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Introduction

The era of Stage-IV LSS surveys is finally arriving:
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And with it, the information on small scales will drastically increase




Introduction

* The main quantity we want to get predictions on non-linear scales is the matter power spectrum

* One way of modelling this quantity in these scales is using N-Body simulations

* However:
— 1) N-Body simulations are time consuming and computationally expensive
—  2) Performing a full MCMC parameter estimation — need an order of 10%10% simulations
— 3) The power spectrum measuered from these simulations is noisy — afftected by resolution issues

= 4) All of this is worse in beyond-LCDM models



COLA

* Issue 1) To bypass the cost of running one N-Body sim we can use the COmoving Lagrangian
Approximation method:

— 20 Order Lagrangian Perturbation Theory + Particle-Mesh Algorithm
-  Effective decoupling of large scale modes (LPT) and small scale modes (PM)

= Reduced number of time-steps at the cost of losing resolution at small scales

S. Tassev et al - 1301.0322




LCDM-Emulators

* Issue 2) Emulation techniques: A~
1.05 | std dev TF =
— Instead of running 10* simulations we run ~10% simulations L ]
, TF 1o -
- Emulation methods then interpolate the results of fgi » .
=h N .
cosmological simulations using machine learning T095 p
- Example of emulators for the non-linear power 090l vl il 0T
0= 107! 1 10!
spectrum in LCDM: k [ Mpc™']
° EUChd Emulator 2 (EEZ) M. Knabenhans et al 2010.11288 Parameter min. max. Reference
O 0.24 0.40 0.319
— N-Body simulations — PKDGRAV3 O, 0.04 0.06 0.049
ng 0.92 1.0 0.96
~ Approx 250 simulations A, 17x10°° 25x10°° | 2.1 %1079
h 0.61 0.73 0.67
— Emulation of the boost: B (k,2) = Pnon—(k,z)

Py, (k ) Z) Table 1: Parameter space EE2



Issue 3) The issue:

COLA vs EE2
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COLA vs EE2

Issue 3) To reduce the noise coming from resolution effects we can instead compare the non-linear
response function, which is defined as:

case
R _ Pnon
non —— f
Prsn
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COLA vs EE2

Additionally, from the definition of the boost factor of a “case” cosmology (which can be any cosmology

other than the reference one):

Pcase (k Z)
BC&SQ k — non Y
2) = Pease (k. 2)
We can rewrite it as:
Rcase(k Z)
Bcase ]6 — Bref k > non )
(02) = B2 X e, 2)

Where we now see the Rnon function appearing explicitly



COLA vs EE2

* Additionally, from the definition of the boost factor of a “case” cosmology (which can be any cosmology
other than the reference one):

Pcase (k‘ Z)
BC&SG k — non Y
2) = Pease (k. 2)
*  We can rewrite it as:
Bcase(k Z) — Bref(k Z) % R;?)Sﬁe(k7z>

Rcase(k’ Z)

e

Quantity to be emulated Quantity computed using

EE2 reference boost COLA



COLA & Modified Gravity

To emulate the power spectrum for modified gravity we can use this prescription

Where the main quantity we need to compute in COLA is the ratio (Rnon) of a case cosmology with

respect to a reference one

PME (k, 2)

In MG theories this is simply: m

So I will now present the MG theories we have created a fast way to run COLA simulations, and
compare our results with available N-Body simulations in the literature



COLA & Modified Gravity

* We consider Hondeski gravity, whose action is big and messy:

Slgw 8l = [ dtav=g [

* But can be made simpler:

E. Bellini and I. Sawicki 1404.3713
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H(z) Fixes background

QK (Z ) Kineticity

B (Z ) Braiding

QM (Z ) Running Planck Mass
aT (Z ) Tensor excess

Z LEi[guw ¢l + Lnlguw, Y]

Covariant Formulation

Parametrized Formulation



COLA & Modified Gravity

* MG N-Body simulations solve:

N-Body: COLA:
V20 = 4rGa?dpm + 1v25¢, V2® = 471G frnOm,
s 2 0.6 + kit = 0,
-0+ kv = 0, [87.—|—7-[]'U:—VCI)
L[5¢] — S(5Pm7 5¢) Geff - Geff (aBa aM, aT)

Needs different solver: One single time-dependent function

Adds even more time and complexity Linear theory
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Screening

In small scales, MG theories introduce an aditional force acting on particles, called 5th force. To shield
this extra force we need to implement a screening mechanism in our simulations

Get (a (2),am (2), a7 (2)) — Ger (k,ap (2),am (2), aT (2))

In our COLA simulations we have implemented a numerical routine that numerically computes Geff as
a function of scale, transitioning from its linear theory value to its GR one:

Gefr, rcHo = 1.0 Gesr, rcHo = 5.0
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Comparison with full N-Body simulations available in the literature
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Conclusions

Take aways:
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COLA allows us to run faster simulations

Emulators reduce the number of required simulations

Emulating the Boost reduces resolution effects that worsen the agreement
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Modified gravity:

nDGP, rcHg=1.0

Conclusions
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Fast pipeline to generate simulations in Horndeski theories
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Thank you
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Backup

*  Our methodology to investigate beyond-LCDM models is given by:

Rcase(k Z)
case Lk _ Bref L non )
( 72) ( 7Z) X Case(ka)

P T

Quantity to be emulated

Quantity computed using

EE2 reference boost COLA

* As a proof of concept we created a Neural Network Emulator for:
- LCDM with fixed sum of neutrino masses, 0.058 eV, and same parameter range as EE2

- 400 COLA simulations



Backup

We then performed a cosmic shear forecast analysis for an LSST-Y1 like survey
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