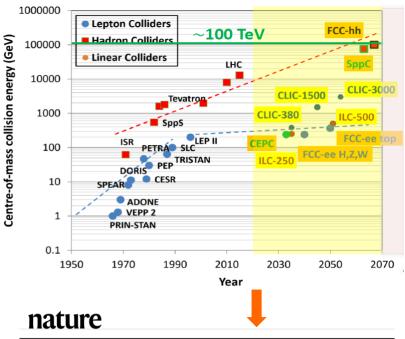
Gamma Factory

New research opportunities for CERN



Kyaik-Tiyo, Myanmar(Burma)

Corfu Workshop on the Standard Model and Beyond, Sept 2022

Mieczyslaw Witold Krasny, Gamma Factory study leader LPNHE, CNRS and University Paris Sorbonne and CERN, BE-ABP

NEWS | 08 August 2022

Particle physicists want to build the world's first muon collider

Instead od introduction:

A lesson from the past – the Electron-Ion Collider (EIC) project path

THE ONLY LARGE SCALE (>109 EURO) ACCELERATOR PROJECT –
OUT OF THOSE CONSIDERED IN THE 90-TIES:

TESLA, ELFE, ENC, ELOISATRON, EIC

-- WHICH IS BEING CONSTRUCED at BNL

The fist steps towards the EIC project (1994-1998):

Hamburg, 11.07.1996.

Memorandum

To: B. Wiik, A. Wagner, DESY

From: M.W. Krasny, LPNHE - Paris

- to build an "A-tunable" ion injector system and collide at HERA electrons with nuclei. The ePb collisions would have the world record center-of-mass energy (if realized before RHIC becomes operational) and, apart from several merits which I tried to explain in my summary talk of the HERA workshop, would provide the largest effective luminosity for photon-photon interactions in the intermediate W range. It is worth noticing that several physicists became interested in the nuclear option for HERA after introducing to the program of the Paris HERA workshop, back in 1995, a parallel session on nuclei and that this physics received some attention during the DESY workshop this year.
- to design a dedicated experiment for HERA for the "low Q²" (Q² ≤ 100 GeV²) domain optimized both for the ep and eA interactions. Let me note, as an example, that neither the upgraded H1 experiment nor the ZEUS experiment will be able to measure structure functions, in particular σ_L/σ_T, with the precision comparable to that of SLAC experiments of 70-ties, despite the energies and angles of the scattered electrons are, in this Q² range, similar. Such a detector would have to measure the energies and angles of particles produced over the large domain of η, covering in particular the proton (nucleus) fragmentation region, which still remains a "terra incognita". It should use large β rather than small β optics because the physics advocated here requires modest luminosities and high detection quality of particles emitted at small angles. I failed, back in 1991, to persuade the spokesman of the HERMES experiment that the first component of such an experiment could be the HERMES electron spectrometer used in the colliding beam mode.

DEUTSCHES ELEKTRONEN-SYNCHROTRON

Der Vorsitzende des Direktoriums

Dr. M.W. Krasny Universites Paris 6 +7 LPNHE 4, Place Jussieu, Tour 33 F-75252 Paris Cedex 05

August 19, 1996

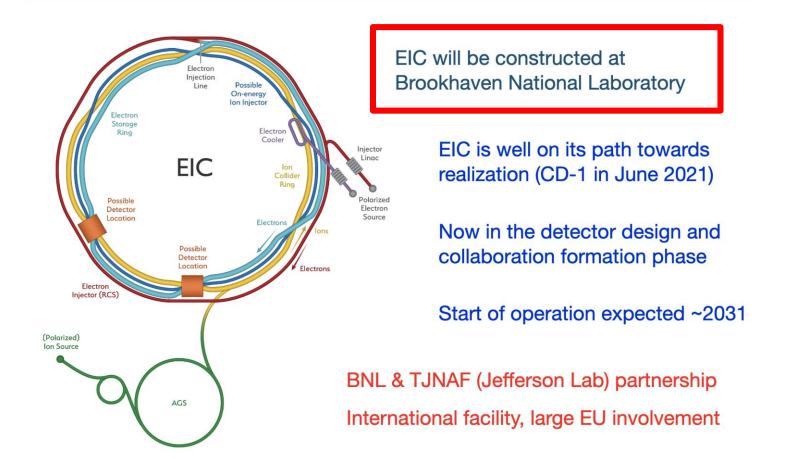
Dear Dr. Krasny,

Thank you very much for your contribution to the HERA workshop and for your remarks to the HERA programme.

I agree with you that HERA will make a solid contribution to strong interaction physics and that colliding electrons with nuclei may open up new vistas and should be explored further. Indeed we want to do this in collaboratoin with GSI and I hope that you will be able to participate and contribute to this work. In order to carry out a pregramme in this direction there must be a well reasoned physics programme, a strong support including funds from the community, and GSI must be interested in a collaboration.

I'm not so sure that I agree with your comments concerning the luminosity frontier - at least I would feel somewhat uneasy if we neglected this frontier.

With my best wishes


Björn N. Wick

Björn H. Wiik

Why EIC was not constructed at DESY?

- 1999 B. Wiik's unfortunate accident TESLA project loses its momentum and is finally abandoned
- GSI works towards a local FAIR PROJECT (low energy), ELFE groups join the CEBAF (TJNAF) program
- DESY decides to to continue with the luminosity-upgraded HERA which turns out to be the dead-end road, closing its accelerator-based HEP programme
- The electron-ion collider concept moves to US (thanks to a strong commitment to this project by Peter Paul – the new BNL director)

U.S.-based Electron-Ion Collider

"Gamma Factory" proposal (2015) and studies

"Gamma Factory" proposal and studies

The Gamma Factory proposal for CERN†

† An Executive Summary of the proposal addressed to the CERN management.

