Coupling Metric-Affine Gravity to a Higgs-Like Scalar Field

Claire Rigouzzo ${ }^{1}$
${ }^{1}$ Theoretical Particle Physics and Cosmology, King's College London, WC2R 2LS, UK

Coupling Metric-Affine Gravity to a Higgs-Like Scalar Field

Claire Rigouzzo, ${ }^{a}$ Sebastian Zell ${ }^{a}$
${ }^{a}$ Institue of Physics, Laboratory for Particle Physics and Cosmology,
École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Coupling Metric-Affine Gravity to a Higgs-Like Scalar Field

Claire Rigouzzo, ${ }^{a}$ Sebastian Zell ${ }^{a}$
${ }^{a}$ Institue of Physics, Laboratory for Particle Physics and Cosmology,
École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

1. Different Formulations of Gravity

Coupling Metric-Affine Gravity

to a Higgs-Like Scalar Field

Claire Rigouzzo, ${ }^{a}$ Sebastian Zell ${ }^{a}$
${ }^{a}$ Institue of Physics, Laboratory for Particle Physics and Cosmology, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

1. Different Formulations of Gravity
2. Breaking the Equivalence Between the Different Formulations

Coupling Metric-Affine Gravity
 to a Higgs-Like Scalar Field

Claire Rigouzzo, ${ }^{a}$ Sebastian Zell ${ }^{a}$
${ }^{a}$ Institue of Physics, Laboratory for Particle Physics and Cosmology,
École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

1. Different Formulations of Gravity
2. Breaking the Equivalence Between the Different Formulations
3. Phenomenology of Higgs Inflation

- In the line of research of alternative formulation of gravity

\neq
modified theories of gravity

- In the line of research of alternative formulation of gravity

$$
\neq
$$

modified theories of gravity

- Historical motivation:

I. DIFFERENT FORMULATIONS OF GRAVITY
A. Metric Gravity

Degrees of freedom: $g_{\mu \nu}$

The connection is uniquely determined by the metric:

$$
\stackrel{\circ}{\Gamma}_{\beta \gamma}^{\alpha}=\frac{1}{2} g^{\alpha \mu}\left(\partial_{\beta} g_{\mu \gamma}+\partial_{\gamma} g_{\mu \beta}-\partial_{\mu} g_{\beta \gamma}\right)
$$

I. DIFFERENT FORMULATIONS OF GRAVITY
B. Palatini Gravity

Degrees of freedom: $\left\{g_{\mu \nu}, \Gamma_{(\beta \gamma)}^{\alpha}\right\}$

The connection is no longer determined by the metric, they are a priori independent.
I. DIFFERENT FORMULATIONS OF GRAVITY
C. Einstein-Cartan Gravity

Degrees of freedom: $\left\{g_{\mu \nu}, \Gamma_{\beta \gamma}^{\alpha}\right\}$
$\Gamma^{\alpha}{ }_{\beta \gamma}$ need not be symmetric in the last indices

$$
\Rightarrow \text { Torsion: }
$$

$$
T_{\beta \gamma}^{\alpha}=\Gamma_{[\beta \gamma]}^{\alpha}
$$

I. DIFFERENT FORMULATIONS OF GRAVITY
D. Metric-Affine Gravity

Degrees of freedom: $\left\{g_{\mu \nu}, \Gamma^{\alpha}{ }_{\beta \gamma}\right\}$

Most general formulation of gravity
\Rightarrow Non-metricity:

$$
Q_{\alpha \beta \gamma}=\nabla_{\alpha} g_{\beta \gamma}
$$

I. DIFFERENT FORMULATIONS OF GRAVITY
E. Summary

Figure 1: Schematic representation of the change of a vector under parallel transport due to the presence of: a) curvature b) torsion c) non-metricity.

I. DIFFERENT FORMULATIONS OF GRAVITY

E. Summary

Figure 2: Relation between ALL different formulations of gravity.

> Are they equivalent?

