Curvature effects on the large scale structure of the universe

arXiv:2206.03059, JCAP 2022

Centre de Physique Théorique (CPT) Julien Bel

Collaborators:
Louis Perenon (Lead)
Christian Marinoni
Roy Maartens
Julien Larena

Aix $*$ Marseille université

Outline

1) Motivation for studying galaxy clustering in curved space
2) Fourier basis in curved space
3) Galaxy clustering in configuration space
4) Results (KLCDM)
5) Conclusions and Prospects

Motivation

The example of the cosmic microwave background (CMB):

Fig. 1. Planck 2018 temperature power spectrum. At multipoles $\ell \geq 30$ we show the frequency-coadded temperature computed from the Plik cross-half-mission likelihood, with foreground and other nuisance parameters fixed to a best fit the base- Λ CDM cosmology. In the multipole range $2 \leq \ell \leq 29$, we plot the power spectrum estimates from the Co component-separation algorithm, computed over 86% of the sky. The base- Λ CDM theoretical spectrum best fit to th TT,TE,EE+lowE+lensing likelihoods is plotted in light blue in the upper panel. Residuals with respect to this model are the lower panel. The error bars show $\pm 1 \sigma$ diagonal uncertainties, including cosmic variance (approximated as Gaussian, including uncertainties in the foreground model at $\ell \geq 30$. Note that the vertical scale changes at $\ell=30$, where the horizontal axis switches from logarithmic to linear.

$\left|\Omega_{K}\right| \lesssim 0.1$

$$
R \approx 9000 h^{-1} \mathrm{Mpc}
$$

Motivation

$$
\left|\Omega_{K}\right| \lesssim 0.1 \quad R \approx 9000 h^{-1} \mathrm{Mpc}
$$

Planck (2018)
10 to 40 \% of curvature scale

Formalism in curved space

Problem: Fourier basis in curved space?
FLRW metric:
$\mathrm{d} s^{2}=c^{2} \mathrm{~d} t^{2}-a^{2}(t) \gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}=c^{2} \mathrm{~d} t^{2}-a^{2}(t)\left[\mathrm{d} \chi^{2}+S_{K}^{2}(\chi)\left(\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right]$

The Fourier basis \mathcal{Q} must be solution of the Helmholtz equation:

$$
\left.\begin{array}{rl}
\tilde{\nabla}^{2} \mathcal{Q}= & \frac{1}{\sqrt{\gamma}} \partial_{i}\left(\sqrt{\gamma} \gamma^{i j} \partial_{j} \mathcal{Q}\right)
\end{array}\right)=-\tilde{k}^{2} \mathcal{Q}, ~ \begin{aligned}
& \text { where } \tilde{\nabla}^{2}=a_{0}^{2} \nabla^{2}, \tilde{k}=a_{0} k
\end{aligned}
$$

$$
\mathcal{Q}(\chi, \theta, \phi)=R(\chi) Y_{l m}(\theta, \phi)
$$

Matsubara (2000)

Formalism in curved space

Problem: Fourier basis in curved space?

FLRW metric:
$\mathrm{d} s^{2}=c^{2} \mathrm{~d} t^{2}-a^{2}(t) \gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}=c^{2} \mathrm{~d} t^{2}-a^{2}(t)\left[\mathrm{d} \chi^{2}+S_{K}^{2}(\chi)\left(\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right]$
Temporal part
The Fourier basis \mathcal{Q} must be solution of the Helmholtz equation:

$$
\left.\begin{array}{rl}
\tilde{\nabla}^{2} \mathcal{Q}= & \frac{1}{\sqrt{\gamma}} \partial_{i}\left(\sqrt{\gamma} \gamma^{i j} \partial_{j} \mathcal{Q}\right)
\end{array}\right)=-\tilde{k}^{2} \mathcal{Q}, ~ \begin{aligned}
& \text { where } \tilde{\nabla}^{2}=a_{0}^{2} \nabla^{2}, \tilde{k}=a_{0} k
\end{aligned}
$$

$$
\mathcal{Q}(\chi, \theta, \phi)=R(\chi) Y_{l m}(\theta, \phi)
$$

Matsubara (2000)

Formalism in curved space

Problem: Fourier basis in curved space?