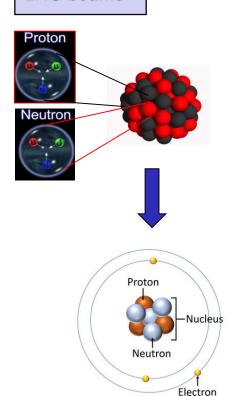
Mieczyslaw Witold Krasny*

LPNHE, Universités Paris VI et VII and CNRS-IN2P3, Paris, France

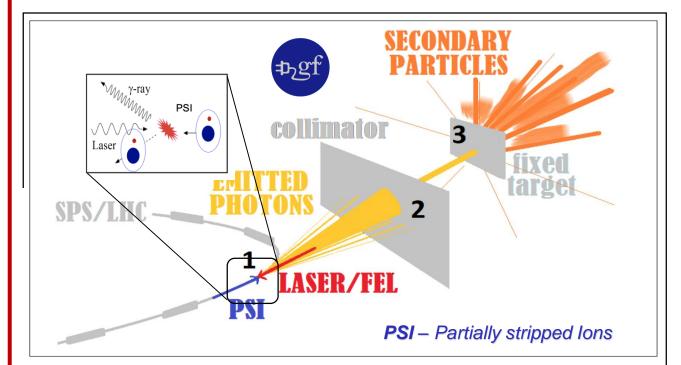
e-Print: 1511.07794 [hep-ex]

~ 100 physicists form 40 institutions have contributed so far to the Gamma Factory studies

A. Abramov¹, A. Afanasev³⁷, S.E. Alden¹, R. Alemany Fernandez², P.S. Antsiferov³, A. Apyan⁴, G. Arduini², D. Balabanski³⁴, R. Balkin³², H. Bartosik², J. Berengut⁵, E.G. Bessonov⁶, N. Biancacci², J. Bierofi⁷, A. Bogacz⁸, A. Bosco¹, T. Brydges³⁶, R. Bruce², D. Budker^{9,10}, M. Bussmann³⁸, P. Constantin³⁴, K. Cassou¹¹, F. Castelli¹², I. Chaikovska¹¹, C. Curatolo¹³, C. Curceanu³⁵, P. Czodrowski², A. Derevianko¹⁴, K. Dupraz¹¹, Y. Dutheil², K. Dzierzega⁷, V. Fedosseev², V. Flambaumi²⁵, S. Fritzsche¹⁷, N. Fuster Martinez², S.M. Gibson¹, B. Goddard², M. Gorshteyn²⁰, A. Gorzawski^{15,2}, M.E. Granados², R. Hajima²⁶, T. Hayakawa²⁶, S. Hirlander², J. Jin³³, J.M. Jowett², F. Karbstein³⁹, R. Kersevan², M. Kowalska², M.W. Krasny^{16,2}, F. Kroeger¹⁷, D. Kuchler², M. Lamont², T. Lefevre², T. Ma³², D. Manglunki², B. Marsh², A. Martens¹², C. Michel⁴⁰ S. Miyamoto³¹ J. Molson², D. Nichita³⁴, D. Nutarelli¹¹, L.J. Nevay¹, V. Pascalutsa²⁸, Y. Papaphilippou², A. Petrenko^{18,2}, V. Petrillo¹², L. Pinard⁴⁰ W. Płaczek⁷, R.L. Ramjiawan², S. Redaelli², Y. Peinaud¹¹, S. Pustelny⁷, S. Rochester¹⁹, M. Safronova^{29,30}, D. Samoilenko¹⁷, M. Sapinski²⁰, M. Schaumann², R. Scrivens², L. Serafini¹², V.P. Shevelko⁶, Y. Soreq³², T. Stoehlker¹⁷, A. Surzhykov²¹, I. Tolstikhina⁶, F. Velotti², A. Viatkina⁹ A.V. Volotka¹⁷, G. Weber¹⁷, W. Weiqiang²⁷ D. Winters²⁰, Y.K. Wu²², C. Yin-Vallgren², M. Zanetti^{23,13}, F. Zimmermann², M.S. Zolotorev²⁴ and F. Zomer¹

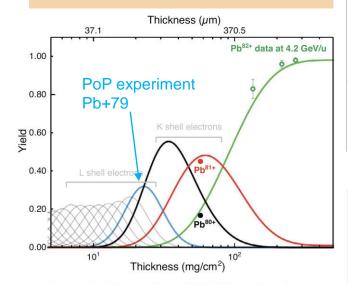

Gamma Factory studies are anchored, and supported by the CERN Physics Beyond Colliders (PBC) framework.

> More info on the GF group activities: https://indico.cern.ch/category/10874

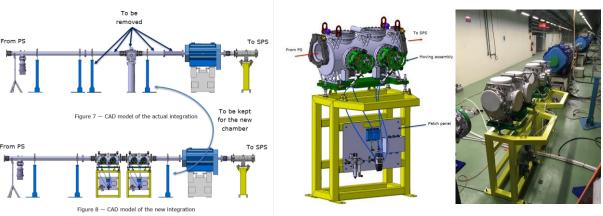

We acknowledge the crucial role of the CERN PBC framework in bringing our accelerator tests, GF-PoP experiment design, software development and physics studies to their present stage!

