PONT Avignon May 2023

Portsmouth

> Kazuya Koyama

Institute of Cosmology and Gravitation, University of Portsmouth

Pogosian, Raveri, Martinelli, KK, Silvestri, Zhao Nature Astron. 6 (2022) 2107.12990,
Raveri, Pogosian, Martinelli, KK, Silvestri, Zhao et.al. JCAP 02 (2023) 0612107.12992

Standard model of cosmology

- Lambda (L) CDM model

Einstein equations and matter conservation (isotropy and homogeneity)

$$
\begin{aligned}
& H(t)^{2} \equiv\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \rho+\frac{\Lambda}{3}-\frac{K}{a^{2}} \\
& \dot{\rho}+3 H(\rho+P)=0, \quad \rho=\sum_{i} \rho_{i}
\end{aligned}
$$

The background expansion history

$$
\begin{aligned}
& E(z)=\frac{H(z)}{H_{0}} \quad 1+z=\frac{a_{0}}{a} \\
& E(z)^{2}=\Omega_{m}(1+z)^{3}+\Omega_{r}(1+z)^{4}+\Omega_{\Lambda}
\end{aligned}
$$

Linear perturbations

- Geometry (FRW metric + perturbations)

$$
d s^{2}=a(\eta)^{2}\left[-(1+2 \Psi) d \eta^{2}+(1-2 \Phi) d \vec{x}^{2}\right]
$$

- Matter

$$
\begin{aligned}
& T_{0}^{0}=-\rho_{m}\left(1+\delta_{m}\right) \\
& T_{i}^{0}=\rho_{m} v_{m_{i}}, \quad \partial^{i} v_{m i}=\theta_{m}
\end{aligned}
$$

Energy-momentum conservation (no interaction)

$$
\begin{aligned}
& \dot{\delta}_{m}-\frac{1}{a} \theta_{m}-3 \dot{\Phi}=0 \\
& \dot{\theta}_{m}+H \theta_{m}-\frac{k^{2}}{a^{2}} \Psi=0
\end{aligned}
$$

dark energy/modified gravity change the growth of structure formation

Observations -background

- Background $H(z)$

Supernovae: luminosity distance
CMB/Baryon Acoustic Oscillation (BAO): angular diameter distance (the sound horizon as a standard ruler)

ESA Planck

Observations

- Weak lensing

Bartelmann \& Schneider astro-ph/99I2508

$$
d s^{2}=a^{2}\left[-(1+2 \Psi) d \eta^{2}+(1-2 \Phi) \delta_{i j} d x^{i} d x^{j}\right]
$$

Convergence

$\kappa(\vec{n})=\int d \chi \frac{D_{S L} D_{L}}{D_{S}} \nabla_{\perp}{ }^{2} \phi_{W}\left(\eta_{0}-\chi, \chi \vec{n}\right), \quad \phi_{W}=\frac{1}{2}(\Psi+\Phi)$
Galaxy shape is determined by shear which can be computed from convergence

Observations

- Redshift distortions

$$
\vec{s}=\vec{r}+(\vec{v} \cdot \vec{n}) \vec{n} / H, \quad \vec{n}=\vec{r} / r
$$

galaxies have peculiar velocities clustering of galaxies in redshift space

$$
\begin{aligned}
& \text { is enhanced along the line of sight } \\
& \qquad \delta^{s}(k, \mu)=\delta_{m}(k)-\mu^{2} \theta_{m}(k), \quad \mu^{2}=\frac{(\vec{k} \cdot \vec{n}) \frac{2}{k^{2}}}{}
\end{aligned}
$$

If the continuity equation holds, the velocity dispersion is related to the growth rate

$$
\delta^{s}(k, \mu)=\delta_{m}(k)\left(1-\mu^{2} \frac{\theta_{m}(k)}{\delta_{m}(k)}\right)=\delta_{m}(k)\left(1+\mu^{2} f\right) \quad f=\frac{d \ln \delta_{m}}{d \ln a}
$$

Consistency relation

- In GR, gravitational equations are given by

$$
\begin{aligned}
& H^{2}=\frac{8 \pi G}{3} \rho_{T}, \quad \rho_{T}=\sum_{i} \rho_{i} \\
& \frac{k^{2}}{a^{2}} \Phi=4 \pi G a^{2} \rho_{T} \delta_{T}, \quad \rho_{T} \delta_{T}=\sum_{i} \rho_{i} \delta_{i}
\end{aligned}
$$

- Consistency relation

$$
\alpha(k, t)=\frac{2 k^{2}}{3 a^{2} H^{2}} \frac{(\Phi+\Psi)-\Psi}{\delta_{T}}=1 \quad \begin{gathered}
k^{2} \Psi=\frac{d\left(a \theta_{m}\right)}{d t} \\
\text { background } \\
\text { Weak lensing }
\end{gathered}
$$

We have just enough number of observations to check the relation

Parametrisation

- Background

$$
F\left(H^{2}\right)=\frac{8 \pi G}{3} \rho_{m} \quad \square \quad H^{2}=\frac{8 \pi G}{3}\left(\rho_{m}+\rho_{D E}\right)
$$

