Causality Constraints on Mergers beyond General Relativity

Francesco Serra

Scuola Normale Superiore, INFN Pisa

PONT - 03/05/2023

Based on:

FS, J. Serra, L.G. Trombetta, E. Trincherini - 2205.08551 + work in progress

A hidden scalar field?

- coupled only gravitationally
- shift-symmetric: $\phi \rightarrow \phi+c$

Test effects beyond GR with gravitational waves

How does the scalar field modify compact objects?

Black hole hair in scalar-tensor theories

The scalar Gauss-Bonnet exception

$$
\left.\begin{array}{rl}
S=\int d^{4} x \sqrt{-g}\left(\frac{M_{\mathrm{Pl}}^{2}}{2} R-\frac{1}{2}(\partial \phi)^{2}+\alpha M_{\mathrm{Pl}} \phi \mathcal{R}_{\mathrm{GB}}^{2}\right.
\end{array}\right)
$$

Detectable when $\sqrt{\alpha} \sim \mathrm{km}$

Black hole hair in scalar-tensor theories

The scalar Gauss-Bonnet exception

$$
\left.\begin{array}{l}
S=\int d^{4} x \sqrt{-g}\left(\frac{M_{\mathrm{Pl}}^{2}}{2} R-\frac{1}{2}(\partial \phi)^{2}+\alpha M_{\mathrm{Pl}} \phi \mathcal{R}_{\mathrm{GB}}^{2}\right.
\end{array}\right)
$$

Detectable when $\sqrt{\alpha} \sim \mathrm{km}$

Is there a sensible UV completion?

What are the consequences of having a large coefficient α ?

Causality constraints

Time delays and time advances

$Q_{b}^{\omega} \begin{cases}\bullet \text { GR: } & \text { Shapiro time delay } \\ \bullet G R+\text { scalar: } & ? ?\end{cases}$

Classical superluminality if $\quad \Delta t<0 \quad \& \quad|\Delta t|>\frac{1}{\omega}$

The case of scalar-GB

Time delay/advance from scattering

 at impact parameter b
find eigenstates of propagation around massive source

Causality requires low UV cutoff

$$
\Delta t_{ \pm}=2 r_{s}\left(\underset{\text { Shapiro }}{\left.\log \frac{b_{0}}{b} \pm \underset{\text { scalar-GB }}{\sqrt{2}} \frac{\alpha}{b^{2}}\right)}\right.
$$

UV completion needed at small impact parameter

$$
\Lambda \lesssim 1 / \sqrt{\alpha}
$$

Causality requires low UV cutoff

$$
\Delta t_{ \pm}=2 r_{s}\left(\underset{\text { Shapiro }}{\left.\log \frac{b_{0}}{b} \pm \sqrt{2} \frac{\alpha}{b^{2}}\right)}\right.
$$

UV completion needed at small impact parameter

$$
\Lambda \lesssim 1 / \sqrt{\alpha}
$$

$$
\begin{gathered}
\ll \Lambda_{\alpha}=\left(\frac{M_{\mathrm{Pl}}}{\alpha}\right)^{1 / 3} \\
\text { The EFT is still } \\
\text { weakly coupled! }
\end{gathered}
$$

Which UV completion?

Only known cure for time advance at $b \lesssim \sqrt{\alpha}$ is a tower of spinning states (Camanho etal. 2014)

Could such dark tower be hidden from detection?

Table top experiments - Newton law at $\mu \mathrm{m}$

Adding other operators?

does not work

Moral of the story:
observing effects from a shift-symmetric scalar in BH mergers seems not at all likely

Diagnosis: Superluminality
 Treatment: UV completion

Results:
Narrow down space of testable deviations from GR

Next:
Other compact objects?