If not, what are the phenomenological consequences? Can we measure it?
II. BREAKING THE EQUIVALENCE BETWEEN THE DIFFERENT FORMULATIONS
A. Higher derivatives

$$
S=\int d^{4} x \sqrt{-g}\left[R+a_{1} R^{2}+a_{2} R^{\mu \nu} R_{\mu \nu}+\ldots\right.
$$

Schematically, the equivalence is broken due to symmetry properties of the Riemann tensor :
II. BREAKING THE EQUIVALENCE BETWEEN THE DIFFERENT FORMULATIONS
A. Higher derivatives

	Metric	Einstein-Cartan	Metric-affine
$R_{a b[c d]}$	\checkmark	\checkmark	\checkmark
$R_{[a b] c d}$	\checkmark	\checkmark	X
$R_{(a b)(c d)}$	\checkmark	X	X
$R_{a[b c d]}=0$	\checkmark	X	X

Table I: Properties of Riemann tensor
e.g: In the metric-affine formalism, we can write a term like :

$$
S=\int d^{4} x \sqrt{-g} R_{\alpha \beta \gamma}^{\alpha} R_{\mu}^{\mu \beta \gamma}
$$

II. BREAKING THE EQUIVALENCE BETWEEN THE DIFFERENT FORMULATIONS

A. Higher derivatives

$$
S=\int d^{4} x \sqrt{-g}\left[R+a_{1} R^{2}+a_{2} R^{\mu \nu} R_{\mu \nu}+\ldots\right.
$$

Few remarks:
(a) New propagating d.o.fs \Rightarrow quite a big deviation from GR.
(b) Some may be healthy, some unhealthy (ghosts or tachyons) [1]
II. BREAKING THE EQUIVALENCE BETWEEN THE DIFFERENT FORMULATIONS
B. Matter coupled to gravity

$$
S=\int d^{4} x \sqrt{-g}\left(1+\xi \phi^{2}\right) R+S_{\phi}
$$

Few remarks:
(a) Non-minimal coupling terms come naturally when considering renormalization properties of a scalar field in a curved spacetime background [2].
(b) Gravity sector stays the same \Rightarrow no new propagating d.o.fs \Rightarrow minimal deformation to GR.
II. BREAKING THE EQUIVALENCE BETWEEN THE DIFFERENT FORMULATIONS
B. Matter coupled to gravity

Conclusion: different formulations are no longer equivalent when the action is more complicated.
III. PHENOMENOLOGY OF HIGGS INFLATION
A. Motivation

- Matter field \Rightarrow different formulations are no longer equivalent.
- Choose the most general formulation, i.e metric-affine.

Presence of curvature, torsion and non-metricity

- Torsion and non-metricity are non-dynamical (no kinetic terms).
- They correspond to high energy effects.

Inflation
III. PHENOMENOLOGY OF HIGGS INFLATION
B. Recap of Higgs inflation

- Data from LHC:

$$
V(h)=\frac{1}{2} \mu^{2} h^{2}+\frac{\lambda h^{4}}{4}
$$

with $\mu \simeq 125 \mathrm{GeV}$ and $\lambda \simeq 0.13$.

- At high energies, we assume:

$$
V(h) \simeq \frac{\lambda h^{4}}{4} .
$$

III. PHENOMENOLOGY OF HIGGS INFLATION
B. Recap of Higgs inflation

[3] F. Bezrukov, M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, 0710.3755
III. PHENOMENOLOGY OF HIGGS INFLATION
C. The theory, and its consequences

Steps followed in the paper:

1. Write down the most general action including torsion and non-metricity.

III. PHENOMENOLOGY OF HIGGS INFLATION

C. The theory, and its consequences

> Steps followed in the paper:

