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A few facts about Cosmology and de Sitter Vacua

N ∃ ongoing Accelarating Expansion of the Universe

N Standard Interpretation:

Universe dominated by Dark Energy permeating all of space

N in G.R. framework:

Einstein’s equs with a positive cosmological constant of the order:

Λ ≈ 10−120 (inM4
Planck units)

N A rather intringuing coincidence:

m4
ν . 10−116 (inM4

Planck units)

possible link between the two scales?
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N Simple Effective Field Theory description:

with a scalar field, φ acquiring

Potential Energy V (φ)

with positive vacuum energy Λ:

L

V(f)

f

N de Sitter vacua N

...with some additional requirements:

φ → inflaton suitable for inflation
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The inference from the previous observations and remarks is that

a variety of fundamental open questions involving a vast range of

scales are intertwined !

Thence, it would be desirable to contemplate an effective theory with

UV completion where Planck-scale Physics are naturally integrated

Currently, the most successful and robust candidate towards a UV

completion is

String Theory
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N String Derived Effective Field Theories (EFT) N

Focus of this talk:

EFT from type II-B/F-theory

compactified on a Calabi-Yau (CY) Manifold

However

�

N Compactifications characterised by large numbers of

massless scalar fields (moduli)
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⋆ Two basic classes of moduli ⋆

Recall that a CY is a compact Kähler manifold which admits a

Ricci-flat metric g with (closed) (1,1)-Kähler form:

J = gij̄dz
i ∧ dz̄j̄ , dJ = 0

N A CY can be deformed in two ways:

1. Variation of the Kähler structure δgij̄ (mixed type), gives h1,1

parameters a, the Kähler moduli T k, k = 1, 2, . . . , h1,1.

2. Pure type metric variations gij , gīj̄ giving rise to h2,1 complex

structure (CS) parameters za, a = 1, 2, . . . , h2,1, associated

with:

Ωijkg
kl̄δg l̄m̄ dzi ∧ dzj ∧ dz̄m̄

where Ω is a holomorphic 3-form.

ahr,s dim. of Dolbeault cohomology Hr,s =
{ωr,s|∂̄ωr,s

=0}

{αr,s|αr,s=∂̄βr,s−1}



–7–

In addition:

∃ moduli and other fields associated with Type II-B closed string

spectrum from L- and R-moving open strings with NS and R b.c.

N (NS+,NS+) : Graviton, dilaton and Kalb-Ramond (KR)-field

gµν , φ, Bµν → B2, (def : eφ = gs)

N (R−,R−) : Scalar, 2- and 4-index fields ( p-form potentials)

C0, Cµν , Cκλµν → Cp, p = 0, 2, 4

1. N C0, φ → combined to axion-dilaton modulus:

S = C0 + i e−φ ≡ C0 +
i

gs

2. N Field strengths/magnetic fluxes:

Fp := dCp−1, H3 := dB2, ⇒G3 := F3 − SH3
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⇃ ⇂

N we conclude that: N

# CY of Compactifications and # fluxes ⇒
Enormous number of String Vacua

⇓
String Landscape

N Long standing Question N

N Are there any de Sitter vacua in the Landscape?

... even if the answer is Yes... we know that they are...

⇒ Certainly Scarce ⇐
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Hence

A Reasonable sequence of T asks

in the context of type IIB theory:

N Provide masses to moduli fields ⇒ Stabilisation

N The quest for a de Sitter vacuum in String Theory

(if possible... based only on perturbative corrections)

N Cosmological implications such as inflation
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Implementation

NN

N Geometry of internal space. Assuming:

i): a factorised T 6 = T 2 × T 2 × T 2-torus.

ii): 3×D7 brane-stacks, each one spans 4 compact dimensions

while localised at the remaining 2-d.

D7s
Minkowski Compact Dimensions

0 1 2 3 4 5 6 7 8 9

D7a ∗ ∗ ∗ ∗ ∗ ∗ ∗ . .

