ACDM is alive and well!

A. Blanchard, J.-Y. Héloret, B.Lamine, S. Ilić, I.Tutusaus

Avignon, May 4th, 2023

\rightarrow predictive

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 $\rightarrow {\rm predictive}$

 \rightarrow accurate parameters determination \sim % precision.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

 $\rightarrow \text{ predictive}$

ightarrow accurate parameters determination \sim % precision.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

Tensions.

 $\rightarrow \text{ predictive}$

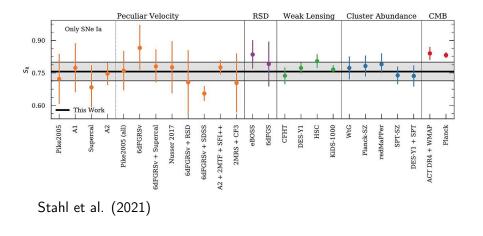
ightarrow accurate parameters determination \sim % precision.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

Tensions. *H*₀

 $\rightarrow \text{ predictive}$

ightarrow accurate parameters determination \sim % precision.


・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

Tensions.

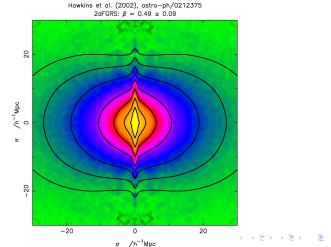
 H_0

 S_8

The amplitude of matter fluctuations tension, i.e. S_8 tension.

▲日 ◆● ◆目 ◆目 ◆目 ◆ ● ◆

weak lensing


- weak lensing
- cluster abundance

- weak lensing
- cluster abundance + mass calibration (1 b)

- weak lensing
- cluster abundance + mass calibration (1 b)

• RSD (redshift space distorsion)

- weak lensing
- cluster abundance + mass calibration (1 b)
- RSD (redshift space distorsion) $| \rightarrow f \sigma_8 |$

Next step: SZ Clusters & eBOSS RSD

Recipe:

Next step: SZ Clusters & eBOSS RSD

Recipe:

• use only "local" data i.e. $z \ll 1000$

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへで

• use only "local" data i.e. $z \ll 1000$

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへで

• work in the ACDM framework.

Next step: SZ Clusters & eBOSS RSD

Recipe:

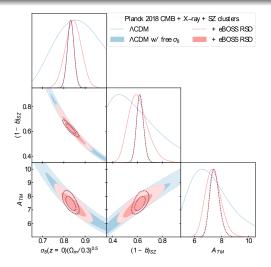
• use only "local" data i.e. $z \ll 1000$

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへで

- work in the ACDM framework.
- eBOSS RSD

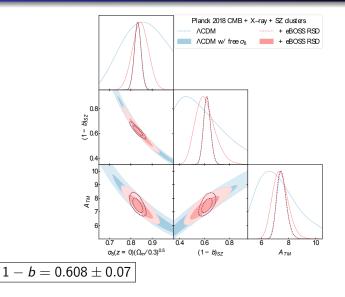
• use only "local" data i.e. $z \ll 1000$

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへで

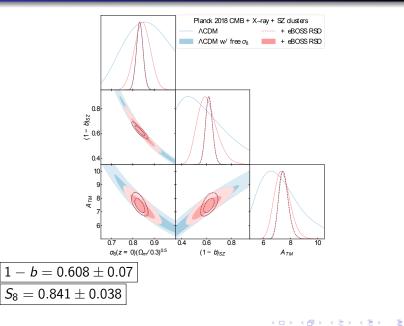

- work in the ACDM framework.
- eBOSS RSD
- Planck SZ clusters counts

• use only "local" data i.e. $z \ll 1000$

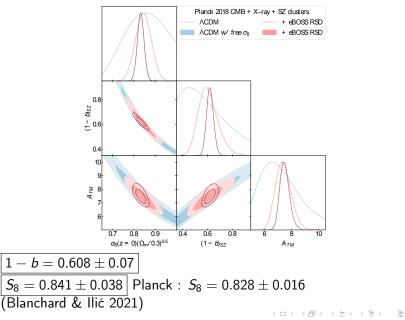
- work in the ACDM framework.
- eBOSS RSD
- Planck SZ clusters counts
- 1 b as a free parameter.


