

Progress on Old and New Themes in cosmology (PONT) 2023

Denis Werth

Based on: ArXiv:2302.00655 (short paper)

ArXiv:2305.xxxxx (long paper)

with Lucas Pinol and Sébastien Renaux-Petel

Cosmology: A History of Time

Cosmological fluctuations are **correlated** on large scales

The physics is encoded in the time evolution of these fluctuations

The Cosmological Flow Philosophy

Follow the time evolution of primordial fluctuations from their origin as quantum vacuum fluctuations to the reheating surface

By studying primordial correlators, we can reconstruct a "standard model of inflation" (identify new particles, dispersion relations, masses, spins, interactions)

Why the Cosmological Flow: Break the Vicious Circle

The **Cosmological Flow** is an **efficient** and **systematic** approach to compute primordial correlators

The Cosmological Flow

In practice, we compute Feynman-Witten diagrams

Recent Analytical Developments

Fundamental Principles (Unitarity & Locality)

Pajer, Stefanyszyn, Supeł, Goodhew, Jazayeri, Melville, Gordon Lee, Bonifacio, Wang [2020, 2021, 2022]

Partial Mellin-Barnes Representation

Qin and Xianyu [2022]

Limitations of Analytical Methods

Weak Quadratic Mixing

 $\mathcal{L}^{(2)}\supset \rho\dot{\phi}\sigma$ treated perturbatively

Only Single-Exchange Diagram

Often only 1 or 2 Fields

(Near) Scale-Invariance

Large hierarchy of masses/couplings but not the intermediate regimes

Treatment of Equilateral and Squeezed Configurations Separately

Aside from isolated examples...

The Cosmological Flow

From first principles, the time evolution of primordial correlators is encoded in the **flow equations** (Ehrenfest theorem)

We have converted the problem of computing nested time integrals to solving a set of coupled differential equations

Applications

Goldstone Boson coupled to an Additional Field

We couple the Goldstone boson to an additional massive scalar field $\zeta = -H\pi$

Relax assumptions: beyond weak mixing, time-dependent mixing

Cosmological Collider Signal at Strong Mixing

The cosmological collider signal of heavy but weakly mixed particle oscillates at the same frequency than that of a light but strongly mixed particle

Frequency

$$\mu_{\rm eff}^2 = m_{\rm eff}^2 / H^2 - 9/4$$

Effective mass for the heavy field

$$m^2 \to m_{\rm eff}^2 = m^2 + \rho^2$$

Resummation of quadratic mixings

Cosmological Collider Signal with Features

The cosmological collider signal of an **oscillating linear mixing** exhibits new features that were not appreciated before

$$\rho(t) = \rho_0 (a_0/a)^n \sin[\omega_c (t - t_0)]$$

$$\mu^2 = m^2/H^2 - 9/4$$

$$\mu_c = \omega_c/H$$

$$S = (k_3/k_1)^{\frac{1}{2}+n-\nu} \mathcal{A} \cos(\mu_c \log(k_3/k_1) + \varphi)$$

$$S = (k_3/k_1)^{\frac{1}{2}+n} \sum_{\pm} \mathcal{A}_{\pm} \cos[(\mu \pm \mu_c) \log(k_3/k_1) + \varphi_{\pm}]$$

New templates

Conclusions and Take-Home Messages

Primordial **non-Gaussianities** to understand the **physics of inflation**, primary target for future missions

Cosmological Collider: probe the laws of physics at the highest reachable energies

The Cosmological Flow

Concentrating on **exploring** and **understanding** the physics in motivated scenarios **in full generality**

Efficient and systematic approach to compute inflationary correlators, avoiding technical difficulties

We have only scratched the tip of the iceberg ...

Outlook

The cosmological flow offers straight extensions

We have paved the way to a systematic investigation of the rich and fascinating subject of inflationary correlators