D7b ∗ ∗ ∗ ∗ ∗ . . ∗ ∗
D7c ∗ ∗ ∗ . . ∗ ∗ ∗ ∗

N Context: Type II-B effective Supergravity: Basic ‘ingredients’:

Superpotential W and Kähler potential K
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N The Superpotential W N

N A Flux-induced superpotential has been constructed (G.V.W.

hep-th/9906070) using G3 = F3 − SH3 and (3, 0)-form Ω(za):

W0 =

∫

G3 ∧ Ω(za) ⇒ W0 = W0(za, S)

⇒ does not depend on Kähler moduli Ti. W0 must satisfy:

N Flatness conditions N

DzaW = 0, DSW = 0 :

⇒ za and S stabilised⇐
but!

N Kähler moduli /∈ W0 ⇒ remain unfixed! N
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N The Kähler potential N

K0 = −
3∑

i=1

ln(−i(Ti − T̄i))− ln(−i(S − S̄))− ln(i

∫

Ω ∧ Ω̄) ·

N The classical scalar potential identically zero: N

V = eK(
∑

I,J

DIW0KIJ̄DJ̄W0 − 3|W0|2) ≡ 0,

due to flatness conditions and the no-scale structure.

⇓

Kähler moduli completely undetermined!

⇓

Task: Engineer the appropriate geometric set up and compute:

Kähler moduli-dependent QUANTUM corrections
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The Kähler potential K

and

PERT URBAT IVE
String Loop Corrections

Two types of expansions in String Theory:

i) Inverse string tension ∝ α′.

ii) String coupling gs
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N α′3 Corrections

10-d action with α′3 (see Becker et al hep-th/0204254):

S ∝
∫
d10

√−g e−2φ
(
R + 4(∂φ)2 + α′3∇2φQ

)
a

Compactifation → redefinition of 4-d dilaton:

e−2φ4 = e−2φ10(V + ξ/2)

= e−
1

2
φ10 (V̂ + ξ̂/2) (Einstein frame)

where the 6d volume V̂ in Einstein frame are:

V̂ =
1

3!
κijk t̂

it̂j t̂k

with t̂i defined through:

tk = −Im(T k) = t̂k
(
S − S̄

2i

)−1/2

≡ t̂k g1/2s

aQ → generalisation of 6-d Euler integrand
∫
d6x

√
gQ = χ
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ξ is expressed in terms of the Euler characteristic χ of the manifold:

ξ = − ζ(3)

4(2π)3
χ = ξ̂

(
S − S̄

2i

)−3/2

≡ ξ̂ g3/2s

ξ̂ is incorporated into the Kähler potential through the shift a

V̂ → U0 = V̂ +
ξ̂

2
≡ V̂ +

ξ

2

(
S − S̄

2i

)3/2

≡ V̂ +
ξ

2

1

gs3/2

α′3-modified Kähler potential:

K0 → K = − log(−i(S − S̄))− 2 logU0 +Kcs

(where: Kcs = − ln(i
∫
Ω ∧ Ω̄))

aξ in the prepotential F = i
3!
kabc

XaXbXc

X0
+ ξX0, Candelas et al, NPB (91)
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N Loop Corrections N

N Previous α′3 corrections at “tree-level” w.r.t. string-loop series.

N Hypothesis: N

N Generic type of one-loop correction is captured by

U1 =

(
S − S̄

2i

)−1/2

f(V̂) ≡ gs
1/2f(V̂)

N These are included by another shift:

V̂ → U0 → U ≡ V̂ +
ξ

2

1

gs3/2
+ gs

1/2f(V̂)

So, the final form of the corresponding Kähler potential is

K = − log(−i(S − S̄))− 2 logU +Kcs
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Evidence: recall that type IIB string theory admits SL(2,Z)

This implies invariance of the resulting EFT under some subgroup

Γs ⊂ SL(2,Z).

⇓

Motivation to look for a SL(2,Z) completion.

