STRONG ELECTROWEAK PHASE TRANSITION IN *t*-CHANNEL SIMPLIFIED DARK MATTER MODELS

Simone Biondini

Department of Physics - University of Basel

Workshop on the Standard Model and Beyond - Corfu Summer Institute September 5th, 2022

in collaboration with Philipp Schicho and Tuomas Tenkanen arXiv 2207.12207

MOTIVATION AND INTRODUCTION

BSM FOR COSMOLOGICAL EVIDENCES

 Beyond the Standard Model Physics is required for Baryon Asymmetry in the Universe (BAU) and Dark Matter (DM)

$$\eta = \frac{n_B}{n_\gamma} = (6.21 \pm 0.16) \times 10^{-10} , \quad \Omega_{\rm DM} h^2 = 0.1200 \pm 0.0012$$

Planck Collaboration 1807.06205

MOTIVATION AND INTRODUCTION

BSM FOR COSMOLOGICAL EVIDENCES

 Beyond the Standard Model Physics is required for Baryon Asymmetry in the Universe (BAU) and Dark Matter (DM)

$$\eta = \frac{n_B}{n_e} = (6.21 \pm 0.16) \times 10^{-10} , \quad \Omega_{\rm DM} h^2 = 0.1200 \pm 0.0012$$

Planck Collaboration 1807.06205

• Can a given BSM model account for *both* BAU and DM in some regions of the paramater space?

Examples: real/complex scalar extensions of the SM, Inert Doublet Model ...

V. Barger et al [0811.0393]; J. R. Espinosa, T. Konstandin and F. Riva [1107.5441]; J. M. Cline and K. Kainulainen [1210.4196] ...

$$\mathcal{L}_{\rm int}^{\rm BSM} = -\lambda_{\phi\,\mathfrak{s}} \phi^{\dagger} \phi \boldsymbol{S}^2 \ , \quad \ \ \, {\rm S \ acts \ as \ DM \ and \ affect \ the \ EWPT}$$

 New fields and interactions are included: how do they affect the thermal history of the Universe?

BARYON ASYMMETRY AND EWPT

SAKHAROV CONDITIONS

• B-number violation, C and CP violation, out-of-equilibrium dynamics

• a viable option for BAU is via Electro-Weak Baryogenesis (EWBG)

V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 155 (1985)

• successful EWBG requires a first-order electroweak phase transition

figures from E. Morrissey and M. J. Ramsey-Musolf 1206.2942

discontinuity of $V_{\text{eff}}(v_{\phi}, T)$ at $T = T_c$

THERMAL POTENTIAL AND SCALE DEPENDENCE

- $V_{\text{eff}}^{T=0}(\mu)$ is scale independent at one-loop
- $V_{\text{eff}}^{T}(\mu)$ is scale dependent at one-loop!
 - \rightarrow Misalignment of coupling versus loop expansion (due to $\mathit{m}_{\rm soft} \sim gT$)
- impact on $V_{\text{eff}}(v_{\phi}, T)$: one-loop $\mathcal{O}(g^4)$ leaves a strong- μ dependence
 - O. Gould and T.V.I. Tenkanen [2104.04399]; D. Croon et al [2009.10080]

Required 2-loop calculation

THERMAL POTENTIAL AND SCALE DEPENDENCE

- $V_{\text{eff}}^{T=0}(\mu)$ is scale independent at one-loop
- $V_{\text{eff}}^{T}(\mu)$ is scale dependent at one-loop!
 - ightarrow Misalignment of coupling versus loop expansion (due to $m_{
 m soft} \sim gT$)
- impact on $V_{\text{eff}}(v_{\phi}, T)$: one-loop $\mathcal{O}(g^4)$ leaves a strong- μ dependence

O. Gould and T.V.I. Tenkanen [2104.04399]; D. Croon et al [2009.10080]

Required 2-loop calculation

THERMAL POTENTIAL AND SCALE DEPENDENCE

- $V_{\text{eff}}^{T=0}(\mu)$ is scale independent at one-loop
- $V_{\text{eff}}^{T}(\mu)$ is scale dependent at one-loop!
 - \rightarrow Misalignment of coupling versus loop expansion (due to $\mathit{m}_{\rm soft} \sim gT$)
- impact on $V_{\text{eff}}(v_{\phi}, T)$: one-loop $\mathcal{O}(g^4)$ leaves a strong- μ dependence

