Real Scalar Phase Transitions: Bubble Nucleation, Nonperturbatively

Anna Kormu (she/her)

PONT

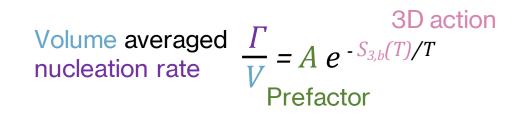
2.5.2023

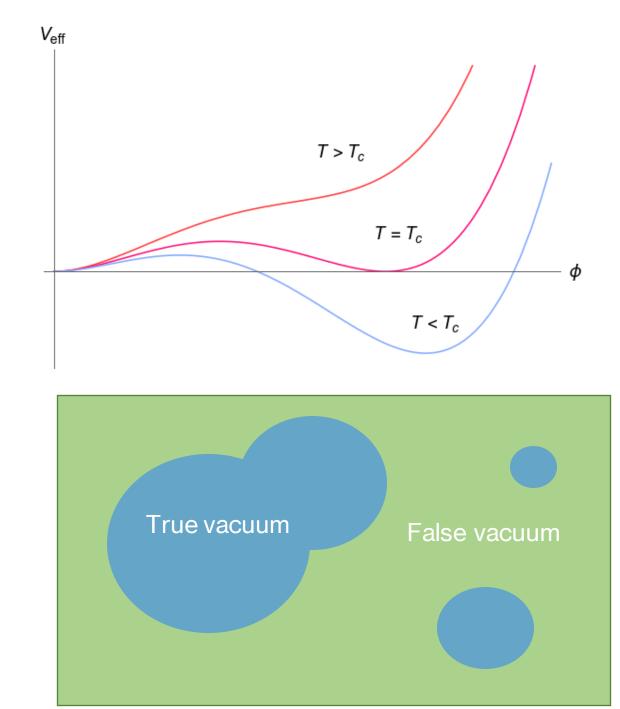
University of Helsinki & Helsinki Institute of Physics

Phase transitions in the early universe

- Grand Unified Theories, Electroweak, QCD...
- In the Standard Model (SM) the electroweak PT is a crossover
- SM is incomplete \rightarrow beyond SM (BSM) physics
- Things to look for: topological defects, bubbles from EWPT, ... ?
- Something we could possibly detect: Gravitational waves?

Semiclassical solution (Coleman 1977)

