

Institut de recherche en mathématique et physique Centre de Cosmologie, Physique des Particules et Phénoménologie

Efficiently probing the SMEFT interference Celine Degrande

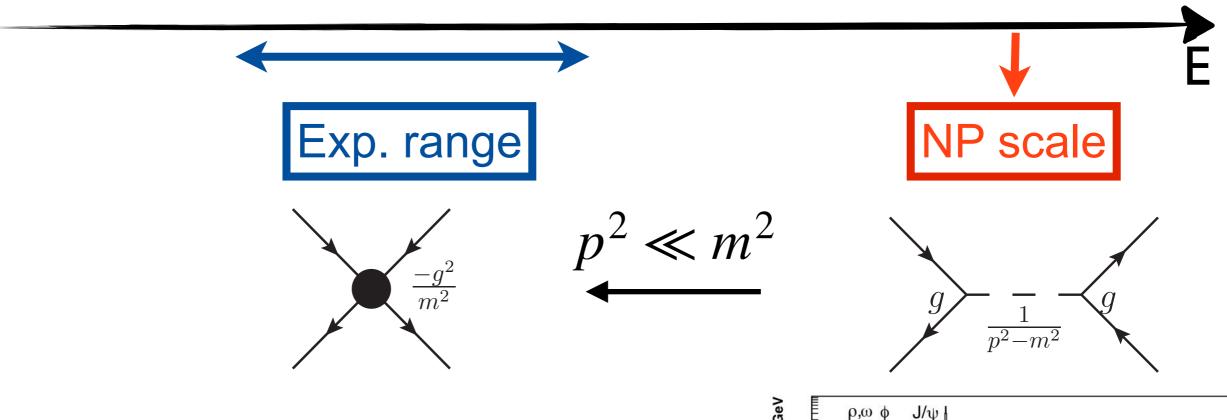
Plan

- Introduction to SMEFT
- SMEFT requires understanding the interference
- Interference resurrection
 - gluon operator
 - CPV in EW diboson
- Keeping uncertainties under control
- Final comments

Introduction to SMEFT

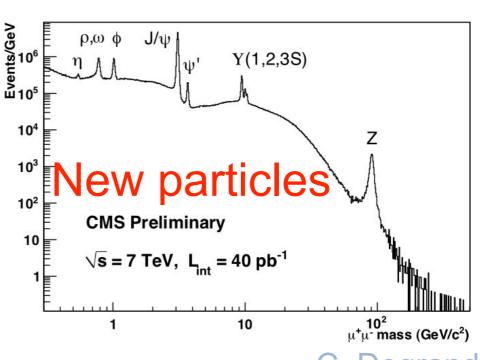
Indirect detection of NP

Assumption : NP scale >> energies probed in experiments



One assumption : $p^2 \ll m^2$

New/modified interactions between SM particles



EFT

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d>4} \sum_i \frac{C_i}{\Lambda^{d-4}} \mathcal{O}_i^d$$
 SM fields & sym.

EFT

Parametrize any NP but an ∞ number of coefficients

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d>4} \sum_i rac{C_i}{\Lambda^{d-4}} \mathcal{O}_i^d$$
 \longrightarrow SM fields & sym.

• Assumption : $E_{exp} << \Lambda$

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_i rac{C_i}{\Lambda^2} \mathcal{O}_i^6$$

a finite number of coefficients =>Predictive!

- Model independent (i.e. parametrize a large class of models): any HEAVY NP
- SM is the leading term : EFT for precision physics
- higher the exp. precision => smaller EFT error

Parametrize any NP but an ∞ number of coefficients

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d>4} \sum_i rac{C_i}{\Lambda^{d-4}} \mathcal{O}_i^d$$
 \longrightarrow SM fields & sym.