FLRW metric:
$\mathrm{d} s^{2}=c^{2} \mathrm{~d} t^{2}-a^{2}(t) \gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}=c^{2} \mathrm{~d} t^{2}-a^{2}(t)\left[\mathrm{d} \chi^{2}+S_{K}^{2}(\chi)\left(\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right]$ Temporal part Spatial part

The Fourier basis \mathcal{Q} must be solution of the Helmholtz equation:

$$
\left.\begin{array}{rl}
\tilde{\nabla}^{2} \mathcal{Q}= & \frac{1}{\sqrt{\gamma}} \partial_{i}\left(\sqrt{\gamma} \gamma^{i j} \partial_{j} \mathcal{Q}\right)
\end{array}\right)=-\tilde{k}^{2} \mathcal{Q}, ~=a_{0}^{2} \nabla^{2}, \tilde{k}=a_{0} k
$$

$$
\mathcal{Q}(\chi, \theta, \phi)=R(\chi) Y_{l m}(\theta, \phi)
$$

Matsubara (2000)

Formalism in curved space

Problem: Fourier basis in curved space?

FLRW metric:

$$
\mathrm{d} s^{2}=c_{\text {Temporal part }}^{c^{2} \mathrm{~d} t^{2}-\underbrace{a^{2}(t) \gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}}_{\text {Spatial part }}=c^{2} \mathrm{~d} t^{2}-a^{2}(t)\left[\mathrm{d} \chi^{2}+S_{K}^{2}(\chi)\left(\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right]}
$$

The Fourier basis \mathcal{Q} must be solution of the Helmholtz equation:

$$
\begin{aligned}
& \tilde{\nabla}^{2} \mathcal{Q}=\frac{1}{\sqrt{\gamma}} \partial_{i}\left(\sqrt{\gamma} \gamma^{i j} \partial_{j} \mathcal{Q}\right)=-\tilde{k}^{2} \mathcal{Q} \\
& \text { where } \tilde{\nabla}^{2}=a_{0}^{2} \nabla^{2}, \tilde{k}=a_{0} k
\end{aligned}
$$

$$
\mathcal{Q}(\chi, \theta, \phi)=R(\chi) Y_{l m}(\theta, \phi)
$$

Matsubara (2000)

Formalism in curved space

Problem: Fourier basis in curved space?

FLRW metric:

$$
\mathrm{d} s^{2}=c_{\text {Temporal part }}^{c^{2} \mathrm{~d} t^{2}-\underbrace{a^{2}(t) \gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}}_{\text {Spatial part }}=c^{2} \mathrm{~d} t^{2}-a^{2}(t)[\mathrm{d} \chi^{2}+\underbrace{S_{K}^{2}(\chi)\left(\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)}_{\text {Radial part }}]}
$$

The Fourier basis \mathcal{Q} must be solution of the Helmholtz equation:

$$
\left.\begin{array}{rl}
\tilde{\nabla}^{2} \mathcal{Q}= & \frac{1}{\sqrt{\gamma}} \partial_{i}\left(\sqrt{\gamma} \gamma^{i j} \partial_{j} \mathcal{Q}\right)
\end{array}\right)=-\tilde{k}^{2} \mathcal{Q}, ~ \begin{aligned}
& \text { where } \tilde{\nabla}^{2}=a_{0}^{2} \nabla^{2}, \tilde{k}=a_{0} k
\end{aligned}
$$

$$
\mathcal{Q}(\chi, \theta, \phi)=R(\chi) Y_{l m}(\theta, \phi)
$$

Matsubara (2000)

Formalism in curved space

Problem: Fourier basis in curved space?

FLRW metric:

$$
\mathrm{d} s^{2}=c_{\text {Temporal part }}^{c^{2} \mathrm{~d} t^{2}-\underbrace{a^{2}(t) \gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}}_{\text {Spatial part }}=c^{2} \mathrm{~d} t^{2}-a^{2}(t)[\mathrm{d} \chi^{2}+\underbrace{S_{K}^{2}(\chi)\left(\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)}_{\text {Radial part }}]}
$$

The Fourier basis \mathcal{Q} must be solution of the Helmholtz equation:

$$
\left.\begin{array}{rl}
\tilde{\nabla}^{2} \mathcal{Q}= & \frac{1}{\sqrt{\gamma}} \partial_{i}\left(\sqrt{\gamma} \gamma^{i j} \partial_{j} \mathcal{Q}\right)
\end{array}\right)=-\tilde{k}^{2} \mathcal{Q}, ~ \begin{aligned}
& \text { where } \tilde{\nabla}^{2}=a_{0}^{2} \nabla^{2}, \tilde{k}=a_{0} k
\end{aligned}
$$

$$
\mathcal{Q}(\chi, \theta, \phi)=R(\chi) Y_{l m}(\theta, \phi) \quad \text { Spherical Harmonics }
$$

