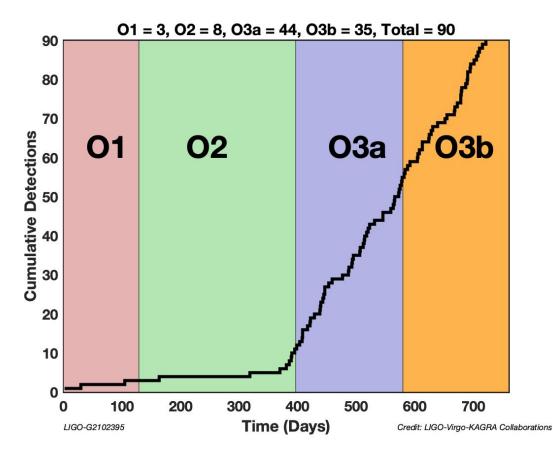
The third observing run

The third LVK observing run

The third observing run from April 2019 to March 2020 with a 1 month break for commissioning.


Total number of gravitational waves observed to date (with probability of astrophysical origin > 0.5): 90

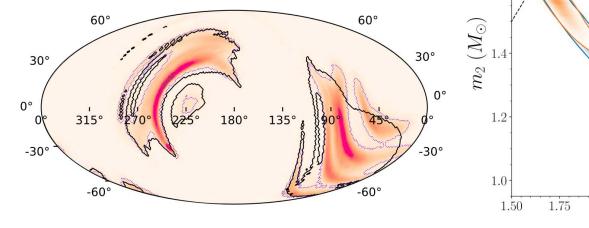
GWTC-3 catalogue: arXiv:2111.03606

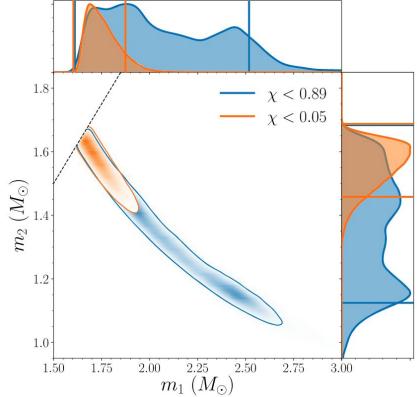


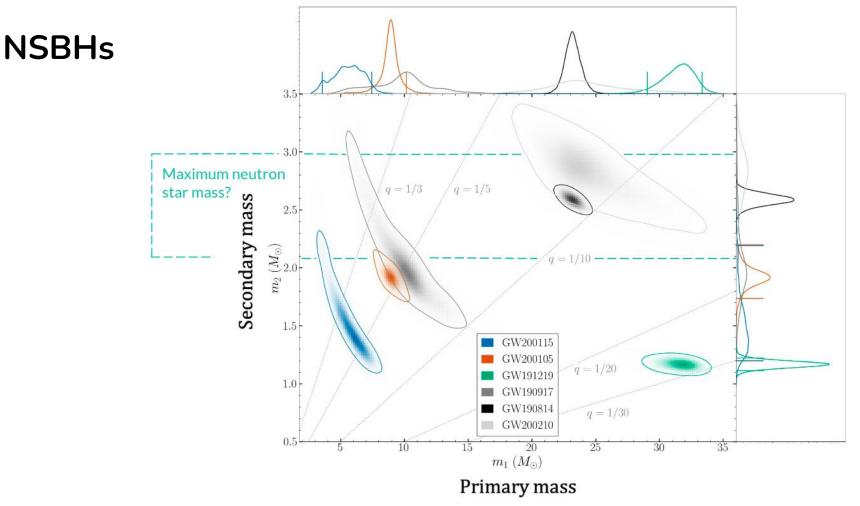
Detector sensitivity

The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Nov 2021, arXiv:2111.03606