Gamma Factory: novel use of **existing** CERN's storage rings

LHC beams


- Store atomic beams of partially stripped ions in the LHC
- Collide them with laser pulses (circulating in Fabry-Pérot resonators)

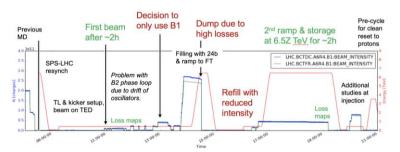
Very recent technical developments:


new TT2 stripper system

Stripping of Pb+54 ions in the TT2 PS-→ SPS transfer line

Charge-State Distributions of Highly Charged Lead Ions at Relativistic Collision Energies

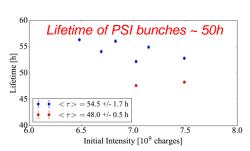
Felix M. Kröger,* Günter Weber, Simon Hirlaender, Reyes Alemany-Fernandez, Mieczyslaw W. Krasny, Thomas Stöhlker, Inga Yu. Tolstikhina, and Viacheslav P. Shevelko

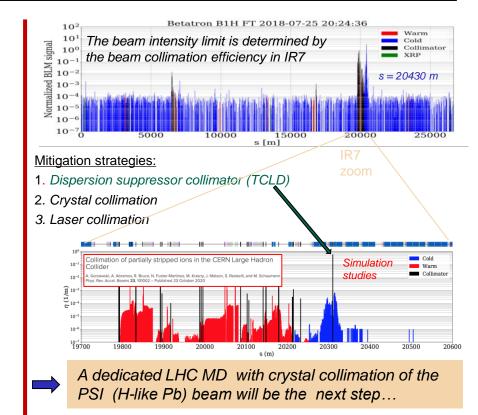


R. Alemany-Fernandez (BE.OP), E. Grenier-Boley and D. Baillard (SY.STI)

The two tanks of the new stripper system have been installed during YETS 2021-2022. The first of them is already one is equipped with two stripper foil mechanisms. The second will house additional two foil mechanism (installation in YETS 2022-20023)

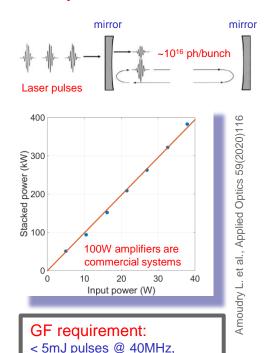
Atomic beams in the LHC (Hydrogen-like Lead)

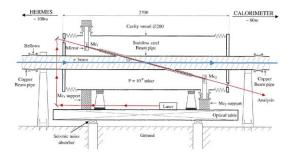

CERN-ACC-NOTE-2019-0012


Michaela.Schaumann@cern.ch

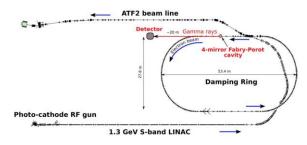
MD3284: Partially Stripped Ions in the LHC

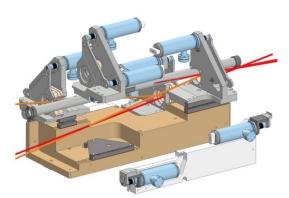
M. Schaumann, A. Abramov, R. Alemany Fernandez, T. Argyropoulos,
H. Bartosik, N. Biancacci, T. Bohl, C. Bracco, R. Bruce, S. Burger, K. Comelis,
N. Fister Martinez, B. Goddard, A. Gorzawski, R. Glackino, G. H. Hemelsoet,
S. Hirlaender, M. Jebramcik, J.M. Jowett, V. Kain, M.W. Krasny, J. Molson,
G. Papotti, M. Solfaroli Camillocci, H. Timko, D. Valuch, F. Velotti,
J. Wenninger

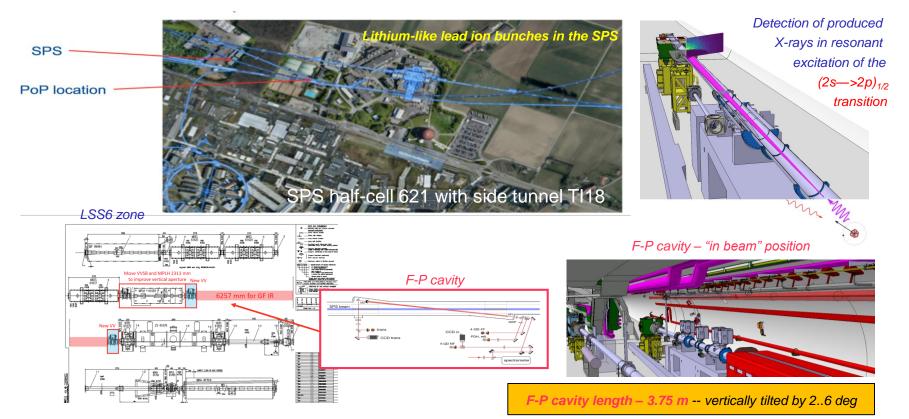

CERN, CH-1211 Geneva 23


Fabry-Pérot (FP) resonators and their integration in the electron storage rings

Fabry-Pérot resonator


(200kW photon beam)


HERA storage ring



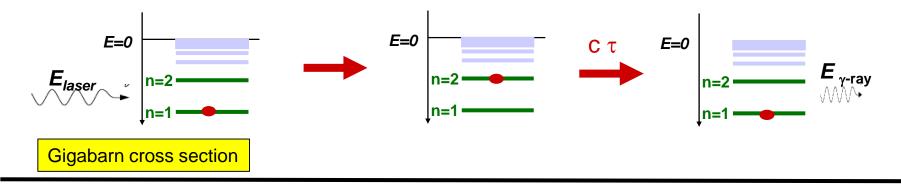
KEK – ATF ring

Gamma Factory Proof-of-Principle (PoP) SPS experiment

Gamma Factory's novel research tools (examples)

- 1. Atomic traps of highly charged, cold atoms
- 2. High intensity photon(γ)-beams
- 1. Laser-light based cooling methods of high-energy hadronic beams
- 2. Unprecedented -intensity beams of polarised electrons, polarised positrons, polarised muons, neutrinos, neutrons and radioactive ions
- 5. Electron beam for ep collisions in the LHC interaction points
- 6. Low emittance beams and electron source for plasma Wakefield acceleration

Concepts and tools


"New directions in science are launched by new tools much more often than by new concepts.