1. Write down the most general action including torsion and non-metricity.

$$
\begin{aligned}
S= & \int \mathrm{d}^{4} x \sqrt{-g}\left[\frac{1}{2}\left(1+\xi h^{2}\right) \stackrel{\circ}{R}-\frac{1}{2} \tilde{K}(h) g^{\alpha \beta} \partial_{\alpha} h \partial_{\beta} h-V(h)\right. \\
& +A_{1}(h) \nabla_{\alpha} \hat{T}^{\alpha}+A_{2}(h) \dot{\nabla}_{\alpha} T^{\alpha}+A_{3}(h) \dot{\nabla}_{\alpha} \hat{Q}^{\alpha}+A_{4}(h) \dot{\nabla}_{\alpha} Q^{\alpha} \\
& +B_{1}(h) Q_{\alpha} Q^{\alpha}+B_{2}(h) \hat{Q}_{\alpha} \hat{Q}^{\alpha}+B_{3}(h) Q_{\alpha} \hat{Q}^{\alpha}+B_{4}(h) q_{\alpha \beta \gamma} q^{\alpha \beta \gamma}+B_{5}(h) q_{\alpha \beta \gamma} q^{\beta \alpha \gamma} \\
& +C_{1}(h) T_{\alpha} T^{\alpha}+C_{2}(h) \hat{T}_{\alpha} \hat{T}^{\alpha}+C_{3}(h) T_{\alpha} \hat{T}^{\alpha}+C_{4}(h) t_{\alpha \beta \gamma} t^{\alpha \beta \gamma} \\
& +D_{1}(h) \epsilon_{\alpha \beta \gamma \delta} t^{\alpha \beta \lambda} t^{\gamma \delta}{ }_{\lambda}+D_{2}(h) \epsilon_{\alpha \beta \gamma \delta} q^{\alpha \beta \lambda} q^{\gamma \delta}{ }_{\lambda}+D_{3}(h) \epsilon_{\alpha \beta \gamma \delta} q^{\alpha \beta \lambda} t^{\gamma \delta}{ }_{\lambda} \\
& \left.+E_{1}(h) T_{\alpha} Q^{\alpha}+E_{2}(h) \hat{T}_{\alpha} Q^{\alpha}+E_{3}(h) T_{\alpha} \hat{Q}^{\alpha}+E_{4}(h) \hat{T}_{\alpha} \hat{Q}^{\alpha}+E_{5}(h) t^{\alpha \beta \gamma} q_{\beta \alpha \gamma}\right] .
\end{aligned}
$$

III. PHENOMENOLOGY OF HIGGS INFLATION
C. The theory, and its consequences

Steps followed in the paper:

1. Write down the most general action including torsion and non-metricity.
2. Find solution for torsion $T_{\alpha \beta \gamma}$ and non-metricity $Q_{\alpha \beta \gamma}$.
III. PHENOMENOLOGY OF HIGGS INFLATION
C. The theory, and its consequences

Steps followed in the paper:

1. Write down the most general action including torsion and non-metricity.
2. Find solution for torsion $T_{\alpha \beta \gamma}$ and non-metricity $Q_{\alpha \beta \gamma}$.
3. Plug them back in the action
III. PHENOMENOLOGY OF HIGGS INFLATION
C. The theory, and its consequences

Steps followed in the paper:

1. Write down the most general action including torsion and non-metricity.
2. Find solution for torsion $T_{\alpha \beta \gamma}$ and non-metricity $Q_{\alpha \beta \gamma}$.
3. Plug them back in the action
4. Perform a conformal transformation of the metric to get rid of the non-minimal coupling
III. PHENOMENOLOGY OF HIGGS INFLATION
C. The theory, and its consequences

Results

$$
S=\int \mathrm{d}^{4} x \sqrt{-g}\left[\frac{1}{2} R-\frac{1}{2} K(h) \partial_{\alpha} h \partial^{\alpha} h-\frac{\lambda h^{4}}{\left(1+\xi h^{2}\right)^{2}}\right]
$$