Galaxy clustering in configuration space

Redshift space distortions on linear scale:

$$
\begin{aligned}
\delta_{\mathrm{g}}^{s}(z, \boldsymbol{r})= & b(z) \delta_{\mathrm{m}}(z, \boldsymbol{r})-\frac{(1+z)}{H(z)} \frac{\partial}{\partial r}[\boldsymbol{v}(z, \boldsymbol{r}) \cdot \hat{\boldsymbol{r}}] \\
& -\frac{(1+z)}{H(z)} \alpha(z)[\boldsymbol{v}(z, \boldsymbol{r}) \cdot \hat{\boldsymbol{r}}]+[5 s(z)-2] \kappa(z, \boldsymbol{r})+\delta_{\Phi}(z, \boldsymbol{r})
\end{aligned}
$$

Galaxy clustering in configuration space

Redshift space distortions on linear scale:

$$
\delta_{\mathrm{g}}^{s}(z, \boldsymbol{r})=b(z) \delta_{\mathrm{m}}(z, \boldsymbol{r})-\frac{(1+z)}{H(z)} \frac{\partial}{\partial r}[\boldsymbol{v}(z, \boldsymbol{r}) \cdot \hat{\boldsymbol{r}}]
$$

Linear bias

$$
-\frac{(1+z)}{H(z)} \alpha(z)[\boldsymbol{v}(z, \boldsymbol{r}) \cdot \hat{\boldsymbol{r}}]+[5 s(z)-2] \kappa(z, \boldsymbol{r})+\delta_{\Phi}(z, \boldsymbol{r})
$$

Galaxy clustering in configuration space

Redshift space distortions on linear scale:

$$
\delta_{\mathrm{g}}^{s}(z, \boldsymbol{r})=b(z) \delta_{\mathrm{m}}(z, \boldsymbol{r})-\frac{(1+z)}{H(z)} \frac{\partial}{\partial r}[\boldsymbol{v}(z, \boldsymbol{r}) \cdot \hat{\boldsymbol{r}}]
$$

$\begin{aligned} \text { Linear bias } & -\frac{(1+z)}{H(z)} \alpha(z)[\boldsymbol{v}(z, \boldsymbol{r}) \cdot \hat{\boldsymbol{r}}]+[5 s(z)-2] \kappa(z, \boldsymbol{r})+\delta_{\Phi}(z, \boldsymbol{r})\end{aligned}$

Galaxy clustering in configuration space

Redshift space distortions on linear scale:

$$
\delta_{\mathrm{g}}^{s}(z, \boldsymbol{r})=b(z) \delta_{\mathrm{m}}(z, \boldsymbol{r})-\frac{(1+z)}{H(z)} \frac{\partial}{\partial r}[\boldsymbol{v}(z, \boldsymbol{r}) \cdot \hat{\boldsymbol{r}}]
$$

Results

We use galaxy clustering data publicly available:

Clustering ratio (CR)

$$
\eta_{R}(r) \equiv \frac{\xi_{R}^{(0)}(r)}{\sigma_{R}^{2}}
$$

- No bias
- No RSD
- No redshift evolution

It probes the shape of the power spectrum

Data set		$z_{\min }$	$z_{\max }$	η_{R}	Ref.
SDSS	DR7	0.15	0.43	0.096 ± 0.007	$[44,61]$
	DR12	0.30	0.53	0.094 ± 0.006	$[44,62]$
	DR12	0.53	0.67	0.105 ± 0.011	$[44,62]$

$f \sigma_{8}$ parameter (RSD)

It probes the matter

velocity field through anisotropy of the galaxy clustering induced by redshift space distortions
Bel \& Marinoni (2014)
Zennaro et al. (2018)

