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- Inflation solves puzzles of the standard Big-Bang cosmology.

- Dynamics of the reheating period, which follows the inflation is
often underestimated or oversimplified.

- It is usually assumed that the inflaton decay rate, I, is constant.

- Hereafter we are going to discuss relations between inflation

and reheating dynamics focusing on possible interactions
between the Higgs boson and inflaton.

- Dynamics of reheating influences the dark matter sector,
especially in the context of the freeze-in DM production.
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The a-attractor T-model

Ly= % b 0" — V(9)

0.6

0.4+

V()/A

V(¢)= A*tanh®" <Q>
‘ vV 60,M1>1

02f
N4 ‘O|>> Mp) — Tanh?(|6|/M)
] o (o1/M) ]
= 4 0] " ’ n = 1 3
A\ Mi ‘(.‘)|<< Mp,; &/Mp
Pl a=1/6, A=3-10"% Mp
—UiNFLaTion' T
where n > 0, v6a < 10, A < 1.6 x 10 GeV. T
b +3H9+ Vs(0) =0, o RN
H = a/ais the Hubble rate. P
0.
of |1 ‘{\,ﬁ/ )
L0 2 l
—50 —40 -30 —20 —10 0

Logla/a,]



Table of Contents

The model of reheating and DM



Interactions

1 1
LM = —ZXWX‘”’ + Emixuxm

hHv
- 2 DM SM
»Cint - _{ gh¢MP1¢|h| + Mp, [T;?U + T,u,zz * Tp,z/ :|
Cf: m§< ch m?
w X "X 2 o
+ 2MP1 ¢XNX * 2M1%1 ‘ h ‘ XU'X )
,h SM X X
¢ o h* @ h
————— < 10) ———-- o)
“h SM X X
SM X h s X X SM X
hHv AN h h

SM X h- X X SM X



Limits on g,

- Perturbativity (hj¢ — h;®)

N2 )
<
gh¢N<¢MP1 ;

- The inflationary dynamics is dominated by the cosmological
constant term ~ A* therefore

gh</>w\/7<¢MPl>

- If mp, >3H,/2 the Higgs field fluctuations during inflation are
strongly suppressed ensuring stability (J. R. Espinosa, et al. ,
[arXiv:1505.04825]), therefore
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The Higgs portal

homogeneous, classical o° /‘I,'
background field i
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The Higgs portal
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Kinematic suppression

effective mass

The inflaton decay rate can be written as mi(a) Vo
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The time-averaged Boltzmann equations
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The time-averaged Boltzmann equations
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The time-averaged Boltzmann equations

nx+3an D¢+S¢ ++Dho

with the Hubble rate H? = 3,\,%;1 (g + psm + px)



The time-averaged Boltzmann equations
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The time-averaged Boltzmann equations
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The time-averaged Boltzmann equations
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Non-instantaneous reheating
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Gravitational DM production
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Gravitational DM production

a=1/6, A=3-107° Mp|

— T —

e :
N :
Qv 2 ~ MX NE(am) so o -6 | e
X - 3 L
Pc ah 5(3rh) L
—7L 4
= |
S e N
5 L
S 8 ]
9L 4
all
grav ;2 (obs) 1.2 N e Al
Q5" h*=Q h=0.1198 + 0.0012 [ \ [ -~
X X R S| =0
,10 1 1 1 1 1 1 1 1 1 1 1 L s 1 s s
0 4 8 12 16

Log,o[mx/GeV]

24



Gravitational DM production

by the freeze-in from the SM sector
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XX production
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- The a-attractor T-model potential for the inflaton field has been

adopted:
P | ‘ A ‘(,)|>> Mpy
V(¢)= A* tanh®” <0> ~ 2n ,
vV 6 MP] /\4 /\;) ‘C)|<< MPI
Pl

- The reheating has been triggered by
Lint = ghoMp10|h|*

- It has been shown that both duration of reheating and evolution
of radiation energy density, pr, are sensitive to the shape of the
inflaton potential (n).

- The role of kinematical suppression emerging from L;,: has
been investigated. It has been shown that the non-zero mass of
the Higgs boson leads to the elongation of the reheating period,
changes the pr(a) and T(a) evolution, and favors reduced T,,.x.
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- It has been shown that purely gravitational perturbative
production of DM is possible.

- Purely gravitation perturbative reheating needs to be
investigated.
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Particle production in a classical inflaton background

For the interactions proportional to the ¢ = ¢ - P term, the
lowest-order non-vanishing S-matrix element takes the form

SO =3P, (1] / d* xplt) e Ly (i)
AT
where

i) = |0y, |f) = a}a}|0).

If the envelope ¢(t) varies on the time-scale much longer than the
time-scale relevant for processes of particle creation, the S-matrix
element can be written as
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Planck and BICEP/Keck limits on N,
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where r is the tensor-to-scalar ratio and ns is the scalar spectral
index (tilt)
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Planck and BICEP/Keck limits on N,
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Figure 1: Left panel: Relation between reheating numbers of e-folds N, and
the value of the inflaton-Higgs coupling gne. Right panel: Relation between
the maximal temperature, Twmax, Obtained during reheating and the value of
the inflaton-Higgs coupling ghe.
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The «-attractor T-model

Time averaging:
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