III. PHENOMENOLOGY OF HIGGS INFLATION
C. The theory, and its consequences

Results

$$
S=\int \mathrm{d}^{4} x \sqrt{-g}\left[\frac{1}{2} R-\frac{1}{2} K(h) \partial_{\alpha} h \partial^{\alpha} h-\frac{\lambda h^{4}}{\left(1+\xi h^{2}\right)^{2}}\right]
$$

- Modified kinetic term for the Higgs field:

$$
K(h)=\frac{1}{\left(1+\xi h^{2}\right)}\left[1+\frac{h^{2}}{\left(\sum_{m=0}^{4} O_{m} h^{2 m}\right)^{2}} \sum_{n=0}^{7} P_{n} h^{2 n}+\frac{6 \xi^{2} h^{2}}{\left(1+\xi h^{2}\right)}\right]
$$

III. PHENOMENOLOGY OF HIGGS INFLATION
C. The theory, and its consequences

Results

$$
S=\int \mathrm{d}^{4} x \sqrt{-g}\left[\frac{1}{2} R-\frac{1}{2} K(h) \partial_{\alpha} h \partial^{\alpha} h-\frac{\lambda h^{4}}{\left(1+\xi h^{2}\right)^{2}}\right]
$$

- Modified kinetic term for the Higgs field:

$$
K(h)=\frac{1}{\left(1+\xi h^{2}\right)}\left[1+\frac{h^{2}}{\left(\sum_{m=0}^{4} O_{m} h^{2 m}\right)^{2}} \sum_{n=0}^{7} P_{n} h^{2 n}+\frac{6 \xi^{2} h^{2}}{\left(1+\xi h^{2}\right)}\right]
$$

III. PHENOMENOLOGY OF HIGGS INFLATION

C. The theory, and its consequences

> Steps followed in the paper:

1. Write down the most general action including torsion and non-metricity.
2. Find solution for torsion $T_{\alpha \beta \gamma}$ and non-metricity $Q_{\alpha \beta \gamma}$.
3. Plug them back in the action
4. Perform a conformal transformation of the metric to get rid of the non-minimal coupling

Conclusion: Flattened potential and new higher mass dimension self-interaction terms for the Higgs

IV. CONCLUSION

There exists different formulations of gravity.

IV. CONCLUSION

There exists different formulations of gravity.

Different formulations are no longer equivalent when the action is more complicated.

IV. CONCLUSION

There exists different formulation of gravity.

Different formulations are no longer equivalent when the action is more complicated.

Lead to different predictions at high energy.

IV. CONCLUSION

IV. CONCLUSION

New phenomenology at high energy:

- Flatter potential and new self-interactions for the Higgs field. [this paper]
- Production of Dark Matter through fermions coupled to gravity [4][to appear...].
- Different behaviour for singularities inside black holes [5]
[4] M. Shaposhnikov, A.Shrekin, I.Timiryasov and S.Zell, Einstein-Cartan Portal to Dark Matter, 2008.11686
[5] J.A.R.Cembranos, J. Gigante Valcarcel, and F.J. Maldonado Torralba, Singularities and n-dimensional black holes in torsion theories, 1609.07814

V. BIBLIOGRAPHY

[0] Template for the slides: D. Backhouse.
[1] Lin, Y., Hobson, M.P., Lasenby, A.N. (2020). Power-counting renormalizable, ghost-and-tachyon-free Poincare gauge theories. Physical Review D
[2] N. D. Birrell and P. C. W. Davies, "Quantum Fields in Curved Space".Cambridge Univ. Press, (1984)
[3] F. Bezrukov, M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, 0710.3755
[4] M. Shaposhnikov, A.Shrekin, I.Timiryasov and S.Zell, Einstein-Cartan Portal to Dark Matter, 2008.11686
[5] J.A.R.Cembranos, J. Gigante Valcarcel, and F.J. Maldonado Torralba, Singularities and n-dimensional black holes in torsion theories, 1609.07814

Further Reading:

[6] Beltran Jimenez, J., Heisenberg, L., Koivisto, T. S. (2019). The geometrical trinity of gravity. Universe.
[7] Karananas, G. K., Shaposhnikov, M., Shkerin, A., Zell, S. (2021). Matter matters in Einstein-Cartan gravity. Physical Review D, 104(6), 064036.
A. The action

$$
\begin{aligned}
S= & \int \mathrm{d}^{4} x \sqrt{-g}\left[\frac{1}{2}\left(1+\xi h^{2}\right) \stackrel{\circ}{R}-\frac{1}{2} \tilde{K}(h) g^{\alpha \beta} \partial_{\alpha} h \partial_{\beta} h-V(h)\right. \\
& +A_{1}(h) \nabla_{\alpha} \hat{T}^{\alpha}+A_{2}(h) \dot{\nabla}_{\alpha} T^{\alpha}+A_{3}(h) \dot{\nabla}_{\alpha} \hat{Q}^{\alpha}+A_{4}(h) \nabla_{\alpha} Q^{\alpha} \\
& +B_{1}(h) Q_{\alpha} Q^{\alpha}+B_{2}(h) \hat{Q}_{\alpha} \hat{Q}^{\alpha}+B_{3}(h) Q_{\alpha} \hat{Q}^{\alpha}+B_{4}(h) q_{\alpha \beta \gamma} q^{\alpha \beta \gamma}+B_{5}(h) q_{\alpha \beta \gamma} q^{\beta \alpha \gamma} \\
& +C_{1}(h) T_{\alpha} T^{\alpha}+C_{2}(h) \hat{T}_{\alpha} \hat{T}^{\alpha}+C_{3}(h) T_{\alpha} \hat{T}^{\alpha}+C_{4}(h) t_{\alpha \beta \gamma} t^{\alpha \beta \gamma} \\
& +D_{1}(h) \epsilon_{\alpha \beta \gamma \delta} t^{\alpha \beta \lambda} t^{\gamma \delta}{ }_{\lambda}+D_{2}(h) \epsilon_{\alpha \beta \gamma \delta} q^{\alpha \beta \lambda} q^{\gamma \delta}{ }_{\lambda}+D_{3}(h) \epsilon_{\alpha \beta \gamma \delta} q^{\alpha \beta \lambda} t^{\gamma \delta}{ }_{\lambda} \\
& \left.+E_{1}(h) T_{\alpha} Q^{\alpha}+E_{2}(h) \hat{T}_{\alpha} Q^{\alpha}+E_{3}(h) T_{\alpha} \hat{Q}^{\alpha}+E_{4}(h) \hat{T}_{\alpha} \hat{Q}^{\alpha}+E_{5}(h) t^{\alpha \beta \gamma} q_{\beta \alpha \gamma}\right] .
\end{aligned}
$$

VI. APPENDIX

A. The action

Since torsion and non-metricity each carry three tensor indices, it is convenient to split them further into vector- and pure tensor-parts. This is done by contracting all possible indices following the symmetry properties. For torsion, this gives:
the trace vector: $T^{\alpha}=g_{\mu \nu} T^{\mu \alpha \nu}$,
the pseudo trace axial vector: $\hat{T}^{\alpha}=\epsilon^{\alpha \beta \mu \nu} T_{\beta \mu \nu}$,
the pure tensor part: $t^{\alpha \beta \gamma}$ that satisfies $g_{\mu \nu} t^{\mu \alpha \nu}=0=\epsilon^{\alpha \beta \mu \nu} t_{\beta \mu \nu}$.

