Probing inflation:

precision physics, exploratory physics, and formal aspects

Sébastien Renaux-Petel

CNRS - Institut d'Astrophysique de Paris

Conference PONT Avignon May 3rd 2023

Established by the European Commission

CMB

Reheating surface

A detective's work

LSS

Observations

Statistical properties

 $\mathbb{P}\left(rac{\delta
ho}{
ho},h_{ij}
ight)$

observational data

Physics of inflation?

theoretical data

"Data! data! data!"

Quantum + gravitational physics,

tested observationally!

Physics of inflation?

What is the mechanism driving inflation?

At which energy did inflation occur?

What is the particle content of inflation?

How is the inflationary energy transferred to Standard Model particles?

Did inflation happen in one go?

Alternatives to inflation?

Clues so far

Adiabatic

$$g_{ij} = a^2 e^{2\zeta} \delta_{ij}$$

Single fluctuating scalar degree of freedom left over

Almost scale-invariant

$$\Delta_{\zeta}^{2} = \frac{k^{3}}{2\pi^{2}} \langle \zeta_{\mathbf{k}} \zeta_{-\mathbf{k}} \rangle' = A_{s} \left(\frac{k}{k_{\star}}\right)^{n_{s}-1}$$

$$n_s = 0.9652 \pm 0.0042$$

Approximate time-translation invariance

Very gaussian

$$\frac{\langle \zeta \zeta \zeta \rangle}{\langle \zeta \zeta \rangle^{3/2}} < 10^{-3}$$

Weakly coupled theory

Primordial gravitational waves from B-modes polarization of CMB

$$\frac{\langle h_{ij}h^{ij}\rangle}{\langle \zeta\zeta\rangle} \lesssim 10^{-2}$$

Detection would be spectacular (hint about gravity at Planck scale)

No useful theoretical lower bound: B-modes may be forever out of reach

Simple fit: single-field slow-roll inflation, but it is not natural

$$\eta \equiv M_{\rm pl}^2 \frac{V_{,\phi\phi}}{V} \ll 1$$

Prolonged phase of inflation

Why is the inflaton so light? $\eta pprox \frac{m_\phi^2}{H^2} \ll 1$

$$\eta pprox rac{m_\phi^2}{H^2} \ll 1$$

like the Higgs hierarchy problem

$$m_{\phi}^2 \sim \Lambda_{ ext{cut-off}}^2 \gg H^2$$

Simple fit: single-field slow-roll inflation, but it is not natural

$$\mathcal{L} = -\frac{1}{2}(\partial\phi)^2 - V_0(\phi) + \sum_{\delta} \frac{\mathcal{O}_{\delta}(\phi)}{M^{\delta - 4}}$$

Slow-roll action

Corrections to the low-energy effective potential

$$rac{\Delta m_\phi^2}{H^2} \sim \left(rac{M_{
m Pl}}{M}
ight)^2$$

$$\Delta \eta \gtrsim 1$$

Planck-scale physics does not decouple

Symmetries do not help

Outline

I. Precision physics

II. Exploratory physics

III. Formal aspects

I. Precision physics

- Non-Gaussianities and Effective Field Theory of Inflationary fluctuations
- Imprints of extra fields
- Cosmological collider and low-speed collider

Primordial non-Gaussianities

Higher-order correlators: beyond free fields

measure of interactions

Cosmology

Particle physics

Goal: establish a standard model of inflation

Identify degrees of freedom, mass, dispersion relation, spin, interactions

Additional difficulty compared to particle physics: everything is, a priori, time-dependent

Bispectrum

$$\langle \zeta_{\boldsymbol{k}_1} \zeta_{\boldsymbol{k}_2} \zeta_{\boldsymbol{k}_3} \rangle = (2\pi)^3 \delta^{(3)}(\boldsymbol{k}_1 + \boldsymbol{k}_2 + \boldsymbol{k}_3) B_{\zeta}(k_1, k_2, k_3)$$
Homogeneity

Isotropy

$$B_{\zeta} \equiv (2\pi)^4 \frac{S(k_1, k_2, k_3)}{(k_1 k_2 k_3)^2} A_s^2$$

Amplitude $S \sim f_{\rm NL}$

Scale-dependence (overall size)