Equation of state $w_{D E}(z)=\frac{P_{D E}}{\rho_{D E}}$ can be ill-defined for modified gravity as $\rho_{D E}$ can vanish Instead, we can parametrise the effective dark energy density directly $\Omega_{D E}(z)=\frac{\rho_{D E(z)}}{\rho_{\text {crit }}}$

- Perturbations

$$
\begin{aligned}
& k^{2} \Psi=-4 \pi G a^{2} \mu(z, k) \rho_{m} \delta_{m} \quad: \text { Newton potential } \\
& k^{2}(\Psi+\Phi)=-8 \pi G a^{2} \Sigma(z, k) \rho_{m} \delta_{m}: \text { lensing potential }
\end{aligned}
$$

Current constraints

- Weak Lensing +Redshift space distortion

$$
\Sigma=1+\Sigma_{s} a^{s}, \quad \mu=1+\mu_{s} a^{s}
$$

Song et.al. PRD84 (201I) 083523

DESY3 arXiv: 2207.05766

From theory to data

- Effective theory of dark energy

General description of the background and linear perturbations in a scalar-tensor theory

$$
\begin{align*}
\mathcal{S} & =\int d^{4} x \sqrt{-g}\left\{\frac{m_{0}^{2}}{2} \Omega(t) R+\Lambda(t)-c(t) a^{2} \delta g^{00}\right. \\
& +\frac{M_{2}^{4}(t)}{2}\left(a^{2} \delta g^{00}\right)^{2}-\frac{\bar{M}_{1}^{3}(t)}{2} a^{2} \delta g^{00} \delta K_{\mu}^{\mu} \tag{GBD}\\
& +\frac{\bar{M}_{2}^{2}(t)}{2}\left[\left(\delta K_{\mu}^{\mu}\right)^{2}-\delta K_{\nu}^{\mu} \delta K_{\mu}^{\nu}-\frac{a^{2}}{2} \delta g^{00} \delta \mathcal{R}\right]+ \\
& +S_{m}\left[g_{\mu \nu}, \chi_{m}\right],
\end{align*}
$$

a random sample of these functions
H_{S}

$$
f(a)=\frac{\sum_{n=0}^{N} \alpha_{n}\left(a-a_{0}\right)^{n}}{1+\sum_{m=1}^{M} \beta_{m}\left(a-a_{0}\right)^{m}}
$$

HOR

The role of stability and observational prior

- Horndeski theory (the most general scalar tensor theory with $2^{\text {nd }}$ order e.o.m)

Stability condition removes this part

Observational prior removes this part

Model independent constraints

- Make bins

treat $\mu\left(k_{i}, z_{i}\right), \Sigma\left(k_{i}, z_{i}\right)$ in each bin as parameters Errors on these parameters are highly correlated

- Principal component analysis

Diagonalise the covariance matrix

$$
\begin{aligned}
& C_{p}=W \Lambda^{-1} W^{T}, \quad W=\left(\vec{e}_{1}, \vec{e}_{2}, \ldots,\right) \\
& p=\left\{\mu_{1}, \cdots, \Sigma_{1}, \ldots\right\}
\end{aligned}
$$

Uncorrelated parameter

$$
q_{i}=-1+\sum_{j} W_{i j} p_{j} / \sum_{j} W_{i j} \quad \text { GR: } q_{i}=0
$$

Theoretical prior

- High frequency modes

Reconstruction is prone to ill-constrained oscillating modes that depend on the size of bins

It can also suffer from over-fitting, i.e. reconstructed functions try to wiggle through data points

It requires a theoretical prior to set the smoothness of these functions

- Correlation between bins as well as functions from Horndeski theory

Correlation without prior introduced by binning

- Correlation after including observational constraints
c) spline posterior correlation

d) theory posterior correlation

"Tensions" with LCDM - Hubble constant Riess et.al. arXiv:20|2.08534
- Local measurement of Hubble constant

$$
\begin{aligned}
m & =M+25+5 \log _{10} D_{L}(z), & & 5 a=-\left(M+25-5 \log _{10} H_{0}\right) \\
& =-5 a+5 \log _{10} c \hat{d}_{L}(z) & & \hat{d}_{L}(z)=H_{0} D_{L}(z) / c
\end{aligned}
$$

m : apparent magnitude, M : absolute magnitude

- Pantheon SNe

$$
a_{B}=0.71273 \pm 0.00176
$$

Efstathiou arXiv:2I03.08723

- Local distance ladder measurement (SHOES)

$$
M_{B}^{0}=-19.253 \pm 0.027 \mathrm{mag}
$$

$\Rightarrow \mathrm{H}_{0}=73.04 \pm 1.04 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1} \quad$ Riess et.al. arXiv:2||2.04510

"Tensions" with LCDM - weak lensing

- Weak lensing

The amplitude of weak lensing is determined by the S8 parameters in LCDM

$$
S_{8} \equiv \sigma_{8} \sqrt{\Omega_{\mathrm{m}} / 0.3}
$$

σ_{8} : amplitude of fluctuations

The prediction from CMB is slightly larger than the values from WL surveys. Again, CMB constraint here assume LCDM

