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The auto-correlation between two members of a galaxy population is symmetric under the inter-
change of the two galaxies being correlated. The cross-correlation between two different types of
galaxies, separated by a vector r, is not necessarily the same as that for a pair separated by —r.
Local anisotropies in the two-point cross-correlation function may thus indicate a specific direction
which when mapped as a function of position trace out a vector field. This vector field can then be
decomposed into longitudinal and transverse components, and those transverse components written
as positive- and negative-helicity components. A locally asymmetric cross-correlation of the longi-
tudinal type arises naturally in halo clustering, even with Gaussian initial conditions, and could be
enhanced with local-type non-Gaussianity. Early-Universe scenarios that introduce a vector field
may also give rise to such effects. These antisymmetric cross-correlations also provide a new pos-
sibility to seek a preferred cosmic direction correlated with the hemispherical power asymmetry in
the cosmic microwave background and to seek a preferred location associated with the CMB cold
spot. New ways to seek cosmic parity breaking are also possible.
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Idea

Cross-correlation between different tracers may not be sym-
metric under exchange r — —r, e.g. if they have different
bias parameters.

5 = bid+ 0% + ...

7

tracer i dark matter

dP(k
PA = (byci — bi o) Jp(ks)
dkq

ki - k3
ki

ks < Kk

ks long-wavelength mode, k; short-wavelength mode

m Add redshift space distortions.

m Add primordial non-Gaussianity fyi.
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Most generic parametrization of the power-spectrum: symmetric and
antisymmetric cases
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Symmetric case

Assume we have a new field with Fourier modes h,(k3) and polarization p. Global
statictical isotropy requires that the new field induces a correlation:

<6(k1)5(k2)>|hp(k3) = f/)(/q , kz)h;(k3)€5/<{k£5(3)(k1 + ko + k3)
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eg(k)? Most general 3 x 3 symmetric tensor can be decomposed into 6 orthogonal
polarization states:

_ &P _
p=1{+%,02zxy} Je” =28,y

Ht
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Extension to antisymmetric case

More general case: 65(/(3} may be antisymmetric = nine degrees of freedom! Three
new polarizations p = {L, x, y}.

(81(k1)02(k2)) =P(kn)dP) (ky + k2)
+ Z Z fo(kt, ko, u)h;(kg)e{j(/q)/qkiz'éﬁ)(/q + ko + k3)

ky P
+ Z Tkt ko, ) (k3)€p - (k1 — k2) 59 ks + ko + k)
k3.p
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Parametrization allows for a global preferred direction (exotic new physics).

In our case: in any small volume, the cross-correlation could “point” in some given
direction and this direction could be spatially dependent, in such a way that global
statistical isotropy is still preserved on sufficiently large scales.
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Case of biased halo clustering

Consider two tracers sitting on top of a long-wavelength dark matter mode.
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Case of biased halo clustering

Consider two tracers sitting on top of a long-wavelength dark matter mode.

O = b + % + . ..

(81(k1)82(k2)3(k3)) = 2P(ks) [baci Plko) + br o P(ka)] 6P (ky + ko + k)
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O = b + % + . ..

(81(k1)82(k2)3(k3)) = 2P(ks) [baci Plko) + br o P(ka)] 6P (ky + ko + k)

Squeeze K < ki, k; and antisymmetrize in k1, kz: now ky = ky = k, k3 =K

aP(k)
ok

k-K

K <« k
X <

PA = (bye — bioy) P(K)

Compare with general parametrization: longitudinal mode only p = L, with

1 dP(k) K
= 5 (bycr = b1cy) ET
Small scales — we can take P(k) to be a powerlaw P(k) o< k" with n = —3.

PA by — b)) n K

PS (b +bicy) 2 k
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Adding RSD and fy (1)

m Bias at second order:

0g = b0 + %52 + by K? with K (k) = gQZHz"f’“’ =5,5= [%’ - %5,/]5(“
m RSD at second order:
1 ran
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Adding RSD and fy (1)

m Bias at second order:
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Neglecting Doppler term and selection effects, the new kernels are

Zi(k) =by + 1
1
—) + 1P Go(kq, ko)
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Dotk ki ko) =2 4 bn ot ko) + by (U1zz -3
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Adding RSD and fy (I1)
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Primordial non-Gaussianity i

In the presence of local-type primordial non-Gaussianity, the Eulerian basis of ope-
rators in the bias expansion must be augmented by additional terms: | ¢(g) at first
order and N 0(x)¢(q) at second order, with ¢ the Bardeen potential.

The redshift space kernels in Fourier space become:
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Estimator
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Estimator for the Fourier amplitude 0(K)
Jeong et al. 1203.0302 & Dai et al. 1507.05618

1 . N
5 [01(k1)02(k2) — 01(k2)02(k1)] = ViOk, k, kO (K)fLA(k1 ko)K - (ki — ko)
Each pair k¢, k; provides an estimator:
— 1 N -1
o(K) = 5 [61(k1)02(k2) — 01(k2)02(ky)] [f[\(k1 Jk)K - (ky — kz)]

with variance

% [fLA(kw.kz)k (ky — /<2)]72 (Pr(ki)Pa(k2) + Pr(kao) P2 (ki) — 2P12 (ki) Pia(ka))

Minimum variance estimator obtained by summing over all (k1, k>) with inverse-variance weighting:

[fA(k1 ko)K - (ky — kz)]

3(K) = Py(K 51 (k1) 0o (k) — &1 (k) s (k
(K) ( ); TPy (k)P (ko) + Pr{ko)Pa(k) — 2Pyl Pratia)) 2 [ 1(k1)02(k2) — 61(k2) 0 (k)]
-1
[fA(k1,kz)/”< (k- kz)]2
/7 K

; % (P1(k1) P2 (ko) + Pi(ko) P (ki) — 2P (ky) Pra(k2))
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Estimator for the amplitude A

|

2
Since (’5(K)) ) = V. (P(K) + Py(K)), if one parametrizes P(K) = AP¢(K), each K provides an
estimator for the amplitude:

A = PK)! (vs 1 ‘5/(/?)‘2 _ P,,(K))
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Robertson et al, Galaxy formation and evolution science in the era of the L
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Thank you for your attention.
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SNR
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Covariance

— 1

PAlle, ) = 5 (81(K)8(K — k) = 81(K = k)3 (k)

under the null hypothesis:

but since P*(—k) = —P"(k), one can consider only one emisphere in k space and then combine

Cov(k, k')x = %[Pﬂ (K)P22(K) — Pra(k) P (k) [60 0 — 00 ]

the contribution from both k and —k mode:
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