Shape dependence (configuration of triangles)

Effective Field Theory of Inflationary Fluctuations

Formulation of theories straight at the level of fluctuations

Source of inflation

Direct link with observations, sytematic, symmetries manifest

Preferred space-like foliation (existence of clock) breaks time reparametrization invariance

Guaranteed: Goldstone boson

 $\pi(\boldsymbol{x},t)$ fluctuation of the clock field

$$\zeta = -H\pi + \dots$$

Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore [2008]

Vanilla EFT and equilateral/orthogonal non-Gaussianities

$$\mathcal{L}_{\pi}/a^{3} = \frac{M_{\rm pl}^{2}|\dot{H}|}{c_{s}^{2}} \left[\dot{\pi}^{2} - c_{s}^{2} \frac{(\partial_{i}\pi)^{2}}{a^{2}} + (1 - c_{s}^{2}) \left(\dot{\pi}^{3} - \dot{\pi} \frac{(\partial_{i}\pi)^{2}}{a^{2}} \right) - \frac{4}{3} M_{3}^{4} \frac{c_{s}^{2}}{M_{\rm pl}^{2}|\dot{H}|} \dot{\pi}^{3} \right]$$

Non-linearly realised symmetry $\longrightarrow f_{\rm NL}^{\rm eq} \sim \frac{1}{c^2} - 1$

$$f_{\rm NL}^{\rm eq} = -26 \pm 47$$
 $f_{\rm NL}^{\rm orth} = -38 \pm 24$
 $c_s \ge 0.021$

 $f_{
m NL}^{
m eq} \sim 1$ threshold for slow-roll dynamics

Planck 2018 (68% CL)

$$f_{\rm NL} = \mathcal{O}(\epsilon,\eta) \sim 10^{-2}$$
 gravitational floor Maldacena (03)

Imprints of additional degrees of freedom

Imprints of additional degrees of freedom

Local shape

$$f_{\rm NL}^{\rm loc} = -0.9 \pm 5.1$$

Not possible in single-clock inflation:

$$S \propto \kappa \atop \kappa \ll 1$$

Maldacena, Creminelli, Zaldarriaga, Tanaka, Urakawa, Pajer, Schmidt ...

Special role of massless fields they do not decay

Detection via scale-dependent bias

Dalal et al [2008]

Prospects

Huge efforts with CMB-S4 &

large-scale structure surveys

(scale-dependent bias, EFT of LSS, position space maps, simulation based inference etc)

Long-term: 21cm radio-astronomy from the far side of the moon! (dark ages)

See talks by Matthieu Tristam, Giovanni Cabass, Guido D'Amico

Cosmological collider physics

4pt

Chen, Wang 2009
Baumann Green 2011
Noumi, Yamaguchi, Yokohama 2012
Arkani-Hamed, Maldacena 2015
Lee, Bauman, Pimentel 2016
Arkani-Hamed, Baumann, Lee, Pimentel 2018
+ many works

Cosmological collider: « a robust probe of field content of inflation »?

Chen, Wang 2009 Noumi, Yamaguchi, Yokohama 2012 Arkani-Hamed, Maldacena 2015 + many works

As robust probe as assumptions are restrictive:

unique additional dof, weakly mixed, scale-invariant

Cosmological collider signatures beyond restrictive assumptions

(personal works)

Mass mixing

Strong mixing

Time-dependent mixing

Inflationary flavor oscillations

Breaking degeneracies weak/strong mixing

Soft limits complementary to equilateral to diagnose features

Werth, Pinol, Renaux-Petel [2023 a,b]

Is that it for theorists?

Beyond what I said: features, excited states ...

The Planck team constrained a high number of shapes

Physics of inflation?

Statistical properties

$$\mathbb{P}\left(\zeta\right)$$

Fergusson, Shellard modal decomposition

Theorists' task

Building dictionary

Identifying targets worth measuring

Is the dictionary complete?!

No: cosmological flow approach. see Denis Werth's talk

Interesting targets not yet identified?!