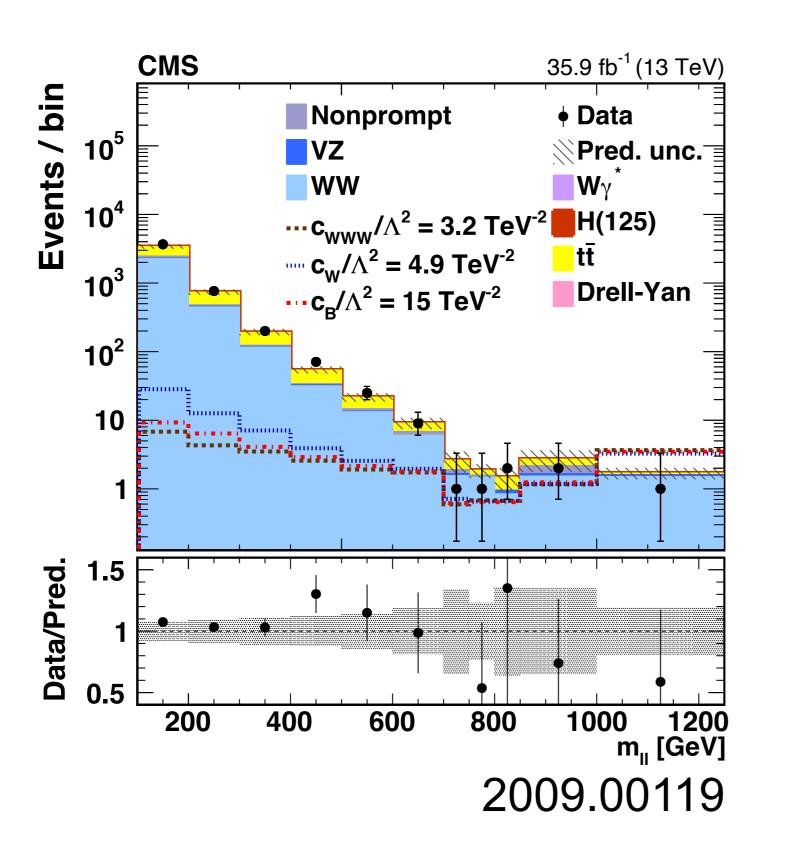
• Assumption :
$$\mathsf{E}_\mathsf{exp} << \Lambda$$

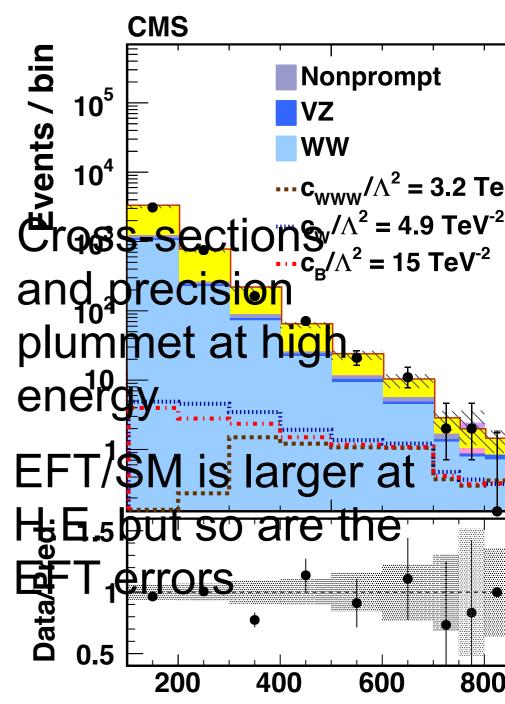
$$\mathcal{L} = \mathcal{L}_{SM} + \sum_i \frac{C_i}{\Lambda^2} \mathcal{O}_i^6$$
 measure only C_i/Λ^2 • Model independent (i.e. parametrize a

a finite number of coefficients =>Predictive!

- Model independent (i.e. parametrize a large class of models): any HEAVY NP
- SM is the leading term: EFT for precision physics
- higher the exp. precision => smaller EFT error

High energy tails





SMEFT requires understanding the interference

Errors : higher power of $1/\Lambda$

$$|M(x)|^{2} = \overline{|M_{SM}(x)|^{2}} + 2\Re (M_{SM}(x)M_{d6}^{*}(x)) + \overline{|M_{d6}(x)|^{2} + \dots}$$

$$\Lambda^{0}$$

$$\Lambda^{-2}$$

$$\mathcal{O}(\Lambda^{-4})$$

- Contains :
 - 1 dim6 insertion squared
 - interference with 2 dim6 insertions
 - interference with 1 dim8 insertion
 - ... at $1/\Lambda^{-6}$
- Error (estimate)

usually not included

Dimension 8 basis: Li et al., <u>2005.00008</u>

Errors : higher power of $1/\Lambda$

- Contains :
 - 1 dim6 insertion squared
 - interference with 2 dim6 insertions
 - interference with 1 dim8 insertion
 - ... at $1/\Lambda^{-6}$
- Error (estimate)

usually not included

Dimension 8 basis: Li et al., <u>2005.00008</u>

interference suppression

Azatov et al., Helicity Selection Rules and Non-Interference for BSM Amplitudes, <u>1607.05236</u>

A_4	$ h(A_4^{\mathrm{SM}}) $	$ h(A_4^{\mathrm{BSM}}) $
VVVV	0	4,2
$VV\phi\phi$	0	2
$VV\psi\psi$	0	2
$V\psi\psi\phi$	0	2

