Jet separation study in ee->WW->qqqq events

kieffer@ipnl.in2p3.fr

15/12/2010 SDHCAL evo meeting

Purpose of the study

- Evaluate jet separation capability of our SDHCAL concept:
 - -> Study impact of the SDHCAL granularity on jet reconstruction/separation.
 - -> Develop, improve, and test SDHCAL reconstruction tools.
- Study Wmass resolution that could be obtained within the ILD concept.

Generated events

Event generated with Pythia in « .stdhep » format:

- -> **CM** energy: 0.2, 0.5, 1.5, 2.0, 2.5, 3.0 Tev
- -> For each energy, 4 files with different options:

Initial State Radiation (ISR)	OFF	OFF	ON	ON
Final State Radiation (FSR)	OFF	ON	OFF	ON

-> Stdhep files currently beeing run in **Mokka** to generate LCIO events.

Data availlable on storage element: /grid/calice/SDHCAL/kieffer/eeWW

Generated events quality check

<u>From PDG</u>: W Mass m = **80.399** \pm 0.023 GeV Full width Γ = **2.085** \pm 0.042 GeV From Breit Wigner function fit: W Mass m = **80.48**+-0.1 Full width Γ = **2.039** \pm 0.018 GeV

Durham algorithm

- Angular-ordered algorithm from SatoruJetFinder package (in MarlinReco)
- Compute a pseudo-distance between particles i and j:

$$Y_{ij} = (2min(E_i^2, E_j^2)(1 - cos \theta_{ij})) / E_{CM}^2$$

Use a Yout value to assemble tracks together.

=>**First task:** evaluate Yout influence on the number of separed jets at the **generator level**.

Low energy no complementary radiation

NRJ_0.5TeV_ISR_OFF_FSR_OFF

Low energy with ISR and FSR

NRJ_0.5TeV_ISR_ON_FSR_ON

At Ycut value of 10^{-3} we still have about 70% of 4 jets events.

High energy no complementary radiation

NRJ_3.0TeV_ISR_OFF_FSR_OFF

Still a good 4-jets separation with **Ycut value of 10**-5 Ycut distance decreasing because of bigger W boost.

Low energy with ISR and FSR

NRJ_3.0TeV_ISR_ON_FSR_ON

At Yout value of 10^{-4.5} we have about 55% of 4 jets events. May we study di-Wjet instead of four-QuarkJets?s

Conclusions

- We've started to look at jets from MCparticles.
- In a high energy landscape (3TeV), we may have to consider Wjet (study is still ongoing).

Next steps:

- Start to reconstruct jets from simulated tracks and hits.
- Evaluate typical jets characteristics (opening angle, particle fluxes,) at ILC/CLIC energies