- use only "local" data i.e. $z \ll 1000$
- work in the ACDM framework.
- eBOSS RSD
- Planck SZ clusters counts
- 1 b as a free parameter.
- Cosmological parameters from Planck CMB but σ_8

Constraining 1-b, σ_8 , S_8



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで


Constraining 1 - b, σ_8 , S_8

Constraining 1 - b, σ_8 , S_8

Constraining 1 - b, σ_8 , S_8

New cluster calibration: ACT DR5

arXiv:2304.10219

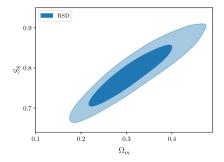
$1-b = 0.65 \pm 0.05$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

arXiv:2304.10219

$$1-b = 0.65 \pm 0.05$$

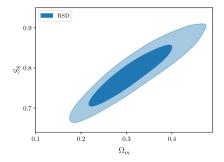
This translates to :


$$S_8 = 0.818 \pm 0.027$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

One step further: RSD from surveys

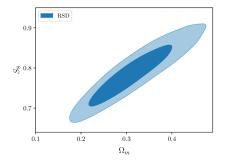
Survey	\mathbf{z}	$\mathrm{f}\sigma_8$	Refs
2MFT	0.001	0.51 + / -0.085	[19]
6dFGS	0.067	0.423 + / -0.055	[20]
SDSS DR13	0.1	0.48 + / -0.16	[21]
2dFGRS	0.17	0.51 + / -0.06	[22]
GAMA	0.18	0.36 + / - 0.09	[23]
WiggleZ	0.22	0.42 + / -0.07	[24]
SDSS LRG60	0.25	0.35 + / - 0.06	[25]
BOSS LOW Z	0.32	0.48 + / - 0.1	[26]
GAMA	0.36	0.44 + / - 0.06	[23]
SDSS LRG 200	0.37	0.46 + / - 0.04	[25]
WiggleZ	0.41	0.45 + / -0.04	[24]
CMASS BOSS	0.57	0.453 + / -0.02	[27]
WiggleZ	0.6	0.43 + / -0.04	[24]
VIPERS	0.6	0.48 + / -0.12	[28]
SDSS IV	0.69	0.447 + / -0.039	[29]
VIPERS	0.76	0.44 + / -0.04	[30]
SDSS IV	0.77	0.432 + / -0.038	[31]
WiggleZ	0.78	0.38 + / -0.04	[24]
SDSS IV	0.85	0.52 + / -0.10	[32]
VIPERS	0.86	0.48 + / -0.10	[28]
SDSS IV	0.978	0.379 + / -0.176	[31]
SDSS IV	1.23	0.385 + / - 0.1	[31]
Fastsound	1.4	0.494 + / -0.123	[33]
SDSS IV	1.52	0.426 + /-0.077	[34]
SDSS IV	1.944	0.364 + / -0.106	[31]


RSD from surveys: constraints

・ロト ・聞と ・ヨト ・ヨト

æ

RSD from surveys: constraints

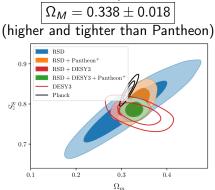


・ロト ・日下 ・日下

3 x 3

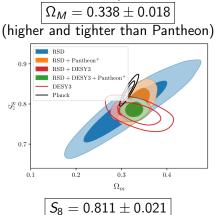
Not surprisingly strong degeneracy

RSD from surveys: constraints



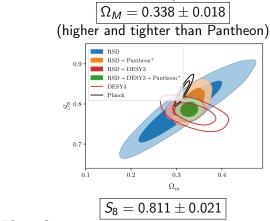
3 🖒 3

Not surprisingly strong degeneracy Need to combine with other low - z data


Pantheon+: SNIa Hubble diagram (Brout et al., 2022), for Λ CDM): $\Omega_M = 0.338 \pm 0.018$

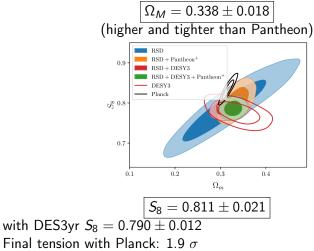
Pantheon+: SNIa Hubble diagram (Brout et al., 2022), for ACDM):

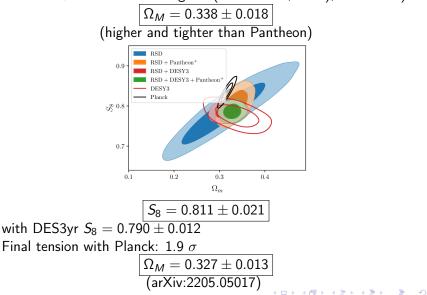
・ロト ・四ト ・ヨト ・ヨト

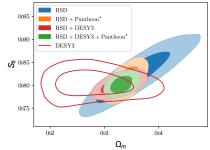

Pantheon+: SNIa Hubble diagram (Brout et al., 2022), for ACDM):

< ロ > < 得 > < き > < き > ・

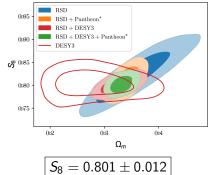
Pantheon+: SNIa Hubble diagram (Brout et al., 2022), for ACDM):