			_
$\psi\psi\psi\psi$	2,0	2,0	
$\psi\psi\phi\phi$	0	0	
$\phi\phi\phi\phi$	0	0 /	

interference suppression

Azatov et al., Helicity Selection Rules and Non-Interference for BSM Amplitudes, <u>1607.05236</u>

A_4	$ h(A_4^{\mathrm{SM}}) $	$ h(A_4^{\mathrm{BSM}}) $
VVVV	0	4,2
$VV\phi\phi$	0	2
$VV\psi\psi$	0	2
$V\psi\psi\phi$	0	2

$\psi\psi\psi\psi$	2,0	2,0
$\psi\psi\phi\phi$	0	0
$\phi\phi\phi\phi$	0	0

$$|M(x)|^{2} = M_{SM}(x)|^{2} + 2\Re (M_{SM}(x)M_{d6}^{*}(x)) + |M_{d6}(x)|^{2} + \dots + \mathcal{O}(\Lambda^{-6})$$

$$\Lambda^{-2} \qquad \qquad \mathcal{O}(0.1) \qquad \qquad \mathcal{O}(0.03)$$

interference suppression

Azatov et al., Helicity Selection Rules and Non-Interference for BSM Amplitudes, <u>1607.05236</u>

A_4	$ h(A_4^{ m SM}) $	$ h(A_4^{\mathrm{BSM}}) $
VVVV	0	4,2
$VV\phi\phi$	0	2
$VV\psi\psi$	0	2
$V\psi\psi\phi$	0	2

$\psi\psi\psi\psi$	2,0	2,0
$\psi\psi\phi\phi$	0	0
$\phi\phi\phi\phi$	0	0

$$|M(x)|^{2} = |M_{SM}(x)|^{2} + 2\Re (M_{SM}(x)M_{d6}^{*}(x)) + |M_{d6}(x)|^{2} + \dots + \mathcal{O}(\Lambda^{-6})$$

$$\wedge^{-2} \qquad \wedge^{-4} \qquad + \mathcal{O}(0.1)$$

$$\mathcal{O}(0.1) \qquad \mathcal{O}(0.03)$$
Assuming ~0 C. Degrande

$$|M(x)|^2 = \overline{|M_{SM}(x)|^2} + 2\Re \left(M_{SM}(x)M_{d6}^*(x)\right) + \overline{|M_{d6}(x)|^2 + \dots}$$

$$\Re \left(M_{SM}(x)M_{d6}^*(x)\right) = \sqrt{|M_{SM}(x)|^2 |M_{d6}(x)|^2} \cos \alpha$$

$$\mod \$ \text{pin} \qquad \text{Not always positive}$$

Can be suppressed

$$\sigma \propto \sum_{x} \left| M(x) \right|^2 \quad \text{if} \quad \begin{array}{l} M_{SM}(x_1) = 1, \ M_{SM}(x_2) = 0 \\ M_{d6}(x_1) = 0, \ M_{d6}(x_2) = 1 \end{array} \qquad \sigma_{int} = 0$$

Observable dependent

$$|M(x)|^{2} = \overline{|M_{SM}(x)|^{2}} + \overline{2\Re(M_{SM}(x)M_{d6}^{*}(x))} + \overline{|M_{d6}(x)|^{2} + \dots}$$

$$\Lambda^{0}$$

$$\Lambda^{-2}$$

$$\mathcal{O}(\Lambda^{-4})$$

$$\Re\left(M_{SM}(x)M_{d6}^*(x)\right) = \sqrt{\left|M_{SM}(x)\right|^2\left|M_{d6}(x)\right|^2}\cos\alpha$$
 mom&spin Not always positive

Can be suppressed

$$\sigma \propto \sum_{x} \left| M(x) \right|^2$$
 if

$$M_{SM}(x_1) = 1, M_{SM}(x_2) = \emptyset$$

$$M_{d6}(x_1) = \emptyset, M_{d6}(x_2) = 1$$

Observable dependent

$$|M(x)|^{2} = \overline{|M_{SM}(x)|^{2}} + 2\Re (M_{SM}(x)M_{d6}^{*}(x)) + \overline{|M_{d6}(x)|^{2} + \dots}$$

$$\Lambda^{0}$$

$$\Lambda^{-2}$$

$$\mathcal{O}(\Lambda^{-4})$$

$$\Re\left(M_{SM}(x)M_{d6}^*(x)\right) = \sqrt{\left|M_{SM}(x)\right|^2\left|M_{d6}(x)\right|^2}\cos\alpha$$
 mom&spin Not always positive

