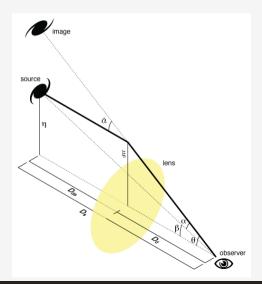
The weak lensing of strong lensing A new cosmological probe

4th May 2023

Natalie Hogg — IPhT CEA Université Paris-Saclay

• Strong lensing images can be distorted – *weakly lensed* – by objects along the line-of-sight (LOS).

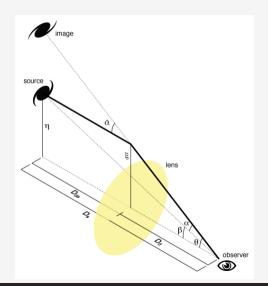
- Strong lensing images can be distorted *weakly lensed* by objects along the line-of-sight (LOS).
- If it is measureable, this LOS shear could provide new constraints on cosmology via σ_8

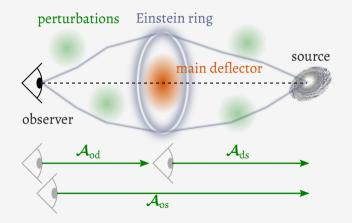

- Strong lensing images can be distorted *weakly lensed* by objects along the line-of-sight (LOS).
- If it is measureable, this LOS shear could provide new constraints on cosmology via σ_8
- Today I will present a proof-of-concept that the LOS shear is measureable, using simulated strong lensing images

- Strong lensing images can be distorted *weakly lensed* by objects along the line-of-sight (LOS).
- If it is measureable, this LOS shear could provide new constraints on cosmology via σ_8
- Today I will present a proof-of-concept that the LOS shear is measureable, using simulated strong lensing images

Measuring line-of-sight shear with Einstein rings: a proof of concept, N. B. Hogg et al., MNRAS, 520, 4, April 2023. arXiv: 2210.07210

Gravitational lensing


Massive objects distort local spacetime, curving the geodesics.


Gravitational lensing

Massive objects distort local spacetime, curving the geodesics.

$$\beta = \theta - \alpha(\theta). \tag{1}$$

Line-of-sight shear

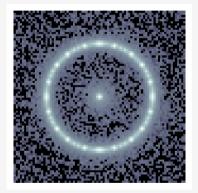
Line-of-sight shear

The amplification matrices act on the lens equation,

$$\boldsymbol{\beta} = \boldsymbol{\mathcal{A}}_{\rm os}\boldsymbol{\theta} - \boldsymbol{\mathcal{A}}_{\rm ds}\boldsymbol{\alpha}(\boldsymbol{\mathcal{A}}_{\rm od}\boldsymbol{\theta}) \tag{2}$$

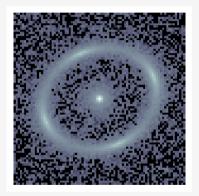
Line-of-sight shear

The amplification matrices act on the lens equation,


$$\beta = \mathcal{A}_{\rm os}\theta - \mathcal{A}_{\rm ds}\alpha(\mathcal{A}_{\rm od}\theta) \tag{2}$$

and are defined as

$$\boldsymbol{\mathcal{A}}_{ab} = \mathbf{I} - \boldsymbol{\Gamma}_{ab}, \quad \boldsymbol{\Gamma}_{ab} = \begin{bmatrix} \kappa_{ab} + \operatorname{Re}\left(\boldsymbol{\gamma}_{ab}\right) & \operatorname{Im}\left(\boldsymbol{\gamma}_{ab}\right) - \boldsymbol{\omega}_{ab} \\ \operatorname{Im}\left(\boldsymbol{\gamma}_{ab}\right) + \boldsymbol{\omega}_{ab} & \kappa_{ab} - \operatorname{Re}\left(\boldsymbol{\gamma}_{ab}\right) \end{bmatrix}, \quad (3)$$


where κ_{ab} is the convergence, γ_{ab} the shear and ω_{ab} the rotation of the image.

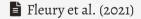
Visualising shear

No shear: Einstein ring is circular (unlike a galaxy).

Visualising shear

With shear: Einstein ring is elliptical (all shape distortion is cosmological, not intrinsic).

Problem


▲ Shear parameters are degenerate with lens model parameters.

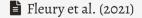
Solution: minimal lens model

Multiply by the combination $\mathcal{A}_{od}\mathcal{A}_{ds}^{-1}$, creating the "minimal model",

$$\tilde{\boldsymbol{\beta}} = \boldsymbol{\mathcal{A}}_{\text{LOS}} \boldsymbol{\theta} - \boldsymbol{\mathcal{A}}_{\text{od}} \boldsymbol{\alpha}(\boldsymbol{\mathcal{A}}_{\text{od}} \boldsymbol{\theta}), \tag{4}$$

where $\mathcal{A}_{LOS} = \mathcal{A}_{od} \mathcal{A}_{ds}^{-1} \mathcal{A}_{os}$.