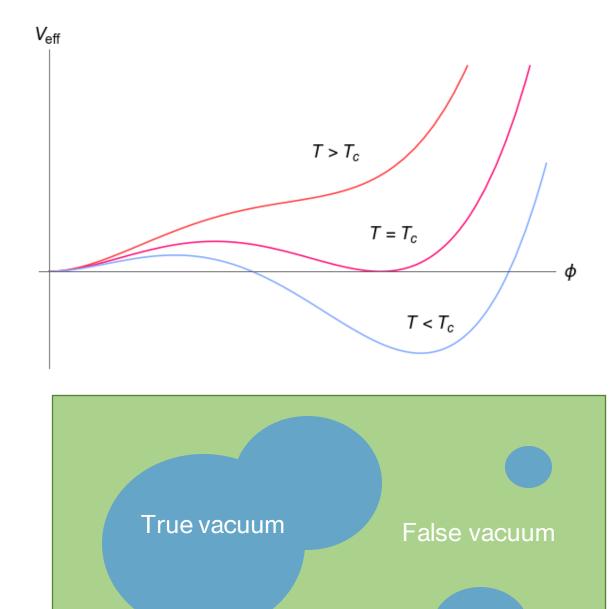




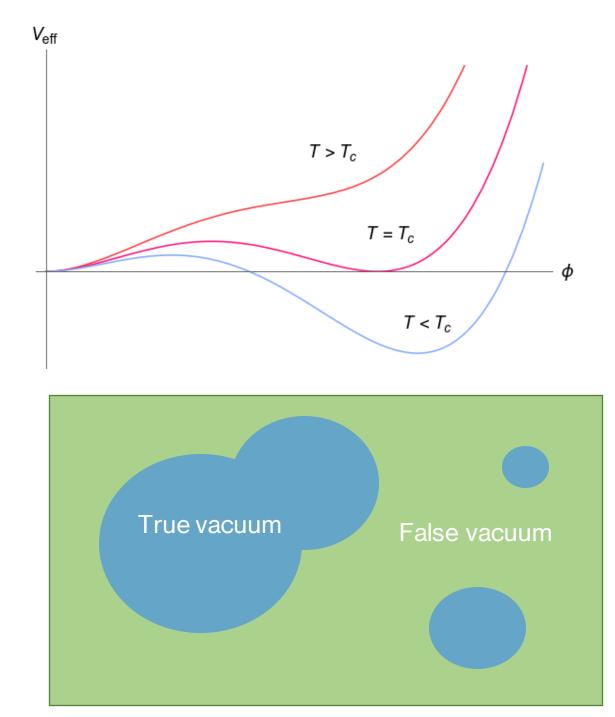
Semiclassical solution (Coleman 1977)

Volume averaged nucleation rate $\frac{\Gamma}{V} = A e^{-S_{3,b}(T)/T}$ Prefactor

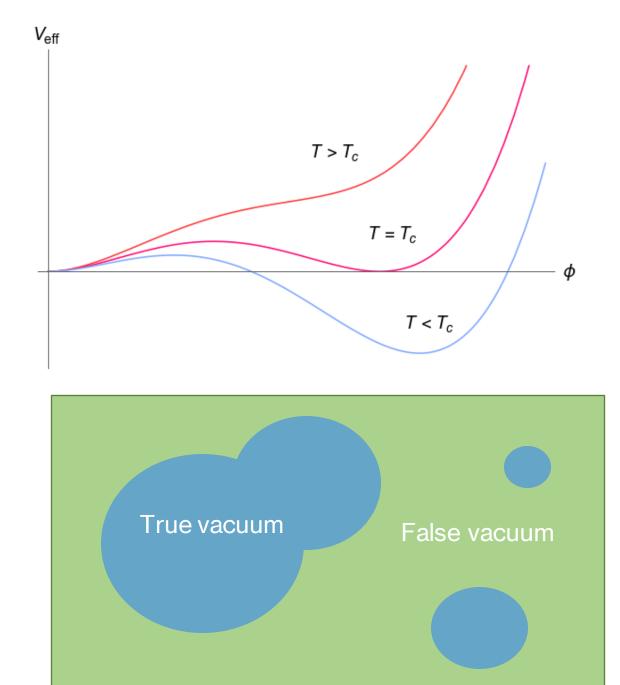
$$A = T \left(\frac{S_3(T)}{2\pi T}\right)^{3/2} \left| \frac{\det'[-\nabla^2 + V''(\phi_b)]}{\det[-\nabla^2 + V''(0)]} \right|^{-1/2}$$



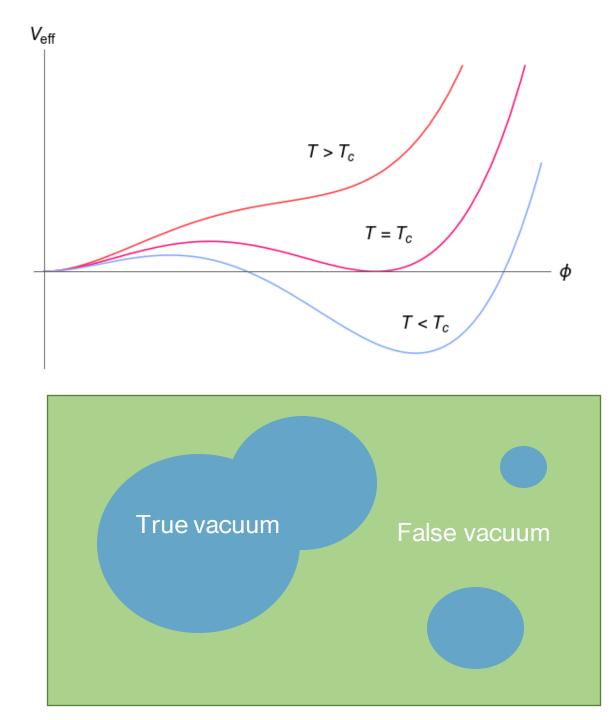
- Semiclassical solution (Coleman 1977)
- Determining the prefactor analytically difficult → perturbation theory