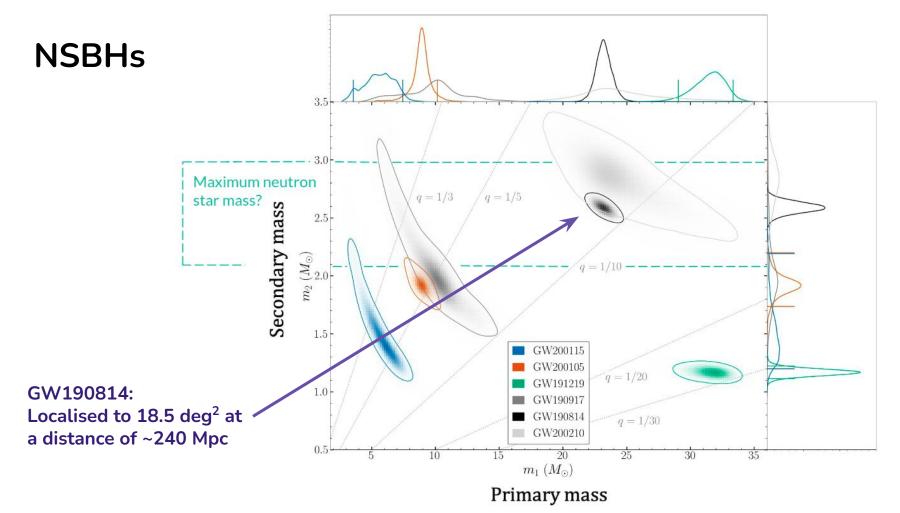
Cumulative detections to date

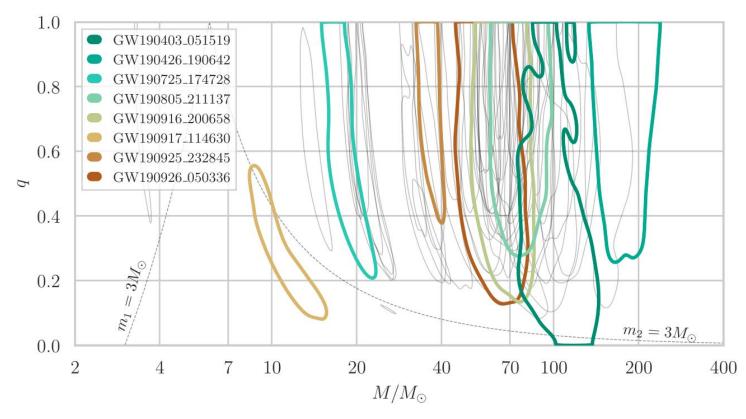



									edit: Carl Knox			
01 - 2015 - 2016	zc		02 2016 - 2017		-	Lo					03a+b 2019 - 2020	
36 31	23 14	14 7.7	3 1 20	11 7.6	50 34	35 24	31 25	• • 1.5 1.3	35 27	40 29	88 22	25 18
63 GW150914	36 GW151012	21 GW151226	49 GW170104	18 GW170608	80 GW170729	56 GW170809	53 GW170814	≤ 2.8 cw170817	60 GW170818	65 GW170823	105 GW190403_051519	41 cw190408_181802
30 8.3	35 24	48 ³²	41 32	• • 2 1.4	107 77	43 28	23 13	36 18	39 28	37 25	66 41	95 69
37 GW190412	56 GW190413_052954	76 GW190413_134308	70 GW190421_213856	3.2 CW190425	175 GW190426_190642	69 GW190503_185404	35 GW190512_180714	52 CW190513_205428	65 CW190514_065416	59 CW190517_055101	101 GW190519_153544	156 GW190521
42 3 3	37 23	69 4 8	57 36	35 24	54 41	67 38	12 8.4	18 13	37 21	13 7.8	12 6.4	38 29
71 GW190521_074359	56 CW190527_092055	111 GW190602_175927	87 GW190620_030421	56 GW190630_185205	90 cw190701_203306	99 GW190706_222641	19 cw190707_093326	30 GW190708_232457	55 GW190719_215514	20 cw190720_000836	17 GW190725_174728	64 cw190727_060333
12 8.1	42 29	37 27	48 32	• 23 2.6	32 26	24 10	44 36	35 24	44 24	9.3 2.1	8.9 5	21 16
20 GW190728_064510	67 GW190731_140936	62 GW190803_022701	76 GW190805_211137	26 GW190814	55 GW190828_063405	33 GW190828_065509	76 GW190910_112807	57 GW190915_235702	66 GW190916_200658]] GW190917_114630	13 GW190924_021846	35 CW190925_232845
40 23	81 24	12 7.8	12 7.9	11 7.7	65 47	29 5.9	12 8.3	• 53 • 24	11 6.7	27 19	12 8.2	25 18
61 CW190926 050336	102 GW190929 012149	19 cw190930 133541	19 GW191103 012549	18 CW191105 143521	107 GW191109 010717	34 GW191113 071753	20 GW191126 115259	76 CW191127 050227	17 CW191129 134029	45 GW191204 110529	19 GW191204 171526	41 GW191215 223052
12 7.7	• • 31 1.2	• • 45 • 35	49 3 7	• 9 1.9	36 28		42 33	34 29	10 7.3	38 27	51 12	36 27
19 GW191216_213338	32 GW191219_163120	76 GW191222_033537	82 GW191230_180458	11 GW200105_162426	61 CW200112_155838	7.2 GW200115_042309	71 GW200128_022011	60 GW200129_065458	17 GW200202_154313	63 GW200208_130117	61 GW200208_222617	60 GW200209_085452
) 24 2.8	51 30	38 28	87 61	39 28	40 33	19 14	38 20	28 15	36 14	34 28	13 7.8	34 14
27 cw200210_092254	78 GW200216_220804	62 GW200219_094415	141 GW200220_061928	64 GW200220_124850	69 GW200224_222234	32 GW200225_060421	56 GW200302_015811	42 cw200306_093714	47 cw200308_173609	59 GW200311_115853	20 GW200316_215756	53 GW200322091133