The effect of a concept-driven revolution is to explain old things in new ways.

The effect of a tool-driven revolution is to <u>discover</u> new things that have to be explained" - F. Dyson

Gamma Factory photon beam

High energy atomic beams play the role of high-stability light-frequency converters:

$$v^{\text{max}} \longrightarrow (4 \gamma_{\text{L}}^2) v_{\text{Laser}}$$

for photons emitted in the direction if incoming atoms, $\gamma_L = E/M$ is the Lorentz factor for the ion beam

GF photon beams

1. Point-like, small divergence

 \blacktriangleright $\Delta z \sim I_{PSI-bunch}$, $\Delta x, \Delta y \sim \sigma^{PSI}_{x}$, PSI_{y} , $\Delta(\theta_{x})$, $\Delta(\theta_{y}) \sim 1/\gamma_{L} < 1$ mrad

2. Huge jump in intensity:

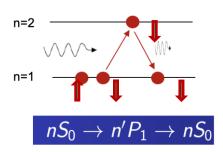
 \triangleright 6–8 orders of magnitude w.r.t. existing (being constructed) γ-sources

3. Very wide range of tuneable energy photon beam :

> 10 keV - 400 MeV -- extending, by a factor of ~1000, the energy range of the FEL photon sources

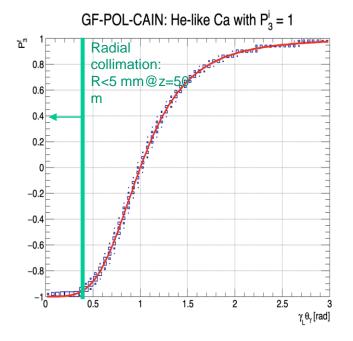
4. Tuneable polarisation:

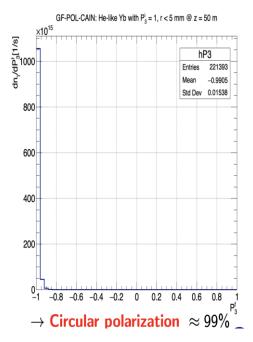
 \triangleright γ -polarisation transmission from laser photons to γ -beams of up to 99%


5. Unprecedented plug power efficiency (energy footprint):

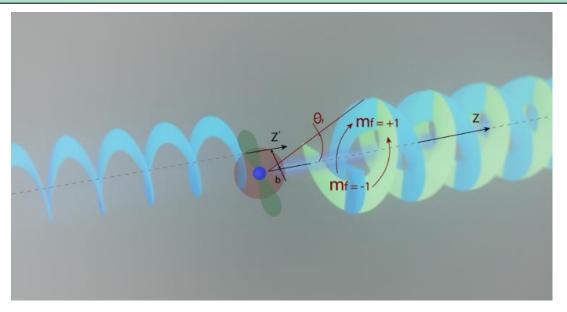
➤ LHC RF power can be converted to the photon beam power. Wall-plug power efficiency of the GF photon source is by a factor of ~300 better than that of the DESY-XFEL!

(assuming power consumption of 200 MW - CERN and 19 MW - DESY)


Polarised beams in GF


Example: He-like, Calcium beam, Er:glass laser (1522 nm)

Closed transition in Helium-like atoms (n=1, n'=2) preserve initial polarisation of the laser light


<u>A trick:</u> $1s^2 1S_0$ → $1s^1 2p^{11}P_1$ transition in He-like atoms

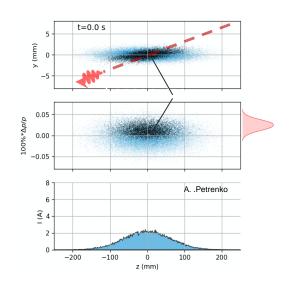
For more details see presentations at our recent, November 2021, Gamma Factory workshop: https://indico.cern.ch/event/1076086/

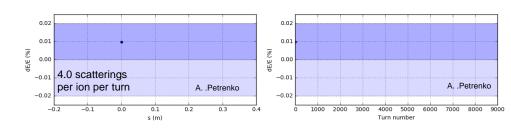
Gamma Factory twisted photons

Resonant scattering of plane-wave and twisted photons at the Gamma Factory

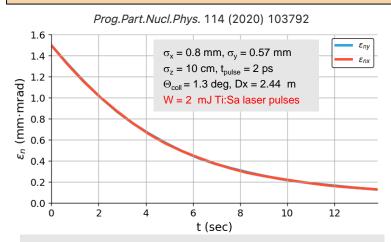
Valeriy G. Serbo Novosibirsk State University, RUS-630090, Novosibirsk, Russia and Sobolev Institute of Mathematics, RUS-630090, Novosibirsk, Russia

Andrey Surzhykov Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig, Germany Institut für Mathematische Physik, Technische Universität Braunschweig, D-38106 Braunschweig, Germany and Laboratory for Emerying Nanometrology Braunschweig, D-38106 Braunschweig, Germany

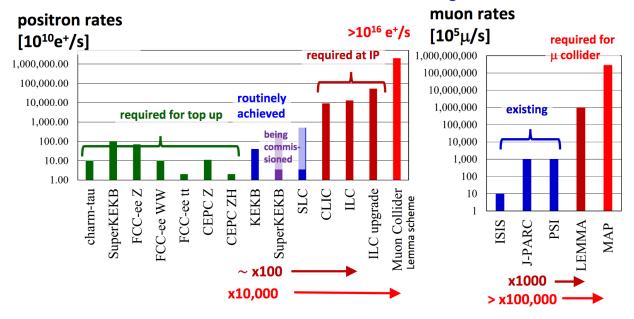

 ${\bf Andrey\ Volotka} \\ School\ of\ Physics\ and\ Engineering,\ ITMO\ University,\ RUS-199034,\ Saint-Petersburg,\ Russia}$



Laser cooling of high-energy hadronic beams


Beam cooling:

the laser wavelength
band is chosen such
that only the ions
moving in the laser
pulse direction (in the
bunch rest frame) can
resonantly absorb
photons.