Solution: minimal lens model


Multiply by the combination $\mathcal{A}_{od}\mathcal{A}_{ds}^{-1}$, creating the "minimal model",

$$\tilde{\boldsymbol{\beta}} = \boldsymbol{\mathcal{A}}_{\text{LOS}} \boldsymbol{\theta} - \boldsymbol{\mathcal{A}}_{\text{od}} \boldsymbol{\alpha}(\boldsymbol{\mathcal{A}}_{\text{od}} \boldsymbol{\theta}), \tag{4}$$

where $A_{LOS} = A_{od} A_{ds}^{-1} A_{os}$. It is thus the **line-of-sight (LOS) shear**,

$$\gamma_{\rm LOS} = \gamma_{\rm od} + \gamma_{\rm os} - \gamma_{\rm ds}, \tag{5}$$

which is expected to be measurable.

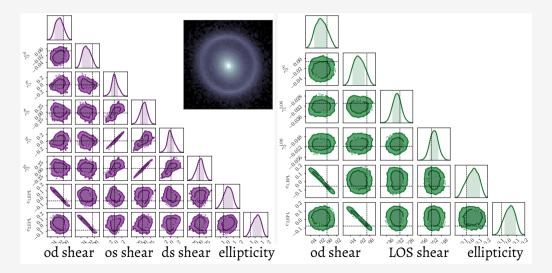
Does the minimal LOS model evade degeneracies?

• I implemented the LOS formalism in the lenstronomy software

lenstronomy/LineOfSight

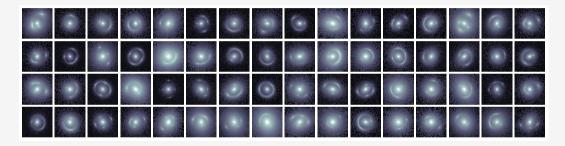
Does the minimal LOS model evade degeneracies?

- I implemented the LOS formalism in the lenstronomy software
- This allowed us to create and fit mock images with LOS shear included, to look for degeneracies


lenstronomy/LineOfSight

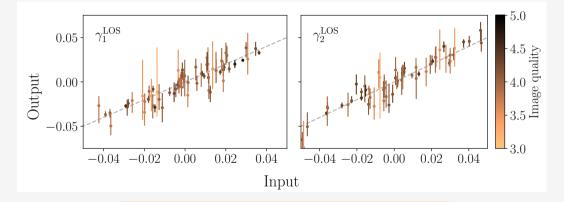
Does the minimal LOS model evade degeneracies?

- I implemented the LOS formalism in the lenstronomy software
- This allowed us to create and fit mock images with LOS shear included, to look for degeneracies
- If the formalism works as expected, we can create more complex mocks to see if the LOS shear is systematically measureable


lenstronomy/LineOfSight

Does the minimal LOS model evade degeneracies? Yes

The minimal LOS model evades degeneracies in a simple lens. What happens when we consider more realistic (complicated) lenses?


Mock images

Our 64 HST-like mock images comprised of randomly offset elliptical baryonic and dark matter components plus elliptical Sérsic profiles for the lens and source light.

Results (construct with full model, fit with minimal model)

 $\chi^2=$ 1.0; average precision of 1%; no outliers $> 2\sigma$

Hogg et al. (2023)

The LOS shear is well-recovered from complex lenses, provided the lens mass is modelled correctly.

• Detect LOS shear in HST (SLACS) and JWST (COSMOS-Web) lenses.

- Detect LOS shear in HST (SLACS) and JWST (COSMOS-Web) lenses.
- Build pipeline to use LOS shear for cosmology: auto-correlation and cross-correlation with galaxy shapes and positions ($6 \times 2pt$ correlation function).

- Detect LOS shear in HST (SLACS) and JWST (COSMOS-Web) lenses.
- Build pipeline to use LOS shear for cosmology: auto-correlation and cross-correlation with galaxy shapes and positions ($6 \times 2pt$ correlation function).
- Forecast improvement on σ_8 based on predicted strong lens populations in new/upcoming surveys e.g. LSST and Euclid.

- Detect LOS shear in HST (SLACS) and JWST (COSMOS-Web) lenses.
- Build pipeline to use LOS shear for cosmology: auto-correlation and cross-correlation with galaxy shapes and positions ($6 \times 2pt$ correlation function).
- Forecast improvement on σ_8 based on predicted strong lens populations in new/upcoming surveys e.g. LSST and Euclid.
- Investigate beyond shear effects (flexion).

💼 Thanks!

2210.07210

🖂 natalie.hogg@ipht.fr У astronat 🤱 nataliebhogg.com