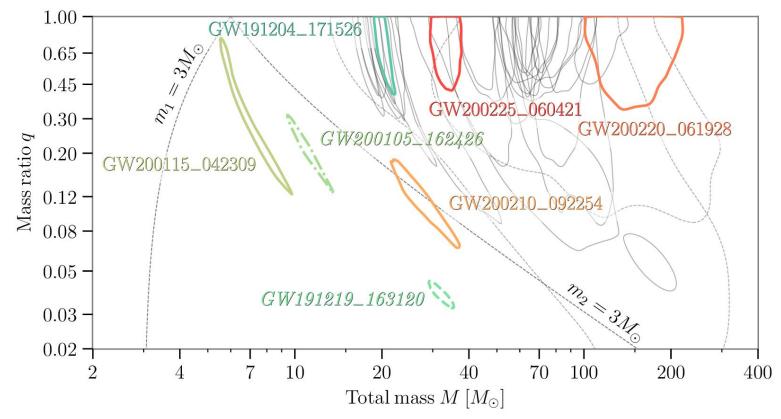

What did we see in O3?

BNS


GW190425 is the second binary neutron star to be detected, after GW170817. Around 160 Mpc away.

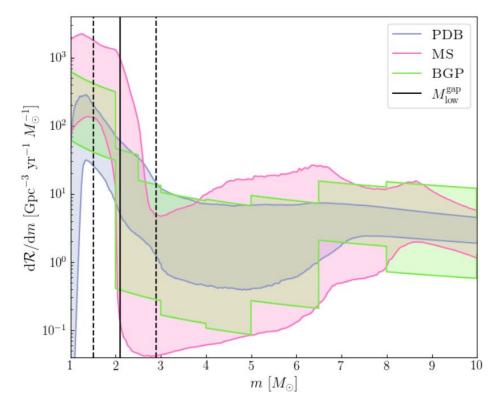


The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, GWTC-3 webinar

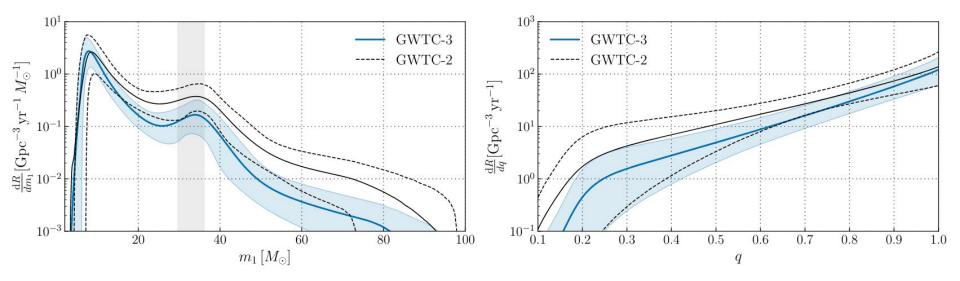

The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, GWTC-3 webinar

Events from O3a

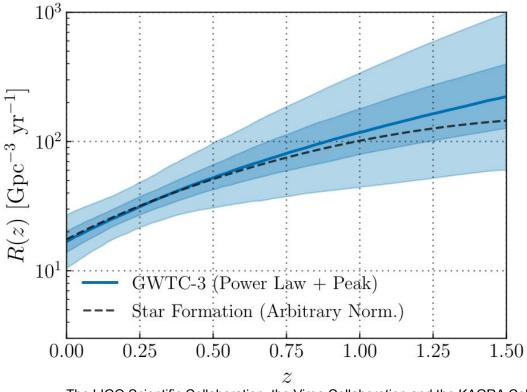
The LIGO Scientific Collaboration and Virgo Collaboration, arXiv:2108.01045