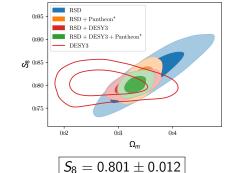

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >


with DES3yr $S_8 = 0.790 \pm 0.012$


Pantheon+: SNIa Hubble diagram (Brout et al., 2022), for ACDM):

(日) (圖) (臣) (臣)

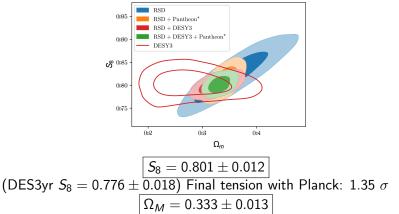

Pantheon+: SNIa Hubble diagram (Brout et al., 2022), for ACDM):


・ロト ・聞ト ・ヨト ・ヨト

э

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─

э



(DES3yr $S_8 = 0.776 \pm 0.018$) Final tension with Planck: 1.35 σ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ -

э

Avignon 04/05/2023

Last word on S_8 : ACT DR5

Avignon 04/05/2023

DR6 Gravitational Lensing Map and Cosmological Parameters (arXiv:2304.05203v1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

DR6 Gravitational Lensing Map and Cosmological Parameters (arXiv:2304.05203v1)

 $S_8 = 0.831 \pm 0.023$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

DR6 Gravitational Lensing Map and Cosmological Parameters (arXiv:2304.05203v1)

$$S_8 = 0.831 \pm 0.023$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Conclusion:

DR6 Gravitational Lensing Map and Cosmological Parameters (arXiv:2304.05203v1)

$$S_8 = 0.831 \pm 0.023$$

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

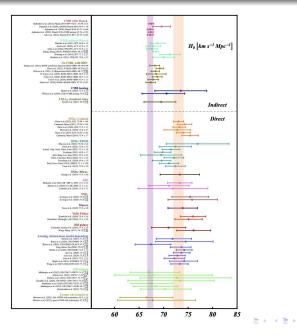
Conclusion:

Four pieces of evidence for low z $S_8 \sim 0.81 \ (\pm 0.01)$

Avignon 04/05/2023

DR6 Gravitational Lensing Map and Cosmological Parameters (arXiv:2304.05203v1)

$$S_8 = 0.831 \pm 0.023$$


▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

Conclusion:

Four pieces of evidence for low z $S_8 \sim 0.81~(\pm 0.01)$

Consistent with LCDM Planck normalized!

H_0 tension

э

Avignon 04/05/2023

Measuring the Tension

Avignon 04/05/2023

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - 釣A@

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

$$\chi^2 = \sum \frac{(H_0 - \alpha_i \times H_{0,i})^2}{\sigma_i^2} \tag{1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

With H_0 from **SH0ES**, **TF**, **SBF**, CCHP, MCP, Miras, BAO, Planck

$$\chi^2 = \sum \frac{(H_0 - \alpha_i \times H_{0,i})^2}{\sigma_i^2} \tag{1}$$

With H_0 from **SH0ES**, **TF**, **SBF**, CCHP, MCP, Miras, BAO, Planck

Akaike Information Criterium (AIC):

$$\Delta \text{AIC} = \Delta \chi^2 + 2\Delta p \,. \tag{2}$$

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

for model comparison.

Avignon 04/05/2023

Model	χ^2	ΔΑΙΟ	
ΛCDM	37.0	-	

Model	χ^2	ΔΑΙϹ	
ΛCDM	37.0	_	
ACDM E1	17.3	-17.7	Riess

Model	χ^2	ΔΑΙϹ	
ΛCDM	37.0	_	
ACDM E1	17.3	-17.7	Riess
ACDM E2	6.7	-26.3	Cepheids

Model	χ^2	ΔΑΙϹ	
ΛCDM	37.0	_	
ACDM E1	17.3	-17.7	Riess
ACDM E2	6.7	-26.3	Cepheids
ACDM E3	34.4	-0.6	BAO

Model	χ^2	ΔΑΙΟ	
ΛCDM	37.0	-	
ACDM E1	17.3	-17.7	Riess
ACDM E2	6.7	-26.3	Cepheids
ACDM E3	34.4	-0.6	BAO
ACDM E4	19.2	-15.76	Planck

Model	χ^2	ΔΑΙϹ	
ΛCDM	37.0	_	
ACDM E1	17.3	-17.7	Riess
ACDM E2	6.7	-26.3	Cepheids
ACDM E3	34.4	-0.6	BAO
ACDM E4	19.2	-15.76	Planck
ACDM E5	4.3	-30.7	Planck +BAO

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Conclusion: The E2 model is performing better than any alternative published model to solve the H_0 tension!