Opens a possibility of forming at CERN **high-energy** hadronic bunches of the required longitudinal and transverse emittances and population, (bunch merge + cooling) within a seconds-long time scale.

Simulation of laser cooling of the lithium-like Ca(+17) bunches in the SPS: transverse emittance evolution.

Gamma Factory – presently the only technology capable to deliver the requisite power polarised positron source for the CLIC, ILC and for the Lemma scheme muon collider

Frank Zimmermann – CERN seminar on challenges for future colliders

Gamma Factory: $N_{e+}^{T} > 10^{16} \text{ 1/s}$, $N_{\mu} + = N_{\mu} - > 10^{13} \text{ 1/s}$

Opening new possibilities

Examples of potential applications domains of the *Gamma Factory* research tools

- particle physics (precision QED and EW studies, vacuum birefringence, Higgs physics in $\gamma\gamma$ collision mode, rare muon decays, precision neutrino physics, QCD-confinement studies, ...);
- **nuclear physics** (nuclear spectroscopy, cross-talk of nuclear and atomic processes, GDR, nuclear photo-physics, photo-fission research, gamma polarimetry, physics of rare radioactive nuclides,...);
- atomic physics (highly charged atoms, electronic and muonic atoms, pionic and kaonic atoms);
- **astrophysics** (dark matter searches, gravitational waves detection, gravitational effects of cold particle beams, $^{16}O(\gamma,\alpha)^{12}C$ reaction and S-factors...);
- fundamental physics (studies of the basic symmetries of the universe, atomic interferometry,...);
- accelerator physics (beam cooling techniques, low emittance hadronic beams, plasma wake field acceleration, high intensity polarised positron and muon sources, beams of radioactive ions and neutrons, very narrow band, and flavour-tagged neutrino beams, neutron sources...);
- **applied physics** (accelerator driven energy sources, fusion research, medical isotopes' and isomers' production).

GF papers published over the last year

Probing Axion-Like-Particles at the CERN Gamma Factory

Reuven Balkin, Mieczyslaw W. Krasny, Teng Ma, Benjamin R. Safdi, and Yotam Soreq*

Ann. Phys. (Berlin) 2022, 534, 2100222

Delta Baryon Photoproduction with Twisted Photons

Andrei Afanasev* and Carl E. Carlson

Ann. Phys. (Berlin) 2022, 534, 2100228

Double-Twisted Spectroscopy with Delocalized Atoms

Igor P. Ivanov

Ann. Phys. (Berlin) 2022, 534, 2100128

Vacuum Birefringence at the Gamma Factory

Felix Karbstein

Ann. Phys. (Berlin) 2022, 534, 2100137

Charge-State Distributions of Highly Charged Lead Ions at Relativistic Collision Energies

Felix M. Kröger,* Günter Weber, Simon Hirlaender, Reyes Alemany-Fernandez, Mieczyslaw W. Krasny, Thomas Stöhlker, Inga Yu. Tolstikhina, and Viacheslav P. Shevelko

Ann. Phys. (Berlin) 2022, 534, 2100245

Access to the Kaon Radius with Kaonic Atoms

Niklas Michel and Natalia S. Oreshkina*

Ann. Phys. (Berlin) 2022, 534, 2100150

Possible Polarization Measurements in Elastic Scattering at the Gamma Factory Utilizing a 2D Sensitive Strip Detector as Dedicated Compton Polarimeter

Wilko Middents,* Günter Weber, Uwe Spillmann, Thomas Krings, Marco Vockert, Andrey Volotka, Andrey Surzhykov, and Thomas Stöhlker

Ann. Phys. (Berlin) 2022, 534, 2100285

Radioactive Ion Beam Production at the Gamma Factory

Dragos Nichita, Dimiter L. Balabanski, Paul Constantin,* Mieczyslaw W. Krasny, and Wieslaw Płaczek

Ann. Phys. (Berlin) 2022, 534, 2100207

Electric Dipole Polarizability of Neutron Rich Nuclei

Jorge Piekarewicz

Ann. Phys. (Berlin) 2022, 534, 2100185

Resonant Scattering of Plane-Wave and Twisted Photons at the Gamma Factory

Valeriy G. Serbo, Andrey Surzhykov,* and Andrey Volotka Ann. Phys. (Berlin) 2022, 534, 2100199

Local Lorentz Invariance Tests for Photons and Hadrons at the Gamma Factory

B. Wojtsekhowski* and Dmitry Budker

Ann. Phys. (Berlin) 2022, 534, 2100141

Optical Excitation of Ultra-Relativistic Partially Stripped Ions

Jacek Bieroń, Mieczyslaw Witold Krasny, Wiesław Płaczek, and Szymon Pustelny*

Ann. Phys. (Berlin) 2022, 534, 2100250

Expanding Nuclear Physics Horizons with the Gamma Factory

Dmitry Budker,* Julian C. Berengut, Victor V. Flambaum, Mikhail Gorchtein, Junlan Jin, Felix Karbstein, Mieczysław Witold Krasny, Yuri A. Litvinov, Adriana Pdiffy, Vladimir Pascalutsa, Alexey Petrenko, Andrey Surzhykov, Peter G. Thirolf, Marc Vanderhaeghen, Hans A. Weidenmüller, and Vladimir Zelevinsky