Data set	z	$f \sigma_{8}$	Reference
2MTF	0.001	0.505 ± 0.085	$[28]$
6dFGS+SNIa	0.02	0.428 ± 0.0465	$[29]$
IRAS+SNIa	0.02	0.398 ± 0.065	$[30,31]$
2MASS	0.02	0.314 ± 0.048	$[31,32]$
SDSS	0.10	0.376 ± 0.038	$[33]$
SDSS-MGS	0.15	0.490 ± 0.145	$[34]$
2dFGRS	0.17	0.510 ± 0.060	$[35]$
GAMA	0.18	0.360 ± 0.090	$[36]$
GAMA	0.38	0.440 ± 0.060	$[36]$
SDSS-LRG-200	0.25	0.3512 ± 0.0583	$[37]$
SDSS-LRG-200	0.37	0.4602 ± 0.0378	$[37]$
BOSS DR12	0.31	0.469 ± 0.098	$[38]$
BOSS DR12	0.36	0.474 ± 0.097	$[38]$
BOSS DR12	0.40	0.473 ± 0.086	$[38]$
BOSS DR12	0.44	0.481 ± 0.076	$[38]$
BOSS DR12	0.48	0.482 ± 0.067	$[38]$
BOSS DR12	0.52	0.488 ± 0.065	$[38]$
BOSS DR12	0.56	0.482 ± 0.067	$[38]$
BOSS DR12	0.59	0.481 ± 0.066	$[38]$
BOSS DR12	0.64	0.486 ± 0.070	$[38]$
WiggleZ	0.44	0.413 ± 0.080	$[39]$
WiggleZ	0.60	0.390 ± 0.063	$[39]$
WiggleZ	0.73	0.437 ± 0.072	$[39]$
Vipers PDR-2	0.60	0.550 ± 0.120	$[40,41]$
Vipers PDR-2	0.86	0.400 ± 0.110	$[40,41]$
FastSound	1.40	0.482 ± 0.116	$[42]$
SDSS-IV	0.978	0.379 ± 0.176	$[43]$
SDSS-IV	1.23	0.385 ± 0.099	$[43]$
SDSS-IV	1.526	0.342 ± 0.070	$[43]$
SDSS-IV	1.944	0.364 ± 0.106	$[43]$

Results

Cosmological constraints on KLCDM models:

Parameter	Prior
$\Omega_{\mathrm{b}, 0} h^{2}$	$[0,100]$
$\Omega_{\mathrm{c}, 0} h^{2}$	$[0,100]$
H_{0}	$[40,100]$
τ	$[0,0.2]$
$\ln \left(10^{10} A_{\mathrm{s}}\right)$	$[0,100]$
n_{s}	$[0.9,1]$
$\Omega_{K, 0}$	$[-0.2,0.6]$
$\Omega_{\mathrm{b}, 0} h^{2}$	$\mathcal{N}\left(0.0222,0.0005^{2}\right)$
$\sigma_{8,0}$	$[0.6,1]$
$\Omega_{\mathrm{m}, 0}$	$[0,1]$

Results

Cosmological constraints on KLCDM models:

Parameter	Prior
$\Omega_{\mathrm{b}, 0} h^{2}$	$[0,100]$
$\Omega_{\mathrm{c}, 0} h^{2}$	$[0,100]$
H_{0}	$[40,100]$
τ	$[0,0.2]$
$\ln \left(10^{10} A_{\mathrm{s}}\right)$	$[0,100]$
n_{s}	$[0.9,1]$
$\Omega_{K, 0}$	$[-0.2,0.6]$
$\Omega_{\mathrm{b}, 0} h^{2}$	$\mathcal{N}\left(0.0222,0.0005^{2}\right)$
$\sigma_{8,0}$	$[0.6,1]$
$\Omega_{\mathrm{m}, 0}$	$[0,1]$

H_{0} ($>62 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$ at 95% C.L.)
-> completely independent from CMB

Conclusions and Prospects

-Clustering alone (CR+RSD+BBN) allows to set a lower bound on H_{0} ($>62 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$ at 95% C.L.)
-CR+RSD+BBN+BAO+SNla allow to constrain curvature $\Omega_{K}=0.004 \pm 0.05$
-According to DIC statistics the CR data do not disagree with CMB contrary to RSD and BAO it provides $\Omega_{K}=$
-0.023 ± 0.01 (cannot reject flatLCDM)

- $\mathrm{CR}+\mathrm{RSD}+\mathrm{BBN}+\mathrm{BAO}+\mathrm{SNla}$ sound horizon $r_{d}=$ $144.57 \pm 2.34 \mathrm{Mpc}$ compatible with CMB
- Master student (Mehdi Noor) will measure the CR in BOSS DR17 to extend the CR dataset

Formalism in curved space

Statistical invariance: cross-correlation between Fourier modes:
$\left\langle\delta_{l m}(\nu) \delta_{l^{\prime} m^{\prime}}^{*}\left(\nu^{\prime}\right)\right\rangle=\delta_{l l^{\prime}} \delta_{m m^{\prime}} \frac{\mathcal{S}(\nu)}{\nu^{2}} \begin{cases}\delta^{\mathrm{D}}\left(\nu-\nu^{\prime}\right) & \text { if } \quad K \leq 0, \\ \delta_{\nu \nu^{\prime}} & \text { if } \quad K=1 .\end{cases}$
-> There is no cross-correlation, only the power spectrum $\underline{\mathcal{S}(\nu)}$
$\nu \mathcal{S}(\nu)=\frac{k}{a_{0}^{2}} P(k) \quad$ where $\quad k=\frac{\tilde{k}}{a_{0}}=\frac{\sqrt{\nu^{2}-K}}{a_{0}} \quad$ and $\quad \tilde{k} \chi=k r$.