Events from O3b

The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Nov 2021, arXiv:2111.03606


The population of compact binaries

Lower mass gap


The LIGO Scientific Collaboration, the Virgo Collaboration and the KAGRA Collaboration, Phys. Rev. X 13, 011048, March 2023

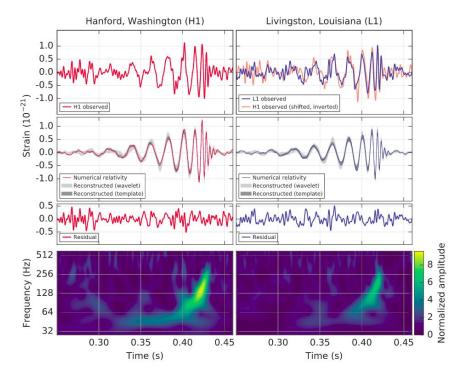
Black hole mass distribution

The LIGO Scientific Collaboration, the Virgo Collaboration and the KAGRA Collaboration, Phys. Rev. X **13**, 011048, March 2023

Evolution of merger rate with redshift

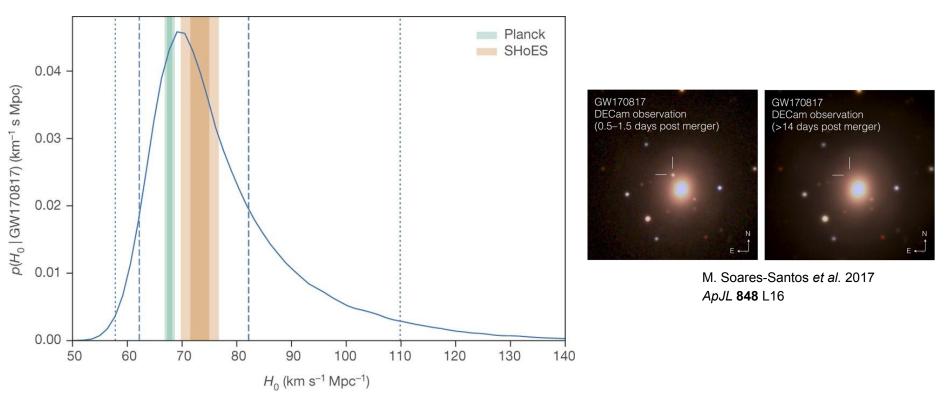
The LIGO Scientific Collaboration, the Virgo Collaboration and the KAGRA Collaboration, Phys. Rev. X **13**, 011048, March 2023

Cosmological analyses with standard sirens


Gravitational waves as standard sirens

Signal amplitude is (inversely) proportional to luminosity distance to source, and independent of the cosmic distance ladder:

$$A = \frac{\mathcal{M}_z}{d_L} f(\mathcal{M}_z, t)$$


Redshifted chirp mass:

$$\mathcal{M}_z = (1+z) \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

The LIGO Scientific Collaboration and Virgo Collaboration, *Phys. Rev. Lett.* **116**, 061102 – Published 11 February 2016

GW170817

The LIGO Scientific Collaboration and The Virgo Collaboration, The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration *et al.* Nature **551**, 85–88 (2017).

Cosmological analyses with standard sirens

"Bright sirens"

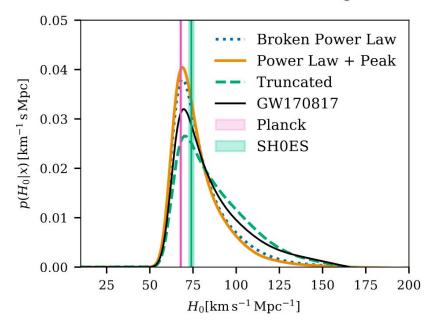
An **EM counterpart** is observed and used to obtain the host galaxy redshift.