Ann. Phys. (Berlin) 2022, 534, 2100284

Parity-Violation Studies with Partially Stripped Ions

Jan Richter, * Anna V. Maiorova, Anna V. Viatkina, Dmitry Budker, and Andrey Surzhykov*

Ann. Phys. (Berlin) 2022, 534, 2100561

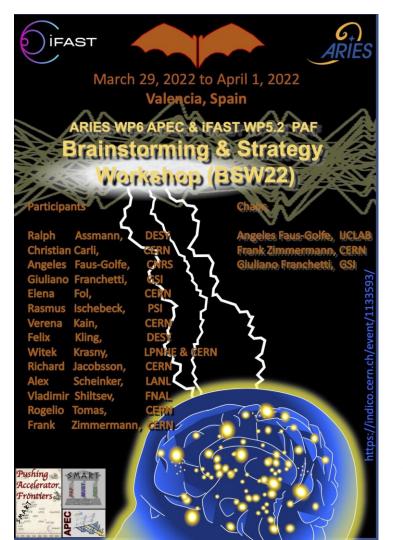
Polarization of Photons Scattered by Ultra-Relativistic Ion Beams

Andrey Volotka,* Dmitrii Samoilenko, Stephan Fritzsche, Valeriy G. Serbo, and Andrey Surzhykov

Ann. Phys. (Berlin) 2022, 534, 2100252

Progress in Particle and Nuclear Physics Volume 114, September 2020, 103792

Review


High-luminosity Large Hadron Collider with laser-cooled isoscalar ion beams ★

M.W. Krasny a, b & ES, A. Petrenko C. b, W. Placzek d

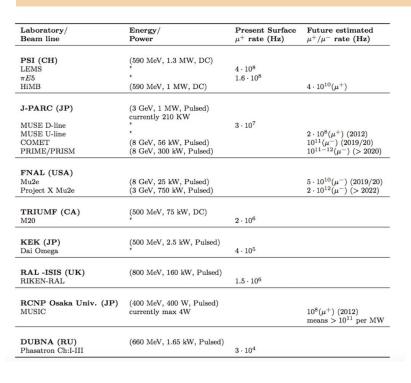
Gamma factory searches for extremely weakly interacting particles Sreemant Chakraborti, Jonathan L. Feng, James K. Koga, and Mauro Valli Phys. Rev. D 40, 655023 – Published 21 September 2021

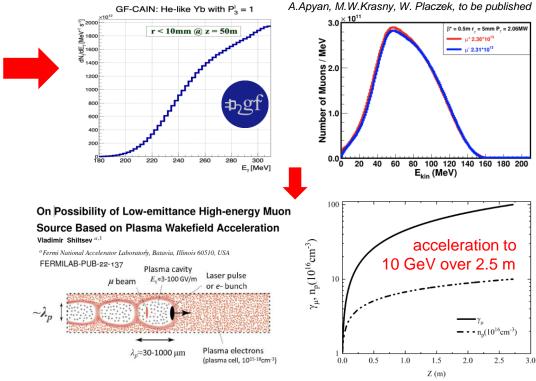
Collimation of partially stripped ions in the CERN Large Hadron Collider

A. Gorzawski, A. Abramov, R. Bruce, N. Fuster-Martinez, M. Krasny, J. Molson, S. Redaelli, and M. Schaumann Phys. Rev. Accel. Beams 23, 101002 – Published 23 October 2020

Visions for the future accelerator infrastructure requirements for physics research

Mieczyslaw Witold Krasny
LPNHE, CNRS and University Paris Sorbonne
and CERN, BE-ABP

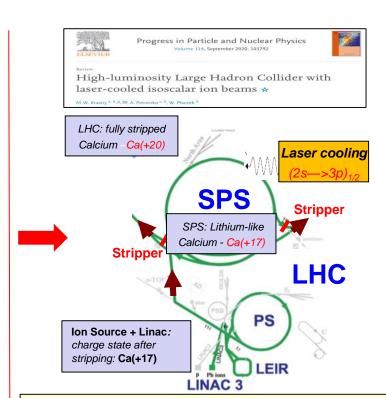

https://indico.cern.ch/event/1133593/timetable/?print=1&view=standard


Four examples

Particle Physics: GF low-emittance, high-intensity muon source

Existing and future muon sources: 108 (1010) 1/s

Gamma-Factory muon source: 10) ¹³ 1,	/s
-------------------------------	--------------------	----

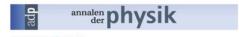

Particle Physics: Gamma Factory (complementary) path to HL-LHC

$$\mathcal{L} = f \frac{n_1 n_2}{4\pi \sqrt{\epsilon_x \, \beta_x^* \, \epsilon_y \, \beta_y^*}}$$

Two complementary ways to **increase** collider **luminosity** for fixed n_1, n_2 , and f:

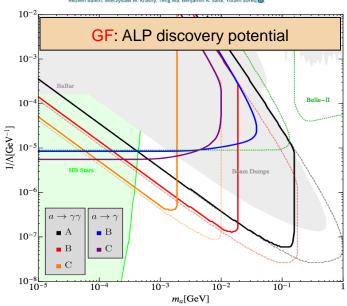
- \triangleright reduce β_{x}^* and β_{v}^*
- ightharpoonup reduce $arepsilon_{\mathsf{x}}$ and $arepsilon_{\mathsf{y}}$

HL-LHC – β^* reduction by a factor of 3.7 (new inner triplet)

