Black Holes as Probes for Ultralight DM

a Tale of Boundary Conditions

Bruno Bucciotti

05th May
SCUOLA NORMALE SUPERIORE

Supervisor: Enrico Trincherini

Light complex scalar minimally coupled to gravity

Easy to get light scalars

$$
\phi \rightarrow \phi+c
$$

Easy to get light scalars

$$
\phi \rightarrow \phi+c
$$

No detected interactions

Light complex scalar

 minimally coupled to gravityEasy to get light scalars $\phi \rightarrow \phi+c$

No detected interactions
Interplay with black holes

What is the field profile?
Dependence on μ ?
Relation $|\phi|_{r \rightarrow \infty}$ to $|\phi|_{r \rightarrow r_{B H}}$?

$$
\square \phi-\mu^{2} \phi=0
$$

What is the field profile?
Dependence on μ ?
Relation $|\phi|_{r \rightarrow \infty}$ to $|\phi|_{r \rightarrow r_{B H}}$?

What is the field profile?
Dependence on μ ?
Relation $|\phi|_{r \rightarrow \infty}$ to $|\phi|_{r \rightarrow r_{B H}}$?

- BH domination first, no self gravity
- Nonrotating black hole
\rightarrow Schwarzschild metric

What is the field profile?
Dependence on μ ?
Relation $|\phi|_{r \rightarrow \infty}$ to $|\phi|_{r \rightarrow r_{B H}}$?

$$
\begin{gathered}
\phi \rightarrow e^{-i \omega t} Y_{l, m} \phi(r), \quad \omega=\mu, \quad V_{l}=r_{B H} \mu^{2} r^{3}-I(I+1) r\left(r-r_{B H}\right) \\
r\left(r-r_{B H}\right) \frac{\mathrm{d}}{\mathrm{~d} r}\left(r\left(r-r_{B H}\right) \frac{\mathrm{d} \phi}{\mathrm{~d} r}\right)+V_{l}(r) \phi=0
\end{gathered}
$$

$$
\phi \rightarrow e^{-i \omega t} Y_{I, m} \phi(r), \quad \omega=\mu, \quad V_{I}=r_{B H} \mu^{2} r^{3}-I(I+1) r\left(r-r_{B H}\right)
$$

$$
r\left(r-r_{B H}\right) \frac{\mathrm{d}}{\mathrm{~d} r}\left(r\left(r-r_{B H}\right) \frac{\mathrm{d} \phi}{\mathrm{~d} r}\right)+V_{l}(r) \phi=0
$$

Near horizon limit (numerically hard)

Far field

Local WKB

$$
\phi \rightarrow e^{-i \omega t} Y_{I, m} \phi(r), \quad \omega=\mu, \quad V_{I}=r_{B H} \mu^{2} r^{3}-I(I+1) r\left(r-r_{B H}\right)
$$

$$
r\left(r-r_{B H}\right) \frac{\mathrm{d}}{\mathrm{~d} r}\left(r\left(r-r_{B H}\right) \frac{\mathrm{d} \phi}{\mathrm{~d} r}\right)+V_{l}(r) \phi=0
$$

Near horizon limit (numerically hard)

Far field

Local WKB

Can they be 'glued'?

Hui '19 for $I=0$

$$
\text { Global WKB } \quad r_{S g r A^{*}} \simeq 10^{7} \mathrm{~km} \simeq 10^{17} \mathrm{eV}^{-1}
$$

$\left(r-r_{B H}\right)^{-i \mu r_{B H}} \longleftrightarrow \frac{1}{r^{3 / 4}} e^{-2 i \mu \sqrt{r_{B H} r}}$

l	0	1	2
$\mu r_{B H} \gtrsim$	0.3	0.7	1.2

Impose infalling b.c. at horizon (Nontrivial, see Love numbers, no hair thms.)