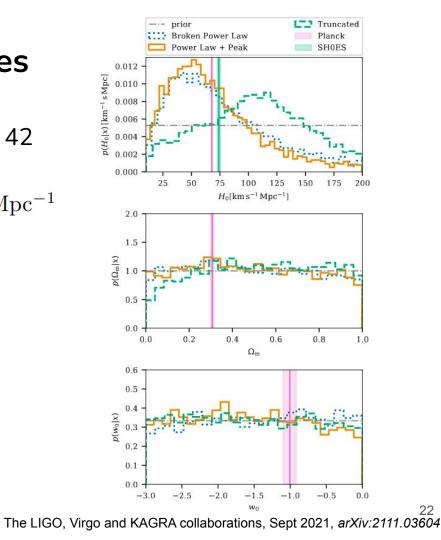
AKA the EM counterpart method

"Dark sirens"

No EM counterpart observed. **Galaxy surveys** are used to provide redshift estimates for potential host galaxies.

AKA the galaxy catalogue method


"Spectral sirens"

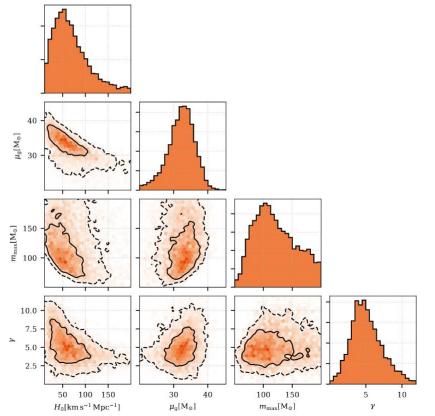

No EM counterpart or galaxy survey is used. Features in the **mass distribution** of the GW population break the mass-redshift degeneracy.

AKA the redshifted masses method

Results from redshifted masses

Marginal posteriors on H_0 , Ω_m and w_0 using 42 binary black holes with SNR > 11, for 3 different mass models. $H_0 = 68^{+12}_{-8} \text{ km s}^{-1} \text{ Mpc}^{-1}$

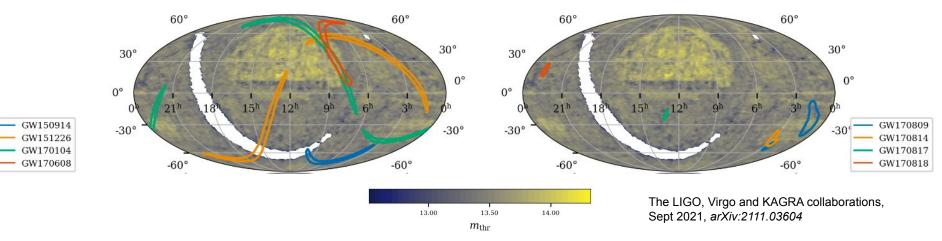
22


Correlation of cosmological and population parameters

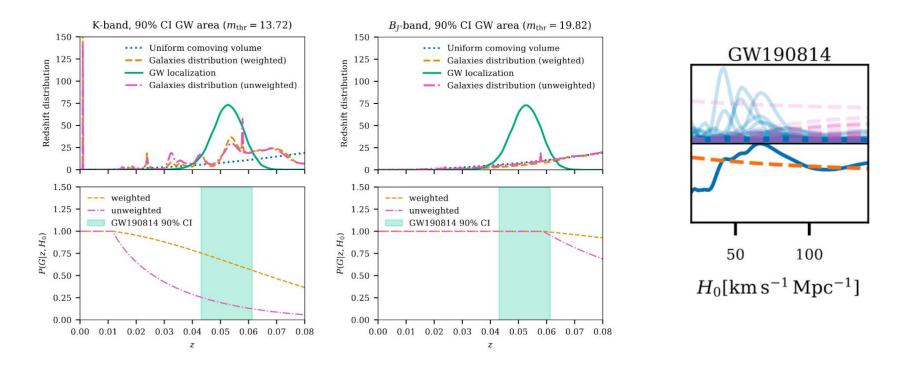
Preferred model: powerlaw + peak

 $m_{\rm max}$ (maximum black hole mass)