Torsion can be be reconstructed in terms of these irreducible pieces as:

$$
\begin{equation*}
T_{\alpha \beta \gamma}=-\frac{2}{3} g_{\alpha[\beta} T_{\gamma]}+\frac{1}{6} \epsilon_{\alpha \beta \gamma \nu} \hat{T}^{\nu}+t_{\alpha \beta \gamma} . \tag{31}
\end{equation*}
$$

Similarly, we can split further non-metricity into three contributions:
a first vector: $Q^{\gamma}=g_{\alpha \beta} Q^{\gamma \alpha \beta}$,
a second vector: $\hat{Q}^{\gamma}=g_{\alpha \beta} Q^{\alpha \gamma \beta}$,
the pure tensor part: $q^{\alpha \beta \gamma}$ that satisfies $g_{\alpha \beta} q^{\gamma \alpha \beta}=0=g_{\alpha \beta} q^{\alpha \gamma \beta}$

In terms of the components of (32) to (34), non-metricity can expressed as:

$$
\begin{equation*}
Q_{\alpha \beta \gamma}=\frac{1}{18}\left[g_{\beta \gamma}\left(5 Q_{\alpha}-2 \hat{Q}_{\alpha}\right)+2 g_{\alpha(\beta}\left(4 \hat{Q}_{\gamma)}-Q_{\gamma)}\right)\right]+q_{\alpha \beta \gamma} . \tag{35}
\end{equation*}
$$

VI. APPENDIX

B. Finding Solutions

$$
\begin{equation*}
Q^{\alpha}=\frac{V}{Z} \partial^{\alpha} h, \quad \hat{Q}^{\alpha}=\frac{W}{Z} \partial^{\alpha} h, \quad T^{\alpha}=\frac{X}{Z} \partial^{\alpha} h, \quad \hat{T}^{\alpha}=\frac{Y}{Z} \partial^{\alpha} h, \quad t_{\alpha \beta \gamma}=q_{\alpha \beta \gamma}=0 \tag{36}
\end{equation*}
$$

And the common denominator reads

$$
\begin{align*}
Z & =B_{3}^{2}\left(4 C_{1} C_{2}-C_{3}^{2}\right)+4 B_{2} C_{2} E_{1}^{2}-4 B_{2} C_{3} E_{1} E_{2}+4 B_{2} C_{1} E_{2}^{2}-E_{2}^{2} E_{3}^{2}+2 E_{1} E_{2} E_{3} E_{4} \\
& -E_{1}^{2} E_{4}^{2}+B_{3}\left(-4 C_{2} E_{1} E_{3}+2 C_{3} E_{2} E_{3}+2 C_{3} E_{1} E_{4}-4 C_{1} E_{2} E_{4}\right)+4 B_{1}\left(B_{2}\left(-4 C_{1} C_{2}+C_{3}^{2}\right)\right. \tag{37}\\
& \left.+C_{2} E_{3}^{2}-C_{3} E_{3} E_{4}+C_{1} E_{4}^{2}\right)
\end{align*}
$$

VI. APPENDIX

C. Equivalent Metric Theory

$$
\begin{aligned}
S= & \int \mathrm{d}^{4} x \sqrt{-g}\left[\frac{1}{2}\left(1+\xi h^{2}\right) \stackrel{\circ}{R}-\frac{1}{2} \hat{K}(h) g^{\alpha \beta} \partial_{\alpha} h \partial_{\beta} h-V(h)\right. \\
& +A_{1}(h) \dot{\nabla}_{\alpha} \hat{T}^{\alpha}+A_{2}(h) \dot{\nabla}_{\alpha} T^{\alpha}+A_{3}(h) \dot{\nabla}_{\alpha} \hat{Q}^{\alpha}+A_{4}(h) \dot{\nabla}_{\alpha} Q^{\alpha} \\
& +B_{1}(h) Q_{\alpha} Q^{\alpha}+B_{2}(h) \hat{Q}_{\alpha} \hat{Q}^{\alpha}+B_{3}(h) Q_{\alpha} \hat{Q}^{\alpha \alpha}+B_{4}(h) q_{\alpha \beta \gamma} q^{\alpha \beta \gamma}+B_{5}(h) q_{\alpha \beta \gamma} q^{\beta \alpha \gamma} \\
& +\widehat{C_{1}(h) T_{\alpha} T^{\alpha}+C_{2}(h) \hat{T}_{\alpha} \hat{T}^{\alpha}+C_{3}(h) T_{\alpha} \hat{T}^{\alpha}+C_{4}(h) t_{\alpha \beta \gamma} t^{\alpha \beta \gamma}} \\
& +D_{1}(h) \epsilon_{\alpha \beta \gamma \delta} t^{\alpha \beta \lambda} t^{\gamma \delta}+D_{2}(h) \epsilon_{\alpha \beta \gamma \delta q^{\alpha \beta \beta} q^{\gamma \delta}}^{\lambda}+D_{3}(h) \epsilon_{\alpha \beta \gamma \delta} q^{\alpha \beta \lambda} t^{\gamma \delta}{ }_{\lambda} \\
& \left.+E_{1}(h) T_{\alpha} Q^{\alpha}+E_{2}(h) \hat{T}_{\alpha} Q^{\alpha}+E_{3}(h) T_{\alpha} \hat{Q}^{\alpha}+E_{4}(h) \hat{T}_{\alpha} \hat{Q}^{\alpha}+E_{5}(h) t^{\alpha \beta \gamma} q_{\beta \alpha \gamma}\right] .
\end{aligned}
$$