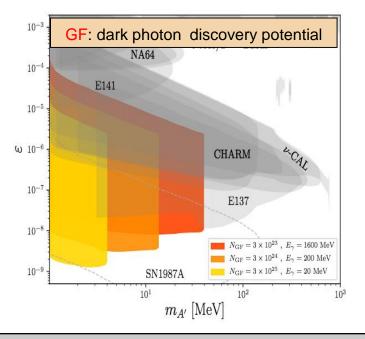

The merits of cold isoscalar beams

- higher precision in measuring SM parameters $(M_{W_i} \sin^2 \theta_{W_i} ...)$ in CaCa than in pp collisions,
- Possible unique access to exclusive Higgs boson production in photon—photon collisions,
- Lower pileup background at equivalent nucleon-nucleon (partonic) luminosity,
- New research opportunities for the EW symmetry breaking sector.

Reduction of the transverse x,y, emittances by a factor of 5 can be achieved in 9 seconds (top SPS energy)


If necessary: add optical stochastic cooling time for the Ca beam at the LHC top energy $t_{cool} \sim 1.5$ hours (V. Lebedev)

Astrophysics: Dark matter searches

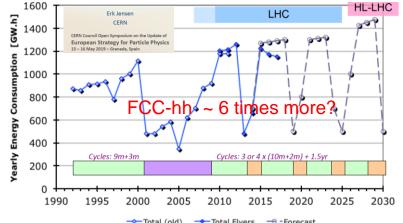

Probing Axion-Like-Particles at the CERN Gamma Factory

Reuven Balkin, Mieczysław W. Krasny, Teng Ma, Benjamin R. Safdi, Yotam Soreq 🙈

Gamma factory searches for extremely weakly interacting particles

Sreemanti Chakraborti, Jonathan L. Feng, James K. Koga, and Mauro Valli Phys. Rev. D **104**, 055023 – Published 21 September 2021

Applied physics: GF photon-beam-driven energy source



 $N_A = 6,023 \cdot 10^{23}$

 $N_{\gamma}/day = 5.4 \times 10^2$

Is the present model of financing the running cost of the present and the future high energy frontiers accelerator infrastructures sustainable?

Prix kWh

- Present CERN price ~ 0.06 euro (Jensen, ESPP Granada)
- EU average(2021) ~ 0.24 euro (https://ec.europa.eu/)
- Market price (last week) ~0.60 euro (Financial Times)

Electricity cost (estimates per year) HL-LHC(FCC-hh);

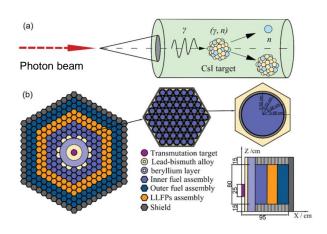
- Present CERN cost ~90 (540) x 10⁶ euro/year
- EU prices (2021) ~370 (2220) x 10⁶ euro/year
- Market price (last week) ~ 900(5400) x 10⁶ euro/year

(CERN yearly budget -- 1200 x 10⁶ euro /year!)

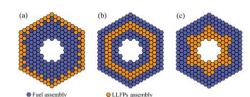
In my view, <u>producing -- rather than buying --</u> the requisite plug-power may become soon a "sine qua non" (survival) condition for exploring the high energy frontier in a sustainable way!

Applied physics:

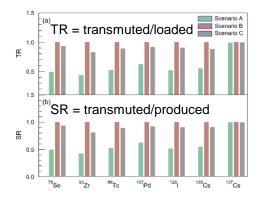
Gamma Factory, photon-beam-driven energy source?


Nature:

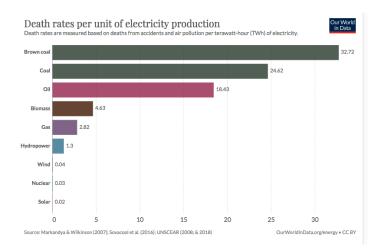
Article | Open Access | Published: 09 February 2022

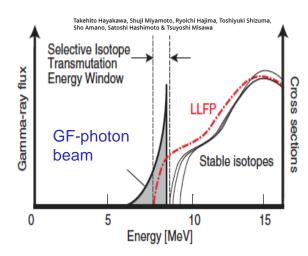

Transmutation of long-lived fission products in an advanced nuclear energy system

X. Y. Sun, W. Luo , H. Y. Lan, Y. M. Song, Q. Y. Gao, Z. C. Zhu, J. G. Chen & X. Z. Cai


Scientific Reports 12. Article number: 2240 (2022) | Cite this article

Main parameters	Data used in this study		
Type of fuel	UO ₂		
Thermal power (MWt)	500		
Electric power (MWe)	200		
Core height (mm)	1100		
Core diameter (mm)	1050		
Number of fuel assemblies	60/102 (inner/outer)		
Number of pins in each of fuel assembly	61		
Pin diameter (mm)	5.8		
Pellet diameter (mm)	5.2		
²³⁵ U enrichment (%)	23.3		
Number of LLFPs assemblies	78		
Number of pins in each of LLFPs assembly	61		
Number of shield assemblies	60		




Physical quantity	Value
Effective multiplication factor $(k_{\rm eff})$	0.979
Reactivity (ρ)	-0.019
Effective multiplication factor for prompt neutrons (k_p)	0.977
Eigenvalue (α)	-0.003
Effective delayed neutron fraction (β_{eff})	0.007
Neutron generation time (Λ) (μ s)	0.523
Neutron worth of PNS (φ)	1.319
Sub-critical effective multiplication factor (ks)	0.984