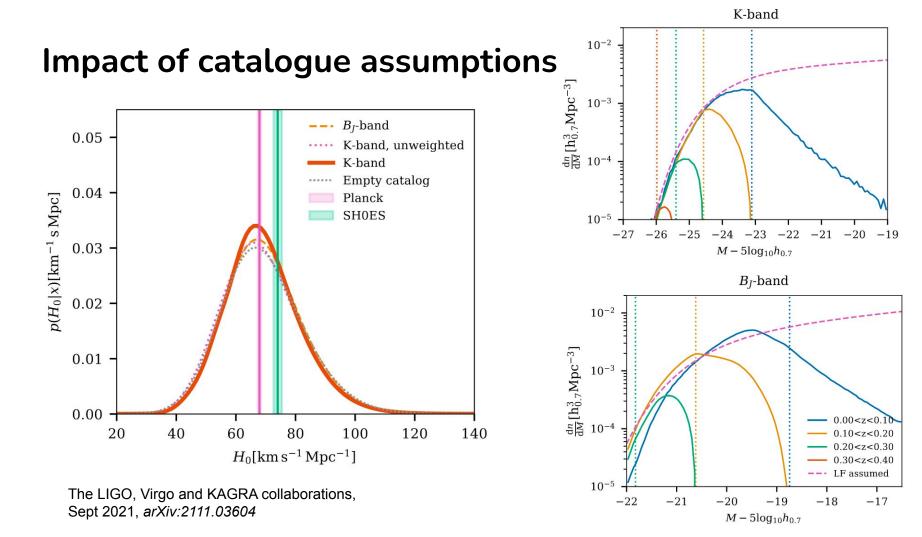
 μ_{g} (position of the peak in the primary mass distribution)


γ (low-z power-law slope of a Madau-Dickinson-like merger rate)

The LIGO, Virgo and KAGRA collaborations, Sept 2021, arXiv:2111.03604 23

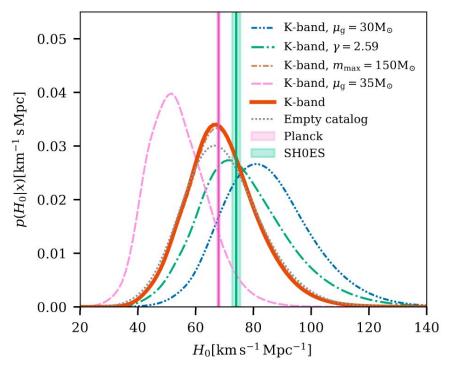

Galaxy catalogues

The galaxy catalogue analysis made use of the GLADE+ galaxy catalogue [1], constructed from the GWGC, 2MPZ, 2MASS XSC, HyperLEDA, and WISExSCOSPZ galaxy catalogues, and the SDSS-DR16Q quasar catalogue.



[1] G Dálya et al. MNRAS, Volume 514, Issue 1, July 2022, Pages 1403–1411

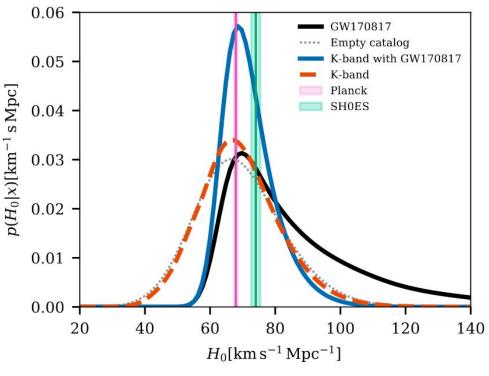
The most informative dark siren so far


The LIGO, Virgo and KAGRA collaborations, Sept 2021, arXiv:2111.03604

Impact of population assumptions

Changing the population parameters which correlate most strongly with $H_0 (m_{\max}, \mu_g, \gamma)$, leads to a significant shift in the posterior.

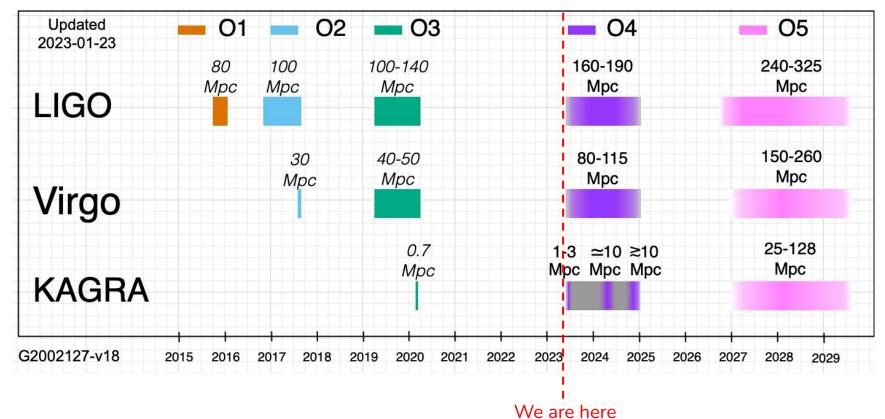
The galaxy catalogue analysis is not separable from redshifted masses.