- Semiclassical solution (<u>Coleman 1977</u>)
- Determining the prefactor analytically difficult → perturbation theory
- Perturbation theory suffers from the socalled infrared problem

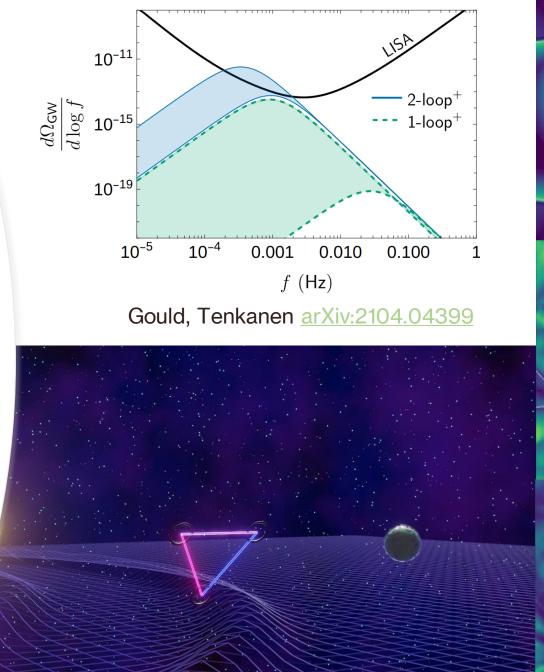


- Semiclassical solution (<u>Coleman 1977</u>)
- Determining the prefactor analytically difficult → perturbation theory
- Perturbation theory suffers from the socalled infrared problem
- Moore, Rummukainen & Tranberg introduce a simulation method (<u>hep-lat/0103036</u>, <u>hep-ph/0009132</u>)



Phase transitions & gravitational waves

- Bubbles source the GWs in the early universe plasma → stochastic GW background?
- Baryogenesis?
- Uncertainty in perturbative calculations?

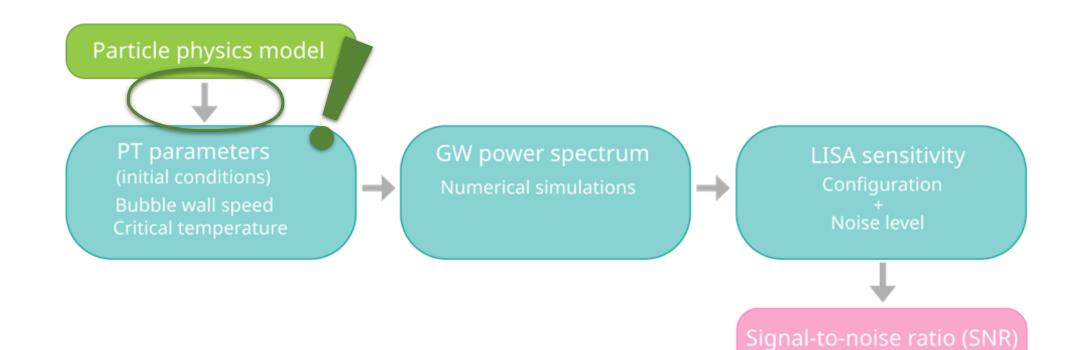


Cutting et al. arXiv:1906.00480

Gravitational waves & LISA

Modified from Caprini et al. <u>arXiv:1910.13125</u>

Gravitational waves & LISA



Modified from Caprini et al. arXiv:1910.13125

- Toy model possessing key features of BSM models
 - Potential has a tree-level barrier
 - Compared to the previously studied cubic anisotropy model, this model would have a stronger PT
- Dimensional reduction 4D cont \rightarrow 3D cont \rightarrow 3D lattice (imaginary time, high temp)