Consider the non-holomorphic Eisenstein series: E 3

2

≡ E 3

2

(S, S):

E 3

2

= 2ζ(3)

(
S − S̄

2i

) 3

2

︸ ︷︷ ︸

α′3−part

+4ζ(2)

(
S − S̄

2i

)−
1

2

︸ ︷︷ ︸

loop−part

+

(
S−S̄

2i

) 1

2

︸ ︷︷ ︸

non−pert.part

O(e−2πReS)

Observation:

first and second terms are associated with α′3 and loop corrections.
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N The form of f(V) N

(Antoniadis, Chen, GKL, 1803.08941, EPJC-2019)

Consider the set up :

N Configuration of Three intersecting D7-brane stacks

NN A 4-d Einstein-Hilbert (EH) term R4 in the bulk, generated

from higher derivative terms in the 10-d string action

(Antoniadis et al hep-th/9707013, etc. )

⇓⇓⇓

f(V̂) = σ + η log(V̂)
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The coefficients η and σ are expressed in terms of ξ ∝ χ

(Antoniadis, Chen, GKL, JHEP-2020):

σ = −η =
ζ(2)

ζ(3)
ξ,

The following ratio is of particular interest:

ξ̂

η̂
= −ζ(3)

ζ(2)

1

g2s

with

ξ̂ = ξg−3/2
s ; η̂ = g1/2s η
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Kähler moduli

ST ABILISAT ION
within a concrete Global Model:

(GKL & Pramod Shukla 2203.03362 ; JHEP-2022)

Kreuzer-Skarke (KS) in hep-th/0002240 introduced toric methods to

construct Calabi-Yau manifolds in terms of

Reflexive Polyhedra

...exploring the KS dataset ...⇒
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Explicit CY3 Manifold

h1,1 = 3, h2,1 = 115, χ ≡ 2(h1,1 − h2,1) = −224

Assuming a basis of smooth divisors D1, D2, D3, the Kähler form is

J = 2
3∑

k=1

tkDk

and the case under consideration gives intersection polynomial with

only one non-zero intersection:

I3 = 2D1D2D3

The 6d-volume :

V = 2 t1t2t3 =
1√
2

√
τ1τ2τ3

(ti → 2-cycle, τi → 4-cycle moduli, subject to τi = 2 tjtk)
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N Kähler potential including α′ and loop corrections:

K(Ti, S, za) = − log{−i(S − S̄)} − 2 lnU +Kcs(za) (1)

U(Ti, S) = V +
ξ̂

2
+ U1 (2)

Assuming generic U1(S, T
i) incorporating any loop corrections.

The effective potential

Identities to compute Kj =
∂K
∂Tj

, Kij =
∂2K

∂Ti∂Tj
, KSj =

∂2K
∂S∂Tj

etc:

τi =
∂V
∂ti

=
1

2
κijkt

jtk, Aijt
itj = 6V , Aijτiτj = 3V/2

with Aij the second derivatives of V and their inverse:

Aij =
∂V

∂ti∂tj
= κijkt

k, Aij = (κijkt
k)

−1
, AikA

kj = δji (3)
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Computing the inverse Kähler metric KC̄B using KAC̄K
C̄B = δBA :

KSS̄K
S̄S +KST̄j

KT̄jS = 1

KSS̄K
S̄Tj +KST̄i

KT̄iTj = 0

KTiS̄K
S̄Tj +KTiT̄k

KT̄kTj = δji .

