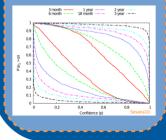


Constraining cosmological parameters with massive black hole binaries

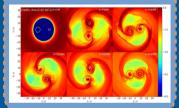
Alberto Mangiagli

Collaborators: Chiara Caprini, Marta Volonteri, Sylvain Marsat, Nicola Tamanini, Susanna Vergani, Henri Inchauspé, Lorenzo Speri

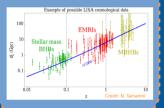

Laboratoire Astroparticule et Cosmologie (APC)

Why should we focus on MBHBs?

The importance of MBHBs


Astrophysics

Constrain MBHBs formation and evolution scenarios


Multi-messenger

Formation of X-ray corona and jet around newly formed horizons

Cosmology

Testing the expansion rate of the Universe

Observing the entire Universe with GWs

In mid-2030s LISA (Laser Interferometer Space Antenna) will observe the GWs from the coalescence of MBHBs in the entire Universe (ArXiv:1702.00786)

3rd Large class mission selected by European Space Agency (ESA)

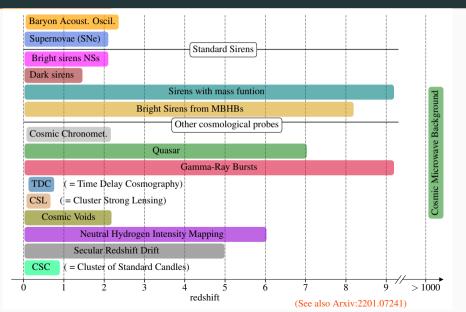
Successfully passed Phase A - Now in Phase B1 - Mission Adoption at end 2023

MBHBs as cosmological probes

The Λ-Cold Dark Matter (ΛCDM) is the most common cosmological parametrization:

- Simple model with good fit to the bulk of data
- X Current tensions :
 - > Early Universe: Cosmic Microwave Background (CMB) observations at z > 1000
 - > Late Universe: SNIa, lensed images at $z \lesssim 2.5$

We need new models and new probes!


Standard sirens are new cosmological probes

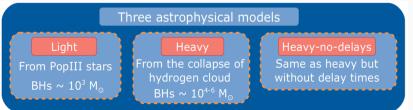
Direct information on *d_L* ⇒ No calibration errors and no intrinsic scatter
Independent from CMB or SNIa ⇒ Independent estimates

Bright sirens from MBHBs, i.e.

Redshift information from the EM counterpart

MBHBs can go up to high redshift

Key points of the project


What constrains can we put on the expansion of the Universe at high redshift with bright MBHBs?

Key improvements respect to previous works (Tamanini+16)

- Improve the modeling of the EM counterpart
- > Bayesian parameter estimation for GW signal (Marsat+20) \Rightarrow expensive but realistic
- > Bayesian cosmological inference

Starting point

Semi-analytical models: tools to construct MBHBs catalogs (Barausse+12)

Constructing the population of MBHBs with EM counterpart

In AM+2207.10678 we estimate the rate of MBHBs with a detecatable EM counterpart S

Observing strategie	X
---------------------	---

Optical	Radio	X-ray
LSST, Rubin Obs.	SKA	Athena
\blacktriangleright FOV $\sim 10 deg^2$	\blacktriangleright FOV $\sim 10 deg^2$	\blacktriangleright FOV $\sim 0.4 deg^2$
Identification+redshift	Redshift with ELT	Redshift with ELT

We also explored the possibility of AGN obscuration and collimated radio emission

Number of EMcp in 4 yr

- Strong decrease with obscuaration and radio jet
- Parameter estimation selects preferentially *heavy*

(In 4 yr)	Standard w Obsc./Colli. radio	
Light	6.4	1.6
Heavy	14.8	3.3
Heavy-no-delays	20.7	3.5

Here we focus on the 'Standard' case

Overview of cosmological models in our study (AM+23, in prep.)

ΛCDM Universe

ΛCDM parametrization

2-parameters model: (H_0, Ω_m) (see Chiara's talk)

Dark energy/modified gravity

> CPL parametrization for $\omega(z)$

4-parameters model: (H_0 , Ω_m , ω_0 , ω_a)

Phenomenological Tracker model (Bull+20) 4-parameters model: (ω₀, ω_∞, z_c, Δz) (work in progress)

Phenomen. modified gravity (Belgacem+19) 2-parameters model: (Ξ₀, n) (see Chiara's talk)

At high redshift

Matter-only approximation
2-parameter models: D(z_p), H(z_p)
(see Chiara's talk)