Detection of large Equilateral NG, what is next? Low-speed collider as next target

New discovery channel of heavy fields with $m < H/c_s$

II. Exploratory physics

- Primordial Black Holes(PBH) and Stochastic Gravitational Wave Backgrounds (SGWB) as probes of dark era of inflation
- Motivations for non-vanilla inflation
- SGWB from active sources

Context

Precision physics

Exploratory physics

Inflation as a cosmological collider

Probing dark inflationary era with gravitational waves and PBH

Context: GW astronomy

Have Primordial Black Holes been

already detected? Data will tell

Large activity.
Soon PBH review from LISA CosWG

Large primordial overdensities

Boosted power spectrum on small scales and nontrivial dynamics of inflation

Inflation on small scales?

Inflation on small scales?

Inflation on small scales?

Taking theory seriously

A prolonged phase of smooth 60 e-folds of inflation is not natural (eta-problem)

More natural for inflation to have occurred in successive phases with different properties

Ultra slow-roll, hybrid-type transitions, sharp turns, etc

GW from inflation, which ones?

Vacuum quantum fluctuations

$$h^2 \Omega_{\rm GW} \sim 10^{-6} \frac{H^2}{M_{\rm Pl}^2}$$

 $\Box h = 0$

Tiny signals for interferometers

GW from active sources

GW generated by nonlinear processes

$$\Box h \sim (\partial \zeta)^2$$

Sensitive to field content and dynamics of inflation

Only sensitive to primordial fluctuations left over after inflation (+ thermal history)

Less studied, more model-dependent Not less relevant

Studied in detail

Review Domenech 2021

Vast activity

Correlation with other probes

 $GW \times (CMB, LSS)$

Frequency profile

 $\Omega_{\mathrm{GW}}(f)$

GW Primordial Cosmology

SGWB anisotropies

 $\Omega_{\mathrm{GW}}(f,\hat{n})$

Chirality

$$h_{+} \neq h_{\times}$$

Gravitational-Wave Primordial Cosmology

12–14 déc. 2022 Centro Universitario Padovano

Padova

Messengers of the very early universe: Gravitational Waves and Primordial Black Holes

Post-inflationary scalar-induced GWs

$$\Box h \sim (\partial \zeta)^2 \longrightarrow \Omega_{\rm GW}(f) \sim \int \int \mathcal{P}_{\zeta} \otimes \mathcal{P}_{\zeta} \sim 10^{-5} \, \mathcal{P}_{\zeta}^2$$

$$\mathcal{P}_{\zeta} \sim 10^{-4} \longrightarrow \Omega_{\rm GW} \gtrsim 10^{-13} \quad \text{LISA}$$

GW frequency

temperature @ production

time during inflation

(non-inflation source)
Caprini's talk

(inflation source)

 $N_{\rm f} = {\rm time\ of\ feature\ after\ horizon\ exit\ of\ CMB\ modes}$

Example of SGWB from sharp features

A sharp event during inflation leads to smoking gun oscillatory signatures for the two types of scalar-induced GWs

Oscillatory patterns in SGWB frequency profile

Model-independent: frequencies indicate time of feature

Motivated target of new physics

Fumagalli, RP, Witkowski et al (2020,2021) several more aspects:

general formalism for GW during inflation resonant features expansion history after inflation detectability with LISA

Some open questions

Impact of trispectrum on post-inflationary scalar-induced GW?

$$\langle h^2 \rangle$$
 sourced by $\langle \zeta^4 \rangle \sim \langle \zeta^2 \rangle^2 + \langle \zeta^4 \rangle_c$

Unal 18
Atal, Domenech 21
Adshead, Lozanov, Weiner 21

No-go: theoretical consistency imposes negligible effect in simple situations

Garcia-Saenz, Pinol, Renaux-Petel, Werth 22

 Theoretical consistency of scenarios with boosted power spectrum: back reaction, perturbative control, loops

> Fumagalli, Renaux-Petel, Witkowski 20 Inomata, Braglia, Chen 22

III. Formal aspects

- Cosmological bootstrap
- Beyond perturbation theory

The Cosmological bootstrap

Snowmass review, Baumann et al 2022

Study of primordial correlators using basic physical principles of locality, analyticity and unitarity (and symmetries).