$$S_{\text{lat}} = \sum_{x} a^{3} \left[-\frac{1}{2} Z_{\phi} \phi_{x} (\nabla_{\text{lat}}^{2} \phi)_{x} + \sigma_{\text{lat}} \phi_{x} + \frac{1}{2} Z_{\phi} Z_{m} m_{\text{lat}}^{2} \phi_{x}^{2} + \frac{1}{3!} g_{\text{lat}} \phi_{x}^{3} + \frac{1}{4!} Z_{\phi}^{2} \lambda_{\text{lat}} \phi_{x}^{4} \right]$$

- Toy model possessing key features of BSM models
 - Potential has a tree-level barrier
 - Compared to the previously studied cubic anisotropy model, this model would have a stronger PT
- Dimensional reduction 4D cont \rightarrow 3D cont \rightarrow 3D lattice (imaginary time, high temp)

$$S_{\text{lat}} = \sum_{x} a^{3} \left[-\frac{1}{2} Z_{\phi} \phi_{x} (\nabla_{\text{lat}}^{2} \phi)_{x} + \sigma_{\text{lat}} \phi_{x} + \frac{1}{2} Z_{\phi} Z_{m} m_{\text{lat}}^{2} \phi_{x}^{2} + \frac{1}{3!} g_{\text{lat}} \phi_{x}^{3} + \frac{1}{4!} Z_{\phi}^{2} \lambda_{\text{lat}} \phi_{x}^{4} \right]$$

- Toy model possessing key features of BSM models
 - Potential has a tree-level barrier
 - Compared to the previously studied cubic anisotropy model, this model would have a stronger PT
- Dimensional reduction 4D cont \rightarrow 3D cont \rightarrow 3D lattice (imaginary time, high temp)

$$S_{\text{lat}} = \sum_{x} a^{3} \left[-\frac{1}{2} Z_{\phi} \phi_{x} (\nabla_{\text{lat}}^{2} \phi)_{x} + \sigma_{\text{lat}} \phi_{x} + \frac{1}{2} Z_{\phi} Z_{m} m_{\text{lat}}^{2} \phi_{x}^{2} + \frac{1}{3!} g_{\text{lat}} \phi_{x}^{3} + \frac{1}{4!} Z_{\phi}^{2} \lambda_{\text{lat}} \phi_{x}^{4} \right]$$

- Toy model possessing key features of BSM models
 - Potential has a tree-level barrier
 - Compared to the previously studied cubic anisotropy model, this model would have a stronger PT
- Dimensional reduction 4D cont \rightarrow 3D cont \rightarrow 3D lattice (imaginary time, high temp)

$$S_{\text{lat}} = \sum_{x} a^{3} \left[-\frac{1}{2} Z_{\phi} \phi_{x} (\nabla_{\text{lat}}^{2} \phi)_{x} + \sigma_{\text{lat}} \phi_{x} + \frac{1}{2} Z_{\phi} Z_{m} m_{\text{lat}}^{2} \phi_{x}^{2} + \frac{1}{3!} g_{\text{lat}} \phi_{x}^{3} + \frac{1}{4!} Z_{\phi}^{2} \lambda_{\text{lat}} \phi_{x}^{4} \right]$$