$\Omega_{\textit{M}}=0.327\pm0.013$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Avignon 04/05/2023

$\Omega_{\textit{M}}=0.327\pm0.013$

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへで

using SH0ES: $H_0 = 73.3 \pm 1.04 \text{ km/s/Mpc}$

$$\Omega_M = 0.327 \pm 0.013$$

using SH0ES: $H_0 = 73.3 \pm 1.04$ km/s/Mpc we can infer :

 $\omega_{\textit{M}}=0.1753\pm0.0069$

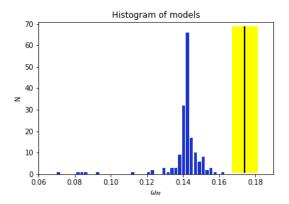
$$\Omega_M = 0.327 \pm 0.013$$

using SH0ES: $H_0 = 73.3 \pm 1.04$ km/s/Mpc we can infer :

 $\omega_{\textit{M}}=0.1753\pm0.0069$

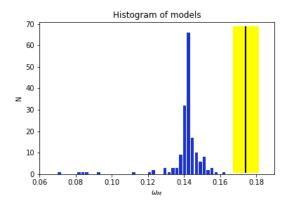
compared to Planck (+ext):

$$\omega_M = 0.1425 \pm 0.0012$$


▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

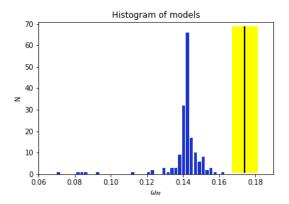
4.7 σ away for ΛCDM

Let's take the \sim 200 models summarized in Di Valentino et al. (2021) In the realm of the Hubble tension – a review of solutions


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let's take the \sim 200 models summarized in Di Valentino et al. (2021) In the realm of the Hubble tension – a review of solutions

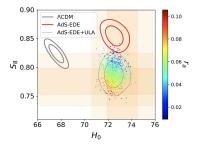
ヘロト ヘアト ヘリト ヘ


Let's take the \sim 200 models summarized in Di Valentino et al. (2021) In the realm of the Hubble tension – a review of solutions

< ロ > < 同 > < 回 > < 回 > < 回 > <

Take the recent EDS model :

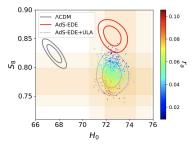
Let's take the \sim 200 models summarized in Di Valentino et al. (2021) In the realm of the Hubble tension – a review of solutions



Take the recent EDS model : $\omega_M = 0.128 \pm 0.0037 \ 3\sigma$ away with this test (and all published EDE models).

arXiv:2107.13391v2: EDE+ ultralight axion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □


arXiv:2107.13391v2: EDE+ ultralight axion

・ロト ・日下 ・日下

3 x 3

arXiv:2107.13391v2: EDE+ ultralight axion

∃ >

However ω_m value > 2.6 σ away.

Conclusions

• ACDM is a 40-years old theory that matches remarkably well data at cosmological scales.

Conclusions

• ACDM is a 40-years old theory that matches remarkably well data at cosmological scales.

• Tensions are a serious concern anyway.

Conclusions

- ACDM is a 40-years old theory that matches remarkably well data at cosmological scales.
- Tensions are a serious concern anyway.
- S_8 tension seems not strong enough, i.e. no significant tension!

- ACDM is a 40-years old theory that matches remarkably well data at cosmological scales.
- Tensions are a serious concern anyway.
- S_8 tension seems not strong enough, i.e. no significant tension!
- A bias in Cepheid scale is preferred over existing alternatives to ΛCDM .

- ACDM is a 40-years old theory that matches remarkably well data at cosmological scales.
- Tensions are a serious concern anyway.
- S_8 tension seems not strong enough, i.e. no significant tension!
- A bias in Cepheid scale is preferred over existing alternatives to $\Lambda\text{CDM}.$
- \bullet Low redshift universe seems to have $\Omega_M\sim 0.32$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

- ACDM is a 40-years old theory that matches remarkably well data at cosmological scales.
- Tensions are a serious concern anyway.
- S_8 tension seems not strong enough, i.e. no significant tension!
- A bias in Cepheid scale is preferred over existing alternatives to $\Lambda\text{CDM}.$
- \bullet Low redshift universe seems to have $\Omega_M\sim 0.32$
- This means for $H_0 \sim 73$, ω_M provides a metric for extensions likely to be more discriminant (than on H_0).

ション ふゆ メ リン イロン シックション

- ACDM is a 40-years old theory that matches remarkably well data at cosmological scales.
- Tensions are a serious concern anyway.
- S_8 tension seems not strong enough, i.e. no significant tension!
- A bias in Cepheid scale is preferred over existing alternatives to $\Lambda\text{CDM}.$
- \bullet Low redshift universe seems to have $\Omega_M\sim 0.32$
- This means for $H_0 \sim 73$, ω_M provides a metric for extensions likely to be more discriminant (than on H_0).

Thank You ADDARD ED SOUCH