Global WKB

$$
r_{S g r A^{*}} \simeq 10^{7} \mathrm{~km} \simeq 10^{17} \mathrm{eV}^{-1}
$$

$\left(r-r_{B H}\right)^{-i \mu r_{B H}} \longleftrightarrow \frac{1}{r^{3 / 4}} e^{-2 i \mu \sqrt{r_{B H} r}}$

l	0	1	2
$\mu r_{B H} \gtrsim$	0.3	0.7	1.2

Impose infalling b.c. at horizon (Nontrivial, see Love numbers, no hair thms.)

Small $\mu r_{B H}$?
$\mu r_{B H} \ll 1$ accurate unless $\frac{r}{r_{B H}} \lesssim 1+\left(\mu r_{B H}\right)^{2}$ or $\frac{r}{r_{B H}} \gtrsim 1 /\left(\mu r_{B H}\right)^{2}$

$$
\mathcal{O}(1) \sim r^{\prime} \quad \sim \frac{\mu^{-\frac{3}{2}}-2 I}{r^{3 / 4}} \cos \left(2 \mu \sqrt{r_{B H^{r}}}\right)
$$

\checkmark Uniform approximation
\checkmark Analytic control (causality)
$\checkmark \mu$ dependence
$\checkmark\left|\phi_{\infty} / \phi_{\text {hor }}.\right|$
(2) Little phenomenology
\checkmark Uniform approximation
\checkmark Analytic control (causality)
$\checkmark \mu$ dependence
$\checkmark\left|\phi_{\infty} / \phi_{\text {hor }}.\right|$
(2) Little phenomenology
$\omega<\mu$ almost allowed. . . needs $\operatorname{Im}[\omega]<0$
\rightarrow SOLITON, bound state

$$
M_{s} \simeq 10^{9} M_{\odot} \propto M_{\text {halo }}^{1 / 3}
$$

Aim to

- Soliton domination
- Uniform solution
- Causal boundary conditions
- GR gravity close to the horizon
- No non-relativistic approximation

$$
\begin{array}{r}
\quad l=0^{1}, \quad \nabla^{2} \Phi_{N}=-4 \pi G \rho \\
V \rightarrow V-2 \mu^{2} r^{4} \Phi_{N}+\left(\omega^{2}-\mu^{2}\right) r^{4}
\end{array}
$$

${ }^{1}$ Instabilities at $I>0$, Dmitriev '21

Sketch: given Φ_{N}, compute ϕ in WKB \rightarrow compute ρ, Φ_{N}

Stability is crucial! It selects small $\mu r_{B H}$

$$
\begin{aligned}
G M_{s} \ll r_{s} & \rightarrow G M_{s} \ll \frac{1}{\mu^{2} G M_{s}} \rightarrow \mu G M_{s} \ll 1 \\
& \longrightarrow \mu r_{B H} \ll \frac{M_{B H}}{M_{s}} \ll 1
\end{aligned}
$$

The hierarchy of scales makes boundary conditions unimportant at large distances

$$
r_{s} \gg G M_{s} \rightarrow r_{e} \gg G M_{s} \frac{M_{B H}}{M_{s}}=r_{B H}
$$

For $M_{B H}>M_{s}$ the known result $G M_{B H} r_{s} \mu^{2} \simeq \mathcal{O}(1)$ gives

$$
\mu r_{B H} \ll \sqrt{\frac{M_{B H}}{M_{s}}}
$$

Conclusions

No soliton case:
\checkmark know $\rho(r)$ for spinning DM
\measuredangle boundary conditions have teeth when $\mu r_{B H} \gtrsim \mathcal{O}(1)$

Soliton case:
\checkmark understand $\rho(r)$, even with self-gravity
\checkmark b.c unimportant in soliton domination
\checkmark b.c unimportant in BH domination, small $\mu r_{B H}$
\triangle b.c. have teeth when $M_{B H}>M_{s}$ and $\mu r_{B H} \gtrsim \mathcal{O}(1)$
For SgrA*: $M_{s} \lesssim 10^{7} M_{\odot}, \quad \mu \gtrsim 10^{-17} \mathrm{eV}$