Formalism in curved space

Powe $\mathcal{S}(\nu)$

Output from the Boltzmann code CLASS

The matter, galaxy or halo density contrast can be expanded on the Fourier basis:

$$
\delta(\chi, \theta, \phi)=4 \pi \int_{0}^{\infty} \mathrm{d} \nu \nu^{2} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \delta_{l m}(\nu) \hat{X}_{l}^{(K)}(\nu, \chi) Y_{l m}(\theta, \phi),
$$

where $\hat{X}_{l}^{(K)}(\nu, \chi)$ is the radial part of the Fourier basis and for convenience one can define the effective wave number v as

$$
\tilde{k}^{2}=\nu^{2}-K
$$

The Fourier transform of the density contrast can be expressed

$$
\delta_{l m}(\nu)=\frac{1}{2 \pi^{2}} \int \mathrm{~d}^{2} \Omega \mathrm{~d} \chi S_{K}^{2}(\chi) \delta(\chi, \theta, \phi) \hat{X}_{l}^{(K)}(\nu, \chi) Y_{l m}^{*}(\theta, \phi)
$$

Galaxy clustering in configuration space

Multipole expansion of the 2-point correlation function:

The hexadecapol is the most affected by wide angle effects

Deviance Information Criterion (DIC)

Be D1 and D2 to data set, are those two data set in tension?

$$
\operatorname{DIC}(D)=2 \overline{\chi_{e f f}^{2}}-\chi_{e f f}^{2} \quad \text { where } \quad \chi_{e f f}^{2}=-2 \ln \mathcal{L}_{\max }
$$

$\mathcal{L}_{\text {max }}$ is the maximum likelihood
$\overline{\chi_{e f f}^{2}}$ average over the posterior
$I\left(D_{1}, D_{2}\right)=\mathrm{e}^{-\mathcal{F}\left(D_{1}, D_{2}\right) / 2}$ where $\mathcal{F}\left(D_{1}, D_{2}\right)=\operatorname{DIC}\left(D_{1} \cup D_{2}\right)-\operatorname{DIC}\left(D_{1}\right)-\operatorname{DIC}\left(D_{2}\right)$
If $\log _{10} I>0$ there is agreement else there is disagreement Jeffrey scale:

$$
\begin{array}{ll}
\left|\log _{10} I\right|>0.5 & \text {-> substantial } \\
\left|\log _{10} I\right|>1.0 & \text {-> strong } \\
\left|\log _{10} I\right|>2.0 & \text {-> decisive }
\end{array}
$$

Alcock-Paczynski

2-point correlation function density of pairs of object
$\tilde{\xi}_{\mathrm{g}}^{s}(\tilde{r}, \tilde{\mu})=\xi_{\mathrm{g}}^{s}(r, \mu)$ where
$r=\tilde{r} \alpha_{\perp}\left[1+\left(\lambda^{2}-1\right) \tilde{\mu}^{2}\right]^{1 / 2}, \quad \mu=\tilde{\mu} \lambda\left[1+\left(\lambda^{2}-1\right) \tilde{\mu}^{2}\right]^{-1 / 2}$
where $\lambda=\frac{\alpha_{\|}}{\alpha_{\perp}}$

$$
\begin{aligned}
& r_{\|} E(z)=\tilde{r}_{\|} \tilde{E}(z) \quad \Rightarrow \quad r_{\|}=\alpha_{\|} \tilde{r}_{\|} \\
& \frac{r_{\perp}}{D_{A}(z)}=\frac{\tilde{r}_{\perp}}{\tilde{D}_{A}(z)} \Rightarrow r_{\perp}=\alpha_{\perp} \tilde{r}_{\perp}
\end{aligned}
$$

Alcock-Paczynski

Figure 12. Top: AP effect on the monopole (A.16) (left) and quadrupole (A.18) (right). Solid black line shows the true distorted multipoles. Red long-dashed line shows the leading (first) contribution and blue short-dashed line is the correction. Green dot-dashed line shows the multipole without AP effect. Fiducial model: $\Omega_{\mathrm{m}, 0}=0.37, \Omega_{K, 0}=0$; true model: $\Omega_{K, 0}=-0.1, \Omega_{\mathrm{m}, 0}=0.32$. Bottom: Fractional difference relative to true distorted multipoles.