D. Decomposition of the scalar curvature

$$
\begin{aligned}
R & =\stackrel{\circ}{R}+\stackrel{\circ}{\nabla}_{\alpha}\left(Q^{\alpha}-\hat{Q}^{\alpha}+2 T^{\alpha}\right)-\frac{2}{3} T_{\alpha}\left(T^{\alpha}+Q^{\alpha}-\hat{Q}^{\alpha}\right)+\frac{1}{24} \hat{T}^{\alpha} \hat{T}_{\alpha}+\frac{1}{2} t^{\alpha \beta \gamma} t_{\alpha \beta \gamma} \\
& -\frac{11}{72} Q_{\alpha} Q^{\alpha}+\frac{1}{18} \hat{Q}_{\alpha} \hat{Q}^{\alpha}+\frac{2}{9} Q_{\alpha} \hat{Q}^{\alpha}+\frac{1}{4} q_{\alpha \beta \gamma}\left(q^{\alpha \beta \gamma}-2 q^{\gamma \alpha \beta}\right)+t_{\alpha \beta \gamma} q^{\beta \alpha \gamma}
\end{aligned}
$$

$$
\epsilon^{\mu \nu \rho \sigma} R_{\mu \nu \rho \sigma}=\frac{1}{3} \hat{Q}^{\alpha} \hat{T}_{\alpha}-\frac{1}{3} Q^{\alpha} \hat{T}_{\alpha}-\frac{2}{3} \hat{T}^{\alpha} \hat{T}_{\alpha}+\stackrel{\circ}{\nabla}_{\alpha} T^{\alpha}-\frac{1}{2} \epsilon_{\beta \gamma \delta \mu} t_{\alpha}^{\delta \mu} t^{\alpha \beta \gamma}-\epsilon_{\alpha \gamma \delta \mu} q^{\alpha \beta \gamma} t_{\beta}^{\delta \mu}
$$

VI. APPENDIX

F. Breaking down torsion and non-metricity into smaller parts

- Motivation:

$$
\Gamma_{\alpha \beta}^{\gamma}=\stackrel{\circ}{\Gamma}_{\alpha \beta}^{\gamma}(g)+J_{\alpha \beta}^{\gamma}(Q)+K_{\alpha \beta}^{\gamma}(T)
$$

VI. APPENDIX

F. Breaking down torsion and non-metricity into smaller parts

- Motivation:

$$
\Gamma_{\alpha \beta}^{\gamma}=\stackrel{\circ}{\Gamma}_{\alpha \beta}^{\gamma}(g)+J_{\alpha \beta}^{\gamma}(Q)+K_{\alpha \beta}^{\gamma}(T)
$$

a. Levi-Civita connection:

$$
\stackrel{\circ}{\Gamma}_{\beta \gamma}^{\alpha}=\frac{1}{2} g^{\alpha \mu}\left(\partial_{\beta} g_{\mu \gamma}+\partial_{\gamma} g_{\mu \beta}-\partial_{\mu} g_{\beta \gamma}\right)
$$