(4)

These lead to a simple analytic form in the basis S, T i, za:

KAB̄ =







P̃1 kαP̃2 O
kαP̃2 kα kβ P̃3 − kαβ P̃4 O
O O Kij̄

cs







(5)

⇒ block-diagonal for Kij̄
cs but S and Ti (V ) mix : P̃I = P̃I(V , S).
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Master formula for F-term potential

(for generic U1 loop corrections)

⇓

Vα′+generic = eK
(

3V
2U2

(
1 + ∂U1

∂V

)2 4V2+Vξ̂+4ξ̂2

V−ξ̂
− 3

)

|W0|2

NN For α′ and logarithmic corrections: U1 = −η̂ + η̂ logV :

Vα′+log = 12gse
Kcs |W0|2 ξ̂

V2 + 7ξ̂V + ξ̂2
(

V − ξ̂
)(

2V + ξ̂
)4

︸ ︷︷ ︸

α′3−corrections

−3κ

2
|W0|2

2η̂ − η̂ logV
2V3

︸ ︷︷ ︸

logarithmic

+ · · ·



–25–

Large Volume Limit

VF ≈ C
ξ̂ − 4η̂ + 2η̂ log(V)

V3

Properties

N Minimum exists for η̂ < 0.

N Stabilisation at large volume (in weak coupling gs regime):

Vmin = e
7

3
+ ξ̂

2|η̂| ∼ e
1

g2s

N For F-term potential, AdS-minimum

(VF )min ∝ η̂

V3
< 0

N New contributions required to uplift to dS vacuum
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N Uplift to dS occurs through D-terms

(Lüst et al hep-th/0609211; Antoniadis,Chen, GKL 1803.08941 )

associated with universal U(1)’s of D7-stacks:

V D =
g2D7i

2



Qi∂Ti
K +

∑

j

qj |Φj |2




2

,
1

gD7i
2
= ReTi + · · ·

Minimising the total potential:

Veff = VF + VD

⇒ a minimum and a maximum defined by the

double-valued Lambert W -function (i.e., solution of WeW = z):

Vmin = n̂
dW0/−1

(
d
n̂e

7

3
−

ξ̂
2n̂

)
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N de Sitter vacua N

minimum Veff = VF + VD at V0 must be positive:

V min
eff =

c

V3
0

+
d

V2
0

> 0

W0(z)

W-1(z)

z0=-0.34

Vmax

Vmin

de Sitter AdS

-0.6 -0.4 -0.2 0.0 0.2

-7

-6

-5

-4

-3

-2

-1

0

This dramatically constrains acceptable string vacua (fluxes etc)
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de Sitter

Plot of Veff vs V for d′ = 104d = {8.65, 8.85, 9.15}.
The lower curve corresponds to AdS vacuum.

At large volume, the potential vanishes asymptotically

d'=8.85

d'=8.65

d'=9.15

10000 15000 20000 25000
V

5

10

15

Veff
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Inflation

Hybrid scenario can be realised with open string states χ

at D7-brane intersections playing the role of waterfall fields

(Antoniadis, Lacombe, GKL, 2109.03243, JHEP2022)

Shape of Vtotal in the presence of χ at large V regime:

Vtotal = C
ξ̂ − 4η̂ + 2η̂ log(V)

V3
+

d

V2
+ Vχ

with Vχ the waterfall field potential:

Vχ = ∼ m2(V)χ2 + λ(V)χ4
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N The volume modulus can play the role of Inflaton field

φ ∝ logV

N We find that inflation can be realised with most of the 60 efolds

collected near the metastable local mimimum Vtotal(Vmin).

N Inflation ends and false vacuum decays to Global minimum

through a

waterfall field χ: Vχ ∼ m2(V)χ2 + λ(V)χ4 .

For m2 > 0 minimum in the χ-field direction is at the origin

m2 > 0 → 〈χ〉 = 0

When the mass of χ becomes tachyonic, a phase transition occurs

and the new vacuum is obtained at a non-vanishing 〈χ〉:

m2 < 0 → 〈χ〉 6= 0
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A configuration to realise the hybrid scenario in our D7 set-up

T 2
(45) T 2

(67) T 2
(89)

D71 · ⊗ ×A1

D72 × · ±x2
⊗

D73 ⊗ ×A3
·

N A circled cross shows magnetic field on specific D7 and T 2.