O. Gould and T.V.I. Tenkanen [2104.04399]; D. Croon et al [2009.10080]

Required 2-loop calculation

SIMPLIFIED DM MODEL

$$\begin{split} \mathcal{L}_{\chi} &= \frac{1}{2} \bar{\chi} (\not{\partial} - \mu_{\chi}) \chi \ , \quad \mathcal{L}_{\eta} = (D_{\mu} \eta)^{\dagger} (D_{\mu} \eta) - \mu_{\eta}^{2} \eta^{\dagger} \eta - \lambda_{2} (\eta^{\dagger} \eta)^{2} \ , \\ \mathcal{L}_{\mathrm{scalar}}^{\mathrm{portal}} &= -\lambda_{3} (\eta^{\dagger} \eta) (\phi^{\dagger} \phi) \ , \quad \mathcal{L}_{\mathrm{Yukawa}}^{\mathrm{portal}} = -y \ \bar{\chi} P_{\mathrm{R}} \ \ell \eta + \mathrm{h.c.} \end{split}$$

EWPT

- \mathcal{Z}_2 symmetry for χ and η : stability of the DM particle
- RH-SM lepton \Rightarrow covariant derivative for η is $D_{\mu}\eta = (\partial_{\mu} ig_1 \frac{Y_{\eta}}{2}B_{\mu})\eta$
- model has ties with supersymmetry, however $\lambda_3 \approx O(1)$ [necessary to affect the EWPT]
- DM energy density both freeze-out and freeze-in (connection with EWPT see J. Liu et al 2104.06421)
 J. Bollig and S. Vogl 2112.01491; ; M. Garny, A. Ibarra and S. Vogl 1503.01500; S. Junius, et al 1904.07513
- assess the thermodynamics of the EWPT: strong FOPT

$$\frac{v_{\phi}}{T}(M_{\chi}, M_{\eta}, y, \lambda_3) \gtrsim 1$$

• extract the DM energy density via the freeze-out mechanism

$$\Omega_{\rm DM} h^2(M_\chi, M_\eta, y, \lambda_3) = 0.1200 \pm 0.0012$$

Result for y = 0

• perturbative estimate via discontinuous background fields at the critical temperature $T_{c,\phi}$

• dot-dashed line that corresponds to $\mu_{\eta}^2 = 0$ (strongest transition between gray area and this line)

INCLUSION OF THE MAJORANA FERMION

EWPT

- regions above the contour lines ^{ν_c,φ}/_{Γ_c,φ} > 1 corresponds to a strong first order phase transition (FOPT)
- y ≠ 0 has a mild effect on the regions for a strong FOPT
 → expected NLO effect, χ does not interact directly with the Higgs boson
- non trivial dependence on y and M_{χ} (more on next slides)

DM ENERGY DENSITY VIA FREEZE-OUT

effect of coannihilating states can be captured by a single Boltzmann equation κ. Griest and D. Seckel (1991)

$$\frac{dn}{dt} + 3Hn = -\langle \sigma_{\rm eff} v \rangle (n^2 - n_{\rm eq}^2) , \quad \langle \sigma_{\rm eff} v \rangle = \sum_{i,j} \frac{n_i^{\rm eq} n_j^{\rm eq}}{(\sum_k n_k^{\rm eq})^2} \langle \sigma_{ij} v \rangle$$

•
$$\chi$$
 and η : $n_{eq} = \int_{\boldsymbol{p}} e^{-E_{\boldsymbol{p}}/T} \left[2 + 2 e^{-\Delta M/T}\right];$

co-annihilations for $\Delta M/M_\chi \lesssim$ 0.2, where $\Delta M = M_\eta - M_\chi$

DM ENERGY DENSITY VIA FREEZE-OUT

effect of coannihilating states can be captured by a single Boltzmann equation

$$\frac{dn}{dt} + 3Hn = -\langle \sigma_{\rm eff} v \rangle (n^2 - n_{\rm eq}^2) , \quad \langle \sigma_{\rm eff} v \rangle = \sum_{i,j} \frac{n_i^{\rm eq} n_j^{\rm eq}}{(\sum_k n_k^{\rm eq})^2} \langle \sigma_{ij} v \rangle$$

