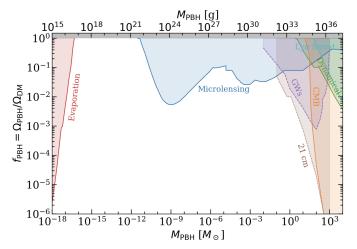
Quasi-extremal primordial black holes are a viable dark matter candidate


Matteo Lucca Université Libre de Bruxelles (ULB)

Based on de Freitas Pacheco, Kiritsis, Lucca and Silk [arXiv:2301.13215]

Overview

Adapted from Villanueva-Domingo et al. 2021

1/10

Matteo Lucca

Overview	In a nutshell	Consequences	Constraints	Caveat	Conclusions

In a nutshell

- Consider the production of a particle pairs near the BH horizon
- One particle (with "negative" energy) might fall into the BH while the other (with "positive" energy) can escape the gravitational pull
- ▶ Far away from the BH, it looks like the BH is radiating particles
- Since energy is conserved, it will cost some energy to the BH to "emit" that particle, which translates in mass loss
- The more the BH emits particles the more it loses mass and shrinks
 It evaporates!

Adapted from www.secretsofuniverse.in

2/10

Matteo Lucca

Overview	In a nutshell	Consequences	Constraints	Caveat	Conclusions

Main consequences

- $\blacktriangleright\,$ The emitted radiation is thermal $\rightarrow\,T\propto 1/M$
- The mass loss rate is found to be $\dot{M} \propto -1/M^2$ \rightarrow the lighter the BH, the faster it loses its mass and evaporates
- The lifetime of the BH reads

$$t_{
m ev} \simeq t_{
m uni} \left(rac{M}{5.2 imes 10^{14} \
m g}
ight)^3$$

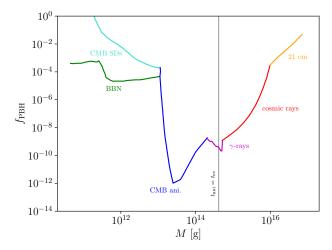
 \rightarrow PBHs with $M \lesssim 5 \times 10^{14}$ g have completely evaporated by now

- Relevance of PBHs goes beyond their ability to explain DM
 Important to consider PBHs over the full mass spectrum
- Most of the energy injection at t ≃ t_{ev} (analogy to DM decay) → Correlation between injection time and PBH mass
 - \rightarrow Complementarity between different probes becomes fundamental

Overview	in a nutshell	Consequences	Constraints	Caveat	Conclusions	
Resulting	; constraints	S				
1) BBN	$(z \sim \mathcal{O}(10^6 - 10^6))$	10 ³), $M \sim \mathcal{O}(10^{10}$	$0 - 10^{13} \text{ g})):$			
Energy injections can alter expansion history or destroy elements						
2) CMB	spectral distort	ions ($z \sim \mathcal{O}(10^6$ -	– 10^3), $M\sim 0$	$O(10^{11} - 10^{1})$	³ g)):	
► En	ergy injections of	distort the CMB e	nergy spectru	ım		

- 3) CMB anisotropies (z $\sim {\cal O}(10^3-10^1),~M\sim {\cal O}(10^{13}-10^{16}~{\rm g}))$:
 - Energy injections during the dark ages partially re-ionize the universe and change the visibility function
- 4) 21 cm lines ($z \sim \mathcal{O}(30-10)$, $M \sim \mathcal{O}(10^{16}-10^{17} \text{ g})$):

• Energy injections impact T_b and hence transition probability


5) Cosmic and γ -ray background ($z \sim \mathcal{O}(\text{few})$, $M \sim \mathcal{O}(10^{14} - 10^{16} \text{ g})$):

• You do not want the PBHs to produce more e^{\pm} and γ s than you see

4/10

Overview	In a nutshell	Consequences	Constraints	Caveat	Conclusions

Resulting constraints

5/10

Adapted from de Freitas Pacheco et al. 2023

Overview	In a nutshell	Consequences	Constraints	Caveat	Conclusions
Caveat					

- ► This is all true as long as the PBHs are Schwarzschild BHs → But what if the PBHs had charge Q or angular momentum J?
- In standard picture no reason to expect their existence, but alternatives can be formulated (example below)
- ▶ BHs with Q/M = 1 or a/M = 1 are referred to as extremal and quasi-extremal if $Q/M \rightarrow 1$ or $a/M \rightarrow 1$
- \blacktriangleright In general, the degree of quasi-extremality can be captured by the parameter ϵ

$$\epsilon^{2} = 1 - \frac{Q^{2}}{M^{2}}$$
 or $\epsilon^{2} = 1 - \frac{a^{2}}{M^{2}}$ (1)

6/10

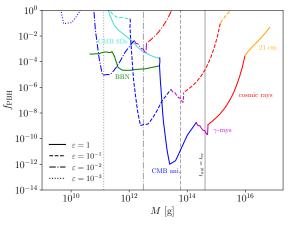
(which would also include e.g., higher dim. BHs)

▶
$$\epsilon = 1 \rightarrow \text{Schwarzschild BH}, \epsilon \ll 1 \rightarrow \text{quasi-extremal BH (qBH)}, \epsilon = 0 \rightarrow \text{extremal BH}$$

Matteo Lucca

Overview	In a nutshell	Consequences	Constraints	Caveat	Conclusions
Caveat					

- Naive understanding: for qBHs, the "pull" towards the horizon gets additional components on top of gravity (like e.g., ergosphere)
- $\blacktriangleright\,$ If PBHs had $\epsilon\ll$ 1, their temperature would become


$$T \simeq \frac{4\epsilon}{8\pi M} \tag{2}$$

 \rightarrow qBHs evaporate at lower temperature than BHs with same mass

- ▶ For luminosity and lifetime this implies $L \propto \epsilon^4$ and $t_{\rm ev} \propto \epsilon^{-4}$ → the energy injection is suppressed and delayed
- ▶ All aforementioned constraints (except for BBN) directly depend on
 - 1) L, which determines $f_{\rm PBH}$ limit, and
 - 2) $t_{\rm ev}$, which determines $M_{\rm PBH}$ dependence
 - \rightarrow Can be simply recast for any value of ϵ

Overview	In a nutshell	Consequences	Constraints	Caveat	Conclusions

Caveat

 \rightarrow Such light PBHs can be the DM!

8/10

Adapted from de Freitas Pacheco et al. 2023

Matteo Lucca

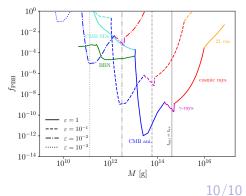
Follow-up ideas

[1] The quickest one et al., "What would it take to form quasi-extremal PBHs?", (could soon be) in prep.

- Very interesting question with no easy answer (it might indeed be impossible, but it would be nice to know)
- Intersection of cosmology, GR and particle physics

[2] Hopefully not the same one et al., "What would it take to observe and identify quasi-extremal PBHs?", (could soon be) in prep.

- More data-focused
- Intersection of cosmological, GW and (gravitational) direct detection probes


9/10

Have a look at Bai & Orlofsky 2019, Lehmann et al. 2019 and de Freitas Pacheco et al. 2023 to get a feeling for the tasks

Conclusions

- Constraints on Hawking evaporation place tight bounds on the PBH abundance at masses between 10¹⁰ - 10¹⁸ g
- Assuming PBHs to be quasi-extremal significantly weakens them
- ▶ qPBHs with $\epsilon \lesssim 10^{-3}$ can be the DM even for PBH masses as low as 10^{11} g and below
- The questions of formation and observability remain open and deserve further study