VI. APPENDIX

F. Breaking down torsion and non-metricity into smaller parts

- Motivation:

$$
\Gamma_{\alpha \beta}^{\gamma}=\stackrel{\circ}{\Gamma}_{\alpha \beta}^{\gamma}(g)+J_{\alpha \beta}^{\gamma}(Q)+K_{\alpha \beta}^{\gamma}(T)
$$

a. Levi-Civita connection:

$$
\stackrel{\circ}{\Gamma}_{\beta \gamma}^{\alpha}=\frac{1}{2} g^{\alpha \mu}\left(\partial_{\beta} g_{\mu \gamma}+\partial_{\gamma} g_{\mu \beta}-\partial_{\mu} g_{\beta \gamma}\right)
$$

b. Contorsion K :

$$
K_{\alpha \beta \gamma}=\frac{1}{2}\left(T_{\alpha \beta \gamma}+T_{\beta \alpha \gamma}+T_{\gamma \alpha \beta}\right)
$$

VI. APPENDIX

F. Breaking down torsion and non-metricity into smaller parts

- Motivation:

$$
\Gamma_{\alpha \beta}^{\gamma}=\stackrel{\circ}{\Gamma}_{\alpha \beta}^{\gamma}(g)+J_{\alpha \beta}^{\gamma}(Q)+K_{\alpha \beta}^{\gamma}(T)
$$

a. Levi-Civita connection:

$$
\stackrel{\circ}{\Gamma}_{\beta \gamma}^{\alpha}=\frac{1}{2} g^{\alpha \mu}\left(\partial_{\beta} g_{\mu \gamma}+\partial_{\gamma} g_{\mu \beta}-\partial_{\mu} g_{\beta \gamma}\right)
$$

b. Contorsion K :

$$
K_{\alpha \beta \gamma}=\frac{1}{2}\left(T_{\alpha \beta \gamma}+T_{\beta \alpha \gamma}+T_{\gamma \alpha \beta}\right)
$$

c. Disformation J:

$$
J_{\alpha \mu \nu}=\frac{1}{2}\left(Q_{\alpha \mu \nu}-Q_{\nu \alpha \mu}-Q_{\mu \alpha \nu}\right)
$$

F. Breaking down torsion and non-metricity into smaller parts

Cumbersome computations

Prone to mistakes

Hide some physics insight

F. Breaking down torsion and non-metricity into smaller parts

Cumbersome computations

Prone to mistakes

Hide some physics insight

Want to break the rank 3 tensors in smaller pieces

VI. APPENDIX

F. Breaking down torsion and non-metricity into smaller parts

F. Breaking down torsion and non-metricity into smaller parts

F. Breaking down torsion and non-metricity into smaller parts

F. Breaking down torsion and non-metricity into smaller parts

VI. APPENDIX
G. Selection Rules

What selection rules do we want to impose?
VI. APPENDIX
G. Selection Rules

1. No more than second derivatives in the action.

VI. APPENDIX

G. Selection Rules

1. No more than second derivatives in the action.

No new progating d.o.fs apart from the massless spin 2 and the scalar field

VI. APPENDIX

G. Selection Rules

1. No more than second derivatives in the action.

$$
\text { No new progating d.o.fs apart from the massless spin } 2 \text { and the scalar field }
$$

2. Operators of mass dimension not greater than 4 .

VI. APPENDIX

G. Selection Rules

1. No more than second derivatives in the action.

$$
\text { No new progating d.o.fs apart from the massless spin } 2 \text { and the scalar field }
$$

2. Operators of mass dimension not greater than 4 .

Matter sector is renormalizable.