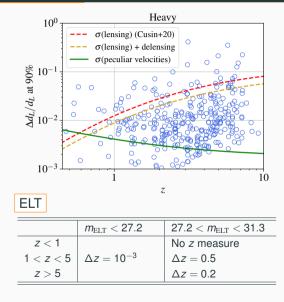
Redshift bin approach

Model-independent 2-parameter models: $D(z_p)$, $H(z_p)$

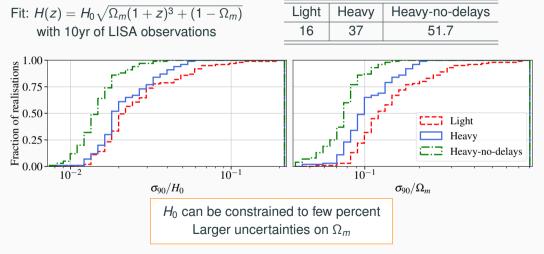
> Splines interpolation

Model-independent Constrain at all redshifts (work in progress)

Luminosity distance and redshift estimates


Luminosity distance

- > Accurate estimate of luminosity distance $\Rightarrow \frac{\Delta d_L}{d_l} < 10\%$
- > Lensing relevant for $z \gtrsim 2-3$
- Peculiar velocities are negligible


Redshift measurements

LSST/Rubin Obs.

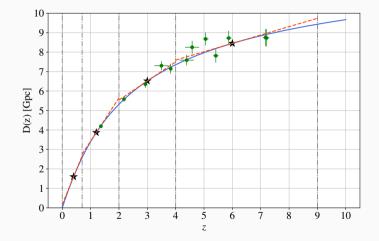
Photometric measurements with $\Delta z = 0.03(1 + z)$ (*Laigle* + 19)

Prospects for H_0 and Ω_m in 10 yr

If we perform the inference over $(H_0, \Omega_m, \omega_0, \omega_a)$ with $\omega(z) = \omega_0 + \omega_a \frac{z}{z+1}$ \Rightarrow Poor constrains on ω_0 and no constrain on ω_a

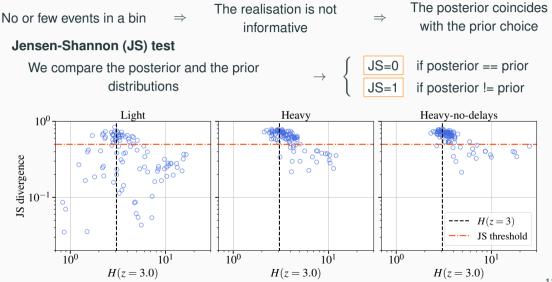
Redshift bin approach in 10 yr

$$D \equiv \frac{d_L(z)}{1+z} = c \int_0^z \frac{dz'}{H(z')}$$
$$H(z) = \left(\frac{dD}{dz}\right)^{-1}$$


Model independent approach (it assumes only flatness)

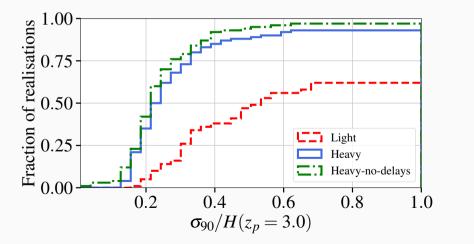
Trade-off between:

> Bin size


> Number of EMcps in each bin

Requirement: D(z) accuracy $\lesssim 5\%$

Problem: What if we do not have EMcp in a bin or if the D and z errors are too broad?


What to do with uninformative realisations?

Constraining H(z) at high redshifts (Preliminary results)

Fit: $D(z) = D(z_p) + H(z_p)^{-1}(z - z_p)$ with 10yr of LISA observations

$z_p = 3$	Light	Heavy	Heavy-no-delays
2< <i>z</i> <4	6.1	14.6	20.7

MBHBs can probe Universe at $z \sim 2-7$

Current results

- > H_0 can be constrained to few percent in 10 yr
- > Larger uncertainties on Ω_m
- > Potential to constrain H(z) at high redshifts
- > If we're unlucky, we might not have enough EMcps in redshift bins

Prospects for future

- Expand the analysis to all redshift bins
- > Test alternative dark energy models
- Model-independent approach with splines interpolation
- Combine MBHBs with other LISA sources as stellar BHBs and EMRIs

MBHBs can probe Universe at $z \sim 2-7$

Current results

- > H_0 can be constrained to few percent in 10 yr
- > Larger uncertainties on Ω_m
- > Potential to constrain H(z) at high redshifts
- > If we're unlucky, we might not have enough EMcps in redshift bins

Prospects for future

- > Expand the analysis to all redshift bins
- Test alternative dark energy models
- Model-independent approach with splines interpolation
- Combine MBHBs with other LISA sources as stellar BHBs and EMRIs