Surprisingly constraining! Active field.

$$\langle \varphi(\boldsymbol{x}_1) \dots \varphi(\boldsymbol{x}_n) \rangle = \int \mathcal{D}\varphi \, \varphi(\boldsymbol{x}_1) \dots \varphi(\boldsymbol{x}_n) |\Psi(\varphi)|^2$$

Correlators

Wavefunction

$$\Psi(\varphi) = \exp\left[\sum_{n\geq 2} \frac{1}{n!} \int \prod d\mathbf{k}_i \delta(\sum \mathbf{k}_i) \varphi_{\mathbf{k}_1} \dots \varphi_{\mathbf{k}_n} \psi_n(\mathbf{k}_i)\right]$$

Wavefunction similar to S-matrix for particle physics

Wavefunction coefficients (perturbation theory)

Locality

Well known:

Momentum dependence of correlation functions encode time dependence during inflation

Differential equation in time verified by mode functions

$$O(\partial_{\eta})\varphi^{a}(k\eta) = 0$$

Differential equation in momentum space verified by correlators

$$\tilde{O}(\partial_{k_i})\langle \zeta_{k_1} \dots \zeta_{k_n} \rangle = 0$$

Analyticity/Singularities

Singularities of analytically continued wavefunction coefficients constrain physical region

Total energy singularity

$$\lim_{E = \sum k_i \to 0} \psi_n = \frac{iA_n}{E^{\alpha}}$$

Interactions pushed back at infinite past

flat space amplitude

Maldacena, Pimentel 2011 Raju, 2012

Unitarity

« Conservation of probabilities »

Unitary time evolution

$$UU^{\dagger} = 1$$

Identities relating different orders of wavefunction coefficients

Cosmological optical theorem and cutting rules

$$U = 1 + \delta U$$

$$\delta U + \delta U^{\dagger} = -\delta U \delta U^{\dagger}$$

Goodhew, Jazayeri, Pajer 2020 Baumann et al 2021 Melville, Pajer 2023

• •

4 pt of graviton GR in dS space

3 and 4 pt single-exchange de Sitter invariant

3 and 4 pt single-exchange de Sitter boost broken (large NGs)

Pimentel, Wang 2022 Jazayeri, Renaux-Petel 2022 3 pt single-field EFT of inflation

Pajer 2020

Infrared divergences

Secular divergences
$$\lambda N^2 + (\lambda N^2)^2 + \dots$$

e.g.
$$\lambda arphi^4$$

number of e-folds

Small coupling constant

Perturbation theory fails at late times

Resummation with stochastic formalism

Starobinsky, 86

$$\frac{\mathrm{d}\varphi}{\mathrm{d}N} = -\frac{V'(\varphi)}{3H^2} + \frac{H}{2\pi}\xi$$
 super-Hubble coarse-grained field Quantum (gaussian white noise) Classical

Tail of pdf Stochastic $\delta \mathcal{N}$ (useful for PBH) 1 pt pdf $\mathbb{P}[\zeta]$ Ezquiaga, Garcia-Bellido, Vennin 2019 Fujita, Kawasaki, Tada, Takesako 2013, 2014 Achucarro, Cespedes, Davis, Palma 2021 Vennin, Starobinsky 2015 Chen, Palma, Riquelme, Hitschfeld, Sypsas 2018 Some IR divergence developments

Systematic corrections to stochastic formalism

Gorbenko, Senatore, Baumgart, Sundrum, Mirbabayi, Cohen, Green, Premkumar 2019-2022

Manifestly covariant formulation

Pinol, Renaux-Petel, Tada 2019, 2020

Full non-perturbative tail of wavefunction

Celoria, Creminelli, Tambalo, Yingcharoenrat 2021

Resummation of all tree-level non-linearities, with negligible loop effects

Oscillations on the tail from resonant features

Creminelli, Renaux-Petel, Tambalo, Yingcharoenrat 2023

Conclusion

No immediate motivation from observations has led to burst of new ideas

Precision physics

Exploratory physics

Formal aspects

Non-Gaussianities as cosmological collider to establish standard model of inflation

SGWB and PBH as probe of unknown dark era of inflation

Many developments building bridges with other fields

New approaches, new targets, new questions

Exciting times for inflationary cosmology

