Z-boson decay at the NNNLO level

Krzysztof Grzanka

Institute of Physics University of Silesia

Based on 2201.02576

With: Janusz Gluza, Ayres Freitas, levgen Dubovyk, Martijn Hidding, Johann Usovitsch

Corfu, 29 August 2022

Outline

- 1. Standard Model corrections to EWPOs, present status
- 2. Towards 3-loop SM EWPOs studies
- 3. Numerical calculations Methods and tools towards 3-loops
- 4. Examples of calculations
- 5. Summary and outlook

Published results on EWPOs in the SM @NNLO

Complete corrections $\Delta r, \sin^2 \theta'_{\text{eff}}$:

Fermionic corrections $\sin^2 \theta_{\text{eff}}^b, a_f, v_f$:

Bosonic corrections: $\sin^2 \theta_{\text{eff}}^{\text{b}}$: Bosonic corrections: Γ_Z, R_I, \dots :

Leading fermionic 3-loops: $M_W, \sin^2 \theta_{\text{eff}}^b, \Gamma_Z$: Freitas, Hollik, Walter, Weiglein: '00 Awramik,Czakon: '02,Onishchenko,Veretin: '02 Awramik,Czakon,Freitas,Weiglein: '04 Awramik,Czakon,Freitas: '06 Hollik,Meier,Uccirati: '05,'07 Degrassi,Gambino,Giardino: '14 Awramik,Czakon,Freitas,Kniehl: '09 Czarnecki,Kühn: '96 Harlander,Seidensticker,Steinhauser: '98 Freitas: '13, '14 Freitas: '13, '14

Dubovyk, Freitas, JG, Riemann, Usovitsch '16 Dubovyk, Freitas, JG, Riemann, Usovitsch '18,'19

Chen, Freitas: '20

Higher Order Corrections, Tests

Tables generated with DIZET (v6.45), publically available at the ZFITTER webpage. For LHC needs, it is also used by KKMC generator [S.Jadach et al, 2022].

IHVP and IAMT4 are flags for hadronic vacuum polarization and EW corrections respectively. [A.B. Arbuzov et al, 2006]

- 1 [S. Eidelman, F. Jegerlehner, 1995], 5 [F. Jegerlehner, 2017]
- 6 [M. Awramik et al, 2004] , 8 [I. Dubovyk et al, 2019]

IHVP, IAMT4	1,8	5,6	5,8	$ \delta_{(1,8)-(5,8)} $	$ \delta_{(5,6)-(5,8)} $
channel					
$\Gamma_{\nu,\bar{\nu}}, MeV$	167.202	167.202	167.202	0	0
Γ_{e^+,e^-}, MeV	83.977	83.984	83.985	0.008	0.001
$\Gamma_{\mu^+,\mu^-}, MeV$	83.977	83.983	83.985	0.008	0.002
$\Gamma_{\tau^+,\tau^-}, MeV$	83.787	83.794	83.795	0.008	0.001
Γ_{hadron}, MeV	1741.039	1741.268	1741.442	0.403	0.174
Γ_Z, MeV	2494.387	2494.636	2494.814	0.427	0.178

4/12

Z-boson decay at the NNNLO level

Input parameters dependence

m_t, GeV	172.76 - 0.30	172.76	172.76 + 0.30	Diff.
$\Gamma_Z(\mu\mu), MeV$	83.982	83.985	83.987	0.005
Γ_Z, MeV	2494.746	2494.814	2494.883	0.137
$\Gamma_W(I\nu), MeV$	678.935	678.981	679.027	0.092
Γ_W, MeV	2089.825	2089.967	2090.109	0.284
$\sin^2 heta_{\it eff}^\prime imes 10^6$	231508	231500	231491	17

M_H, GeV	125.25 - 0.17	125.25	125.25 + 0.17	Diff.
$\Gamma_Z(\mu\mu), MeV$	83.985	83.985	83.985	0
Γ_Z, MeV	2494.818	2494.814	2494.811	0.007
$\Gamma_W(I\nu), MeV$	678.983	678.981	678.979	0.004
Γ_W, MeV	2089.973	2089.967	2089.961	0.012
$\sin^2 heta^{\prime}_{eff} imes 10^6$	231499	231500	231500	1

NNNLO Standard Model Corrections

$Z ightarrow b\overline{b}$				
Number of	1 loop	2 loops	3 loops	
topologies	1	5	50	
Number of diagrams	15	1114	120187	
Fermionic loops	0	150	17580	
Bosonic loops	15	964	102607	
QCD / EW	1 / 14	98 / 1016	10405 / 109782	

Table: The number of Z-decay Feynman diagrams needed to be calculated to meet Tera-Z experimental accuracy. Tadpoles, products of lower loop diagrams and symmetrical diagrams are not included.

 $\mathcal{O}(10^3)$ 3-loop self-energy integrals to be calculated at first.

Methods and tools

- Sector decomposition (SD) method:
 - FIESTA5 [2012], [A.V.Smirnov]
 - pySecDec [2022], [Expansion by regions with pySecDec],
- The Mellin-Barnes (MB) method:
 - MB [M.Czakon, 2006]
 - MBnumerics [J.Usovitsch, I.Dubovyk, T.Riemann, 2015] Minkowskian kinematics
- Differential equations (DEqs) method:
 - DiffExp [F. Moriello, 2019; M. Hidding, 2021],
 - AMFLOW [X. Liu, Y.-Q. Ma, 2022],
 - SeaSyde [T. Armadillo, R. Bonciani, S. Devoto, N. Rana, A. Vi, 2022]

NNLO Z-pole SM completed: 10^{-8} accuracy achieved for most of Feynman integrals. Final result with 10^{-4} accuracy.

SD + MB - not enough at NNNLO, can only cover a small part of calculations

pySecDec

• Minkowskian kinematics $(M_Z^2 = 1 = s)$

MB

• Minkowskian kinematics $(M_Z^2 = 1 = s)$

Method	Result	Absolute error
MBnumerics	-18.7794069 <mark>62</mark> -6.390785027 i	10 ⁻⁹ + 10 ⁻⁹ i
pySecDec	-18.787167067-6.384327811 i	0.00 <mark>93</mark> +0.00 <mark>97</mark> i

Krzysztof Grzanka

Z-boson decay at the NNNLO level

MIs with high accuracy, results*

*Results for 3-loop EWPOs at the e^+e^- Z-resonance peak,

I. Dubovyk, A. Freitas, J. Gluza, KG, M. Hidding, J. Usovitsch, 'Evaluation of multi-loop multi-scale Feynman integrals for precision physics', 2201.02576

DEqs

• Minkowskian kinematics $(M_Z^2 = 1 = s)$

 $I_{pySecDec} = 0.460 - 19.164 \cdot I \pm (0.298 + 0.281 \cdot I)$

 $I_{DEqs} = 0. - 19.126230298813844 \cdot I$

$$I_{AMflow} = 0. - 19.1262302990801 \cdot I$$

Summary and outlook

- Progress in development of methods and tools to tackle 3-loop Z resonance phycics
- Knowledge of the higher order SM radiative corrections in connection with future precision experimental measurements will be instrumental for BSM searching.