Causality Constraints on Mergers beyond General Relativity

Francesco Serra

Scuola Normale Superiore, INFN Pisa

PONT - 03/05/2023

Based on:

FS, J. Serra, L.G. Trombetta, E. Trincherini – 2205.08551 + work in progress

A hidden scalar field?

coupled only gravitationally

• shift-symmetric: $\phi \rightarrow \phi + c$

Test effects beyond GR with gravitational waves

How does the scalar field modify compact objects?

Black hole hair in scalar-tensor theories

The scalar Gauss-Bonnet exception

$$S = \int d^4x \sqrt{-g} \left(\frac{M_{\rm Pl}^2}{2} R - \frac{1}{2} (\partial \phi)^2 + \alpha M_{\rm Pl} \phi \mathcal{R}_{\rm GB}^2 \right)$$

$$\mathcal{R}_{GB}^2 \equiv R^{\mu\nu\rho\sigma} R_{\mu\nu\rho\sigma} - 4R^{\mu\nu} R_{\mu\nu} + R^2$$

Detectable when $\sqrt{\alpha} \sim \text{km}$

Black hole hair in scalar-tensor theories

The scalar Gauss-Bonnet exception

$$S = \int d^4x \sqrt{-g} \left(\frac{M_{\rm Pl}^2}{2} R - \frac{1}{2} (\partial \phi)^2 + \alpha M_{\rm Pl} \phi \mathcal{R}_{\rm GB}^2 \right)$$

$$\frac{\partial^2 \phi \partial h \partial h}{\Lambda_{\alpha}^3} \quad \Lambda_{\alpha} = \left(\frac{M_{\rm Pl}}{\alpha} \right)^{1/3}$$

Detectable when $\sqrt{\alpha} \sim \text{km}$

Is there a sensible UV completion?

What are the consequences of having a large coefficient α ?

Causality constraints

Time delays and time advances

Shapiro time delay

Classical superluminality if $\Delta t < 0$ & $|\Delta t| > \frac{1}{\omega}$

The case of scalar-GB

Time delay/advance from scattering at impact parameter b

find eigenstates of propagation around massive source

Causality requires low UV cutoff

$$\Delta t_{\pm} = 2r_s \left(\log \frac{b_0}{b} \pm \sqrt{2} \frac{\alpha}{b^2} \right)$$
Shapiro scalar-GB

UV completion needed at small impact parameter

$$\Lambda \lesssim 1/\sqrt{\alpha}$$

Causality requires low UV cutoff

$$\Delta t_{\pm} = 2r_s \left(\log \frac{b_0}{b} \pm \sqrt{2} \frac{\alpha}{b^2}\right)$$
Shapiro scalar-GB

UV completion needed at small impact parameter

$$\Lambda \lesssim 1/\sqrt{\alpha} \qquad \ll \Lambda_{\alpha} = \left(\frac{M_{\rm Pl}}{\alpha}\right)^{1/3}$$
 The EFT is still weakly coupled!

Which UV completion?

Only known cure for time advance at $b \lesssim \sqrt{\alpha}$ is a tower of spinning states (Camanho et al. 2014)

$$\sqrt{\alpha} \sim \text{km}$$
 \rightarrow very light ~ 10⁻⁹ eV

Could such *dark* tower be hidden from detection?

Table top experiments – Newton law at μm

Adding other operators?

does not work

Moral of the story:

observing effects from a shift-symmetric scalar in BH mergers seems not at all likely

Diagnosis: Superluminality

Treatment: UV completion

Results: Narrow down space of testable

deviations from GR

Next: Other compact objects?