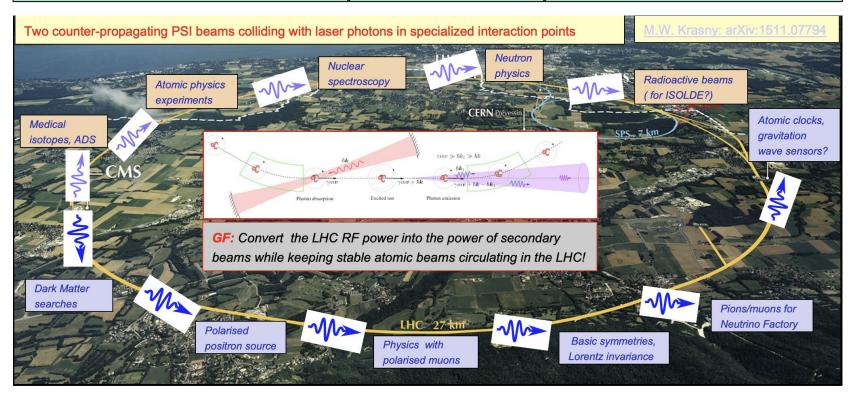
Potential merit of the GF-beam-driven sub-critical reactor.

Could provide the requisite plug-power for the present, and for the the future CERN's needs with one of the most safe (and clean!) sources of energy with resonant phototransmutation of the long-lived nuclear waste isotopes!

Table 1. Particle threshold energies and residual nuclei for even-Z elements including LLFPs.

Isotopes

socopes	11/2	2 (11121)		1/2
⁹⁰ Zr	-	8.355(p)	⁸⁹ γ	_
⁹¹ Zr	-	7.195(n)	90Zr	_
⁹² Zr	_	8.634(n)	91Zr	-
937,	$1.61 \times 10^6 \text{ y}$	6.734(n)	927r	_
⁹⁴ Zr		8.220(n)	⁹⁴ Zr	$1.61 \times 10^6 \text{ y}$
⁹⁶ Zr	_	7.854(n)	95Zr	64 d
		71051(11)		
⁷⁶ Se	-	9.508(p)	⁷⁵ As	-
⁷⁷ Se	-	7.418(n)	⁷⁶ Se	-
^{/8} Se	-	10.399(n)	⁷⁷ Se	-
⁷⁹ Se	2.95×10^{5} y	6.914(n)	⁷⁸ Se	-
80 Se	-	9.914(n)	⁷⁹ Se	$2.95 \times 10^5 \text{ y}$
⁸² Se	-	9.276(n)	⁸¹ Se	18 m
¹⁰⁴ Pd	_	8.658(p)	¹⁰³ Ph	
¹⁰⁵ Pd		7.941(n)	¹⁰⁴ Pd	
106 Pd	-	9.347(p)	105 Rh	1.47 d
¹⁰⁷ Pd	6.5×10 ⁶ y	6.359(n)	106Pd	1.47 U
108 Pd	6.5 × 10° y		107Pd	6.5×10 ⁶ y
110 Pd	-	9.221(n)	109 Pd	
····Pa		8.861(n)	Pd	13.7 h
¹¹⁷ Sn	-	6.945(n)	116Sn	-
118 Cm	-	9.327(n)	¹¹⁷ Sn	-
119 Sp	-	6.485(n)	118 Sn	-
¹²⁰ Sn	-	9.107(n)	¹¹⁹ Sn	-
122 Sn	-	8.814(n)	121Sn	27 h
124 Sn	_	8.488(n)	123 Sn	40 m
¹²⁶ Sn	2.3×10^{5} y	8.193(n)	¹²⁵ Sn	9.6 d
⁸⁸ Sr		10.614(p)	⁸⁷ Rb	
⁹⁰ Sr	28.8 y	7.806(n)	89Sr	50.6 d
21	28.8 y	7.806(11)	21	50.6 d
133 Cs		6 00E()	¹³² Xe	
	-	6.085(p)	132Cs	-
135Cs	22106	8.987(n)	134 Xe	6.5 d
is Cs	$2.3 \times 10^{6} \text{ y}$	6.751(p)	134Cs	-
¹³⁷ Cs	20	8.762(n)	136v	2.0 y
Lo, Cs	30 y	7.416(p)	¹³⁶ Xe ¹³⁶ Cs	-
		8.278(n)		13.2 d
127	-	6.206(p)	¹²⁶ Te	-
@		9.143(n)	126	13.1 d
129	1.57×10 ⁷ y	6.799(p)	¹²⁸ Te	-
	,	8.833(n)	128	25 m
⁹⁹ Tc	2.11×10 ⁵ y	6.500(p)	⁹⁸ Mo	
			MO	-
10	,	8.967(n)	⁹⁸ Tc	$4.2 \times 10^6 \text{ y}$


Conclusions

A potential place of the Gamma Factory (GF) in the future CERN research programme

- The next CERN high-energy frontier project (if ever constructed) may take long time to be approved, built and become operational, ... unlikely before 2050-ties
- The present LHC research programme will certainly reach earlier (late 2030-ties?) its discovery saturation ($L_{int} \sim 0.5L_{goal}$) -- little physics gain by a simple extending its pp/pA/AA running time
- A strong need will certainly arise for a novel multidisciplinary programme which could re-use ("co-use") the existing CERN facilities (including LHC) in ways and at levels that were not necessarily thought of when the machines were designed, by a broad scientific communities

The Gamma Factory research programme could fulfil such a role. It can exploit the existing world unique opportunities offered by the CERN accelerator complex and CERN's scientific infrastructure (not available elsewhere) to conduct new, diverse, and vibrant research in particle, nuclear, atomic, fundamental, applied physics, and astrophysics with novel research tools

A vision of the LHC operation mode in in the post-HL-LHC phase