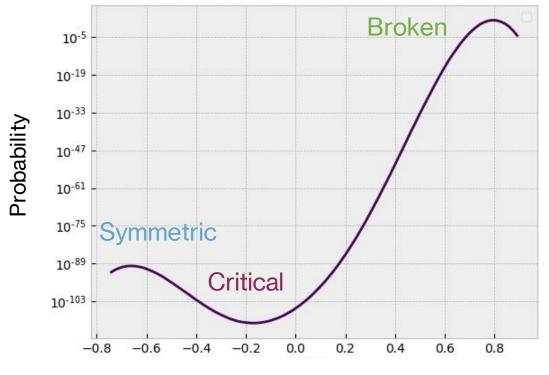
Pick an order parameter that behaves differently in the two phases Simulate the probability of being in the critical bubble configuration

2

Perform real time evolution to determine whether the critical bubble tunnels or not

3

Calculate the total nucleation rate, dynamical prefactor × probability info



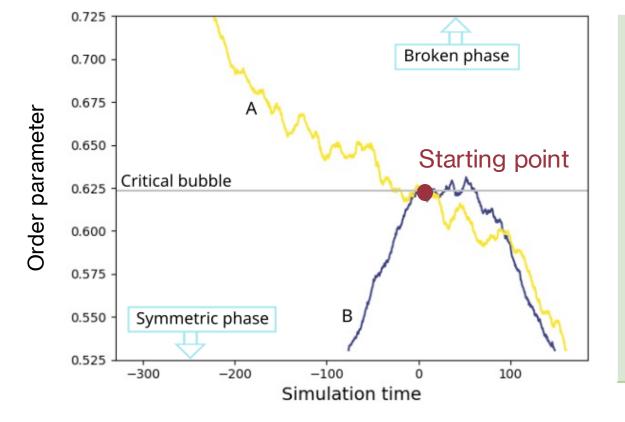
Perform real time evolution to determine whether the critical bubble tunnels or not

3

Calculate the total nucleation rate, dynamical prefactor × probability info

4

Order parameter

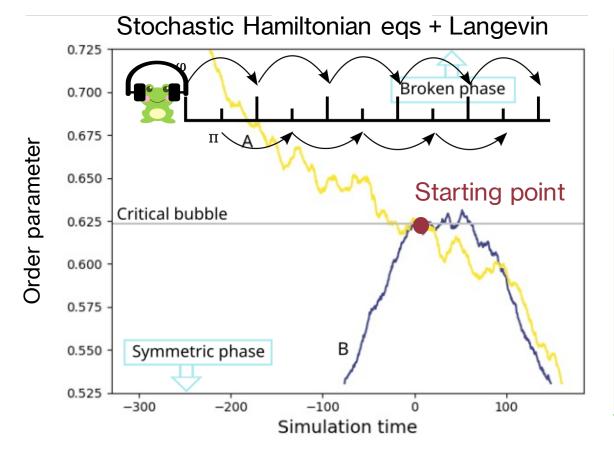


Perform real time evolution to determine whether the critical bubble tunnels or not

3

Calculate the total nucleation rate, dynamical prefactor × probability info

4



3 Perform real time evolution to

determine whether

the critical bubble

tunnels or not

Calculate the total nucleation rate, dynamical prefactor × probability info

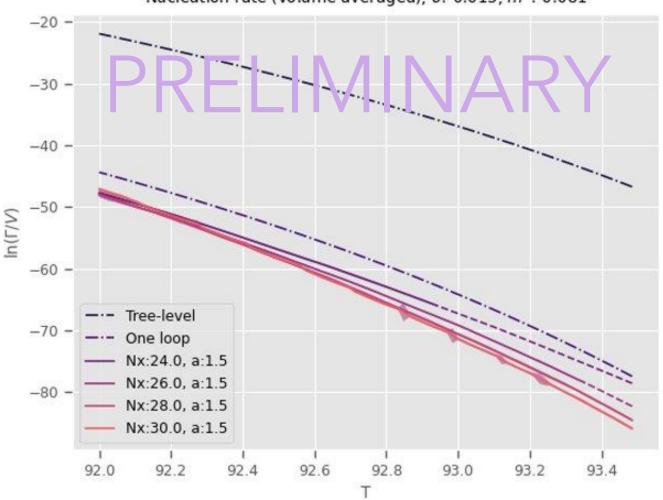
4

Pick an order parameter that behaves differently in the two phases

$$\Gamma V = \frac{1}{2} P_C^{\epsilon} \left\langle \left| \frac{\Delta \theta(\alpha)}{\Delta t} \right| \times \mathbf{d}^{\alpha} \right\rangle$$