The LIGO, Virgo and KAGRA collaborations, Sept 2021, *arXiv:2111.03604*

Results from galaxy catalogues

Uses 42 BBH detections, GW190814, two BNS events and two NSBH events.

All are analysed with the GLADE+ galaxy catalogue in the K-band (apart from GW170817).


$$H_0 = 68^{+8}_{-6} \,\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1}$$

The LIGO, Virgo and KAGRA collaborations, Sept 2021, *arXiv:2111.03604*

What's next?

Timeline of observing runs

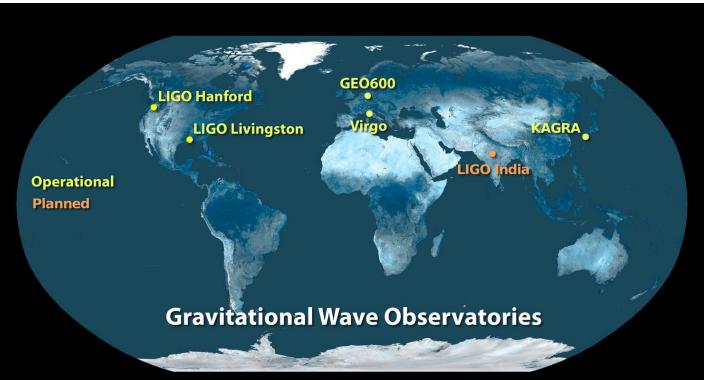
The third observing run had the greatest sensitivity range range to date, leading to an impressive catalogue of detections.

These detections cover a diverse range of masses, and include the first confident detection of a neutron star-black hole merger!

This set of events has allowed us to constrain the astrophysical population of events to the greatest degree of accuracy so far. Cosmological results provide interesting hints of what is to come, but are not yet competitive with non-GW measurements.

O4 is starting soon (24th May) and will last for 18 months, which will greatly expand the catalogue of GW detections.

Thanks for listening!



This material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation.

Extra slides

The gravitational-wave detector network

Credit: Caltech/MIT/LIGO Lab

Rates

Merger rates in Gpc⁻³ yr⁻¹ for different mass bins:

	BNS	NSBH	BBH	NS-Gap	BBH-gap	Full
	$m_1 \in [1, 2.5] M_{\odot}$	$m_1 \in [2.5, 50] M_{\odot}$	$m_1 \in [2.5, 100] M_{\odot}$	$m_1 \in [2.5, 5] M_{\odot}$	$m_1 \in [2.5, 100] M_{\odot}$	$m_1 \in [1, 100] M_{\odot}$
	$m_2 \in [1, 2.5] M_{\odot}$	$m_2 \in [1, 2.5]M_{\odot}$	$m_2 \in [2.5, 100] M_{\odot}$	$m_2 \in [1, 2.5] M_{\odot}$	$m_2 \in [2.5,5] M_{\odot}$	$m_2 \in [1, 100] M_{\odot}$
PDB (pair)	170^{+270}_{-120}	27^{+31}_{-17}	$25^{+10}_{-7.0}$	19^{+28}_{-13}	$9.3^{+15.7}_{-7.2}$	240^{+270}_{-140}
PDB (ind)	44^{+96}_{-34}	73^{+67}_{-37}	$22^{+8.0}_{-6.0}$	$12^{+18}_{-9.0}$	$9.7^{+11.3}_{-7.0}$	150^{+170}_{-71}
MS	660^{+1040}_{-530}	49^{+91}_{-38}	37^{+24}_{-13}	$3.7^{+35.3}_{-3.4}$	$0.12^{+24.88}_{-0.12}$	770^{+1030}_{-530}
BGP	$98.0^{+260.0}_{-85.0}$	$32.0^{+62.0}_{-24.0}$	$33.0^{+16.0}_{-10.0}$	$1.7\substack{+30.0 \\ -1.7}$	$5.2^{+12.0}_{-4.1}$	$180.0^{+270.0}_{-110.0}$
Merged	10 - 1700	7.8-140	16-61	0.02 - 39	$9.4 \times 10^{-5} - 25$	72 - 1800

The LIGO Scientific Collaboration, the Virgo Collaboration and the KAGRA Collaboration, Phys. Rev. X 13, 011048, March 2023