N A1,3 denote Wilson lines

N ±x2 brane separations (uplifting tachyons)

⇒ only one tachyonic state playing the role of waterfall field:

α′m22
2 ≈ − A

V1/3
+BV1/3, (A,B) → positive constants

〈χ〉 6= 0 for

V < Vcritical =

(
A

B

) 3

2
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N Hybrid scenario: Inflaton: φ ∝ logV
N Blue curve: waterfall field χ trajectory



–33–

⋆ Conclusions ⋆
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⋆ IIB/F-theory:

• Stabilisation of Kähler Moduli possible with

Perturbative corrections only:

K = −2 ln
(

V + ξ̂/2 + η̂ lnV
)

+ · · ·

Origin of log-corrections:

Induced Einstein-Hilbert terms from R4-couplings in 10-d theory.

This EH-term ∃ in 4d only!

⇓

⋆ induced EH–term ... indispensable element for a:

4d de Sitter Universe

⋆ Hybrid Inflation with inflaton φ ∼ logV and

waterfall fields open string states attached on D7’s.
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APPENDIX
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NN

D7-branes and Logarithmic corrections

Two ingredients needed for log-corrections:

NN

A) Intersecting D7-brane configuration:

D7s
Minkowski Compact Dimensions

0 1 2 3 4 5 6 7 8 9

D7a ∗ ∗ ∗ ∗ ∗ ∗ ∗
D7b ∗ ∗ ∗ ∗ ∗ ∗ ∗
D7c ∗ ∗ ∗ ∗ ∗ ∗ ∗
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B) Higher derivative couplings in curvature

(generated by multigraviton scattering)

(see hep-th/9704145; 9707013; 9707018)

Leading correction term in type II-B action:

proportional to the fourth power of curvature:

∝ R4

After reduction on M4 ×X 6, (with M4 4-d Minkowski) R4 induces

a novel Einstein-Hilbert term R(4) ∝ by the Euler characteristic χ:

∝ χ

∫

M4

(ζ(2)− ζ(3)e−2φ)R(4)

︸ ︷︷ ︸

induced EH term

,

NN this EH term possible in 4-dimensions only!
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NN New EH-term localised at points with χ 6= 0NN

KK-exchange between graviton vertex and a D7-brane
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Corrections

————————————————————————————-

∝ ζ(2)χ

∫

M4

(1 +
∑

i=1,2,3

e2φTilog(Ri
⊥)R(4) ,

————————————————————————————-

N Ti : D7-brane tension (= gsT0)

N Ri
⊥
: D7-transverse 2-dimension

Kähler potential :

K = − log(−i(S − S̄))− 2 log(V + ξ/2 + η logV) +Kcs

η = −1

2
gsT0ξ ; ξ = −χ

4
×







π2

3 g2s for orbifolds

ζ(3) for smooth CY
(6)
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Details of the Specific CY manifold

The analysis of the divisor topologies using cohomCalg shows that

divisors are of K3 and SD types and can be represented by the

following Hodge diamonds:

K3 ≡

1

0 0

1 20 1

0 0

1

, SD ≡

1

0 0

27 184 27

0 0

1

.
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Cancellation of all D7-charges

Introduce Na D7-branes wrapped around divisors Da and

orientifold images D′
a (0811.2936)

∑

k

Nk ([Dk +D′
k]) = 8[O7]

D7-branes and O7-planes also give rise to D3-tadpoles which

receive contributions also from background 3-form fluxes

Assuming simple case:

D7-tadpoles are cancelled by placing 4 D7 +D7′-branes on top of

O7-plane:

ND3 +
1

2
Nflux +Ngauge =

1

4
(O3 + χ(O7))
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Example

Specific brane setting involving 2 stacks of D7-branes wrapping the

divisors D1, D6 in the basis,

8[O7] = 4 ([D1 +D′
1]) + 4 ([D6 +D′

6])

D3 tadpole condition

ND3 +
1

2
Nflux +Ngauge = 12

————————————————————————————
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