Calculate the total nucleation rate, dynamical prefactor × probability info





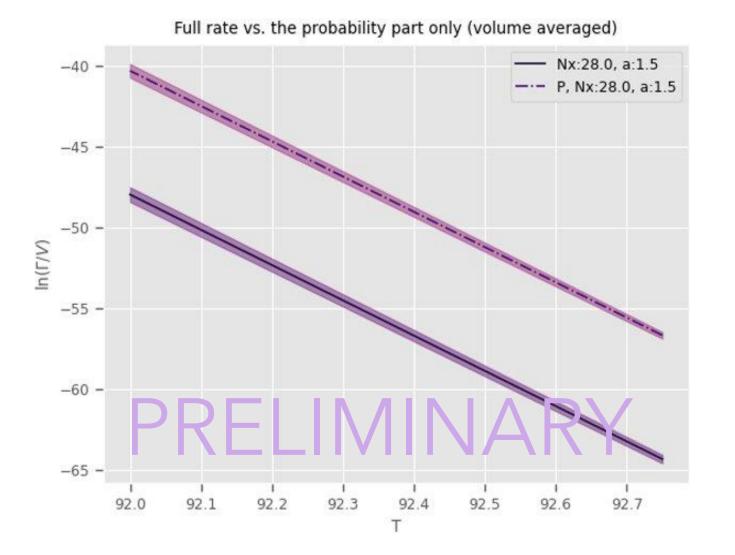
Nucleation rate (volume averaged), σ :-0.015, m^2 :-0.081

Results

Volume averaged nucleation rate vs. the perturbative calculation results as a function of temperature T

Clarification

Tree-level = bounce action One loop = bounce + fluctuation determinant



Results

Volume averaged probability part only vs. full volume averaged nucleation rate with the prefactor as a function of temperature T

Why does this matter?

- Allows us to calibrate the uncertainty in PT parameters when obtained from perturbative results
- Our simulations show us a suppression of the nucleation rate by a factor of 20 compared to the one loop estimate
- Accurate computations of the nucleation rate are crucial for calculating e.g. the GW power spectrum
- Method and results can be applied to other theories

One-bubble takeaway

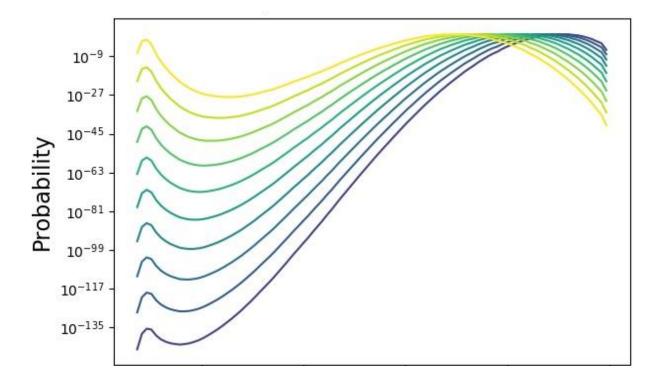
There can be large uncertainties in nucleation rates calculated from the bounce action

Why does this matter?

- Allows us to calibrate the uncertainty in PT parameters when obtained from perturbative results
- Our simulations show us a suppression of the nucleation rate by a factor of 20 compared to the one loop estimate
- Accurate computations of the nucleation rate are crucial for calculating e.g. the GW power spectrum
- Method and results can be applied to other theories

Thank you! Questions? Contact: anna.kormu@helsinki.fi

Backup: Reweighting



Order parameter

 Simulations are computationally expensive → use reweighting the order parameter histogram at different parameter points

• In our case we reweight in two parameters