•
$$\chi$$
 and η : $n_{eq} = \int_{\boldsymbol{p}} e^{-\boldsymbol{E}_{\boldsymbol{p}}/T} \left[2 + 2 e^{-\Delta M/T}\right];$

co-annihilations for $\Delta M/M_\chi \lesssim$ 0.2, where $\Delta M = M_\eta - M_\chi$

00

DM ENERGY DENSITY VIA FREEZE-OUT

effect of coannihilating states can be captured by a single Boltzmann equation

$$\frac{dn}{dt} + 3Hn = -\langle \sigma_{\rm eff} v \rangle (n^2 - n_{\rm eq}^2) , \quad \langle \sigma_{\rm eff} v \rangle = \sum_{i,j} \frac{n_i^{\rm eq} n_j^{\rm eq}}{(\sum_k n_k^{\rm eq})^2} \langle \sigma_{ij} v \rangle$$

•
$$\chi$$
 and η : $n_{eq} = \int_{\boldsymbol{p}} e^{-E_{\boldsymbol{p}}/T} \left[2 + 2 e^{-\Delta M/T}\right];$

co-annihilations for $\Delta M/M_\chi \lesssim$ 0.2, where $\Delta M = M_\eta - M_\chi$

00

PARAMETER SPACE FOR DM

- $\chi\eta$ and $\eta\eta^{\dagger}$ annihilation processes are more relevant for smaller y
- λ_3 enters $\eta \eta^{\dagger}$ annihilations (additonal channles mediated by the Higgs boson)
 - ightarrow up to one-order of magnitude on the mass splitting $\Delta M/M_\chi$

PARAMETER SPACE FOR DM

- ATLAS Collaboration search $2\ell + \not\!\!\!E_T$ 1908.08215, 1911.06660
- Drell-Yan production of $\eta\eta^{\dagger}$ and subsequent decays $\eta \rightarrow \chi + \ell$
- most (less) stringent limits from muons (taus)

Combining DM and EWPT: (M_{η}, λ_3) plane

• mild dependence on λ_3 of the curves for $\Omega_{\rm DM} h^2 = 0.1200$ [only at small y's]

- for $M_\chi\gtrsim 180~{
 m GeV}$ the line y=0.1 is an accumulation limit for the DM energy density
- larger M_{χ} imply larger $M_{\eta} \Rightarrow$ shrink the parameter space of FOPT and DM

(M_η, λ_3) and (M_χ, y)

(M_η,λ_3) and (M_χ,y)

CONCLUSIONS

• BSM physics may induce a strong first order EWPT and provide the correct DM energy density

$$\eta = \frac{n_B}{n_\gamma} = (6.21 \pm 0.16) \times 10^{-10} , \quad \Omega_{\rm DM} h^2 = 0.1200 \pm 0.0012$$

start the exploration of next-to-minimal models and make contact with DM simplified models

used dimensionally reduced EFTs: perturbative matching at the hard and soft scale

 $\pi T \gg gT \gg g^2T$: taken care of μ -dependence and isolated IR-sensitivity

- for DM inclusion of Sommerfeld and bound-state effects (moderate for this model $\sim O(10\%)$)
- including limits from collider searches: **DM and FOPT** for $180 \text{ GeV} < M_{\chi} \le 300 \text{ GeV}$

Future directions: (i) extend the investigation to larger M_η and M_χ: integrate out M_η ~ πT

 (ii) contact with GWs production;
 (iii) look at other DM simplified models

NON-PERTURBATIVE ASPECT...

Why should one be cautious about V_{eff}(v_{\u03c6}, T) as derived in perturbation theory?

$$\epsilon_b \sim rac{1}{\pi} g^2 n_{
m B}(p) = rac{1}{\pi} rac{g^2}{e^{p/T}-1} pprox rac{g^2 T}{\pi p}$$

- for $p \lesssim g^2 T/\pi \ o \ \epsilon_b \gtrsim 1$ even if $g^2/\pi \ll 1$
- relatively light d.o.f. interacting with the Higgs(es) should be studied non-perturbatively [m ~ g²T]
 K. Kajantie, M. Laine, K. Rummukainen and M. E. Shaposhnikov [hep-ph/9508379]; [hep-lat/9510020]; [hep-lat/9612006]