DES: https://www.darkenergysurvey.org/; HSC: https://www.naoj.org/Projects/HSC/; KiDS: http://kids.strw.leidenuniv.nl/DR3/lensing.php

"Tensions" with LCDM - CMB lensing in TT

- CMB temperature power spectrum

 The Planck CMB temperature power spectrum is well fitted by LCDM but at high ell, there are residual oscillationsCMB peaks are smeared out by CMB lensing. These residuals are well fitted if CMB lensing amplitude is larger than that in LCDM

$$
\tilde{C}_{\ell}^{\phi \phi}=A_{\mathrm{L}} C_{\ell}^{\phi \phi} \quad A_{\mathrm{L}}=1.243 \pm 0.096
$$

Planck 2018 arXiv:I807.06209

Reconstructed functions (late time modifications)

- Data Baseline: Planck 2018 (T, E, lensing) + BAO (eBOSS+) + SNe (Pantheon) RSD: eBOSS + BOSS

10 values (nodes) uniformly spaced in $a \in[1,0.25]$ DES: Dark Energy Survey year I
a) no theory prior

b) with Horndeski prior

$\Omega_{D E}(z)>\Omega_{D E}(0)$
Larger energy density of DE suppresses the growth of structure leading to smaller S8

Theoretical prior suppresses oscillations

[^0]Pogosian, Raveri, Martinelli, KK, Silvestri, Zhao 2107.12990, 2107.12992

Hubble constant tension

- Hubble constant tension

The luminosity distance inferred from CMB and BAO does not agree with the one calibrated from SNe with the prior on the absolute magnitude from the local distance ladder

This makes it hard for late time modifications to fully resolve the tension even though the fit can be improved from LCDM

Distance measurements from CMB and BAO assumes the sound horizon in LCDM at early times

---	Λ CDM	-	$\Lambda \mathrm{CDM}+M_{\mathrm{SN}}$
-	no theory prior	$\boldsymbol{\phi}$	Pantheon SN
-	with Horndeski prior	$\boldsymbol{\phi}$	BAO

Implications for tensions in extended cosmologies

- Extended cosmologies

$$
\Omega_{D E}(z), \mu(z), \Sigma(z)
$$

- Hubble constant tension

- It is not possible to resolve the tension fully due to the inconsistency with BAO

- Lensing anomalies

- CMB lensing anomaly can be resolved either by $\Sigma>1$ or $A_{L}>1$.
- Fit to DES cannot be improved even if S_{8} is lower if $\Sigma>1$ as $\Sigma \times S_{8}$ stays the same.
* We need $A_{L}>1$ to improve fit to DES

Hubble constant tension - early time solutions

- Reducing sound horizon

$$
r_{\star}=\int_{z_{\star}}^{\infty} c_{s}(z) \mathrm{d} z / H(z)
$$

early dark energy to increase $H(z)$
Poulin et.al. arXiv: I \& I I. 04083

$$
\left.f_{E D E}=\frac{\rho_{E D E}}{\rho} \quad \begin{array}{llll|}
\hline--~ & \Lambda \mathrm{CDM} & - & \Lambda \mathrm{CDM}+M_{\mathrm{SN}} \\
- & \text { no theory prior } \\
- & \text { with Horndeski prior }
\end{array}\right)
$$

Early dark energy

- CMB and Large Scale Structure

 larger Ω_{m}, n_{s} are required to fit CMB, which leads to a larger amplitude of $\mathrm{P}(\mathrm{k})$

Early dark energy/modified gravity

- Example

$$
S=\int \mathrm{d}^{4} x \sqrt{-g}\left[\frac{F(\sigma)}{2} R-\frac{g^{\mu \nu}}{2} \partial_{\mu} \sigma \partial_{\nu} \sigma-\Lambda-V(\sigma)\right]
$$

$$
F(\sigma)=M_{p l}^{2}+\xi \sigma^{2} \quad V(\sigma)=\lambda \sigma^{4} / 4
$$

[^1]
Conclusion

- Cosmological "tensions" in reconstructed gravity $\Omega_{X}(z), \mu(z), \Sigma(z)$
- Hubble constant tension $\left(\mathrm{H}_{0}\right)$
- Lensing anomalies in CMB $\left(\mathrm{A}_{\mathrm{L}}\right)$
- Weak lensing amplitude $\left(S_{8}\right)$

Late-time dynamical dark energy and modifications of gravity are not likely to offer a solution to the Hubble constant $\left(\mathrm{H}_{0}\right)$ tension, or simultaneously solve the A_{L} and S_{8} tensions.

Early time modifications are required to fully resolve the tensions (H_{0} and A_{L}) (some early time modifications, i.e. early DE make S_{8} tension worse)

[^0]: --- Λ CDM Baseline+RSD+DES - Baseline - Baseline+RSD+DES

[^1]: Braglia, Ballardini, Finelli, KK 20 I I.I 2934