Can be suppressed

$$\sigma \propto \sum_x \left| M(x)
ight|^2$$
 if $M_{SM}(x_1) = 1, \, M_{SM}(x_2) = \emptyset$

$$M_{SM}(x_1) = 1, M_{SM}(x_2) = 2$$

$$M_{d6}(x_1) = \emptyset, M_{d6}(x_2) = 1$$

or $\alpha \approx \pi/2$ $m^2 \to m^2 - i \Gamma M$ Observable dependent $\sigma_{int} \propto \Gamma$

$$M^2 \rightarrow M^2 - i\Gamma M$$

C. Degrande

 $\sigma_{int} = 0$

$$|M(x)|^{2} = \overline{|M_{SM}(x)|^{2} + 2\Re (M_{SM}(x)M_{d6}^{*}(x)) + |M_{d6}(x)|^{2} + \dots}$$

$$\Lambda^{0}$$

$$\Lambda^{-2}$$

$$\mathcal{O}(\Lambda^{-4})$$

$$\Re\left(M_{SM}(x)M_{d6}^*(x)\right) = \sqrt{\left|M_{SM}(x)\right|^2 \left|M_{d6}(x)\right|^2} \cos\alpha$$
 mom&spin Not always positive

Can be suppressed

$$\sigma \propto \sum |M(x)|^2$$
 if

$$\sigma \propto \sum \left| M(x) \right|^2$$
 if $M_{SM}(x_1) = 1, \, M_{SM}(x_2) = \emptyset$

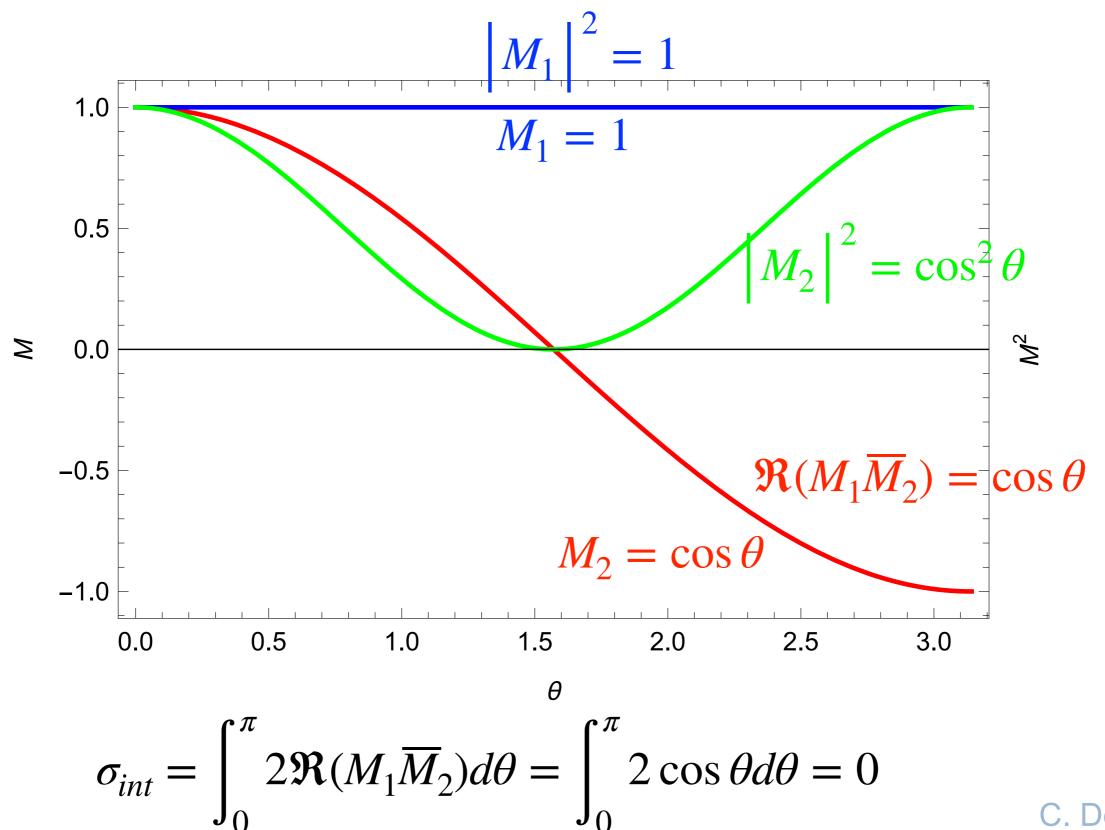
$$M_{d6}(x_1) = \emptyset, M_{d6}(x_2) = 1$$

or $\alpha \approx \pi/2$ $m^2 \to m^2 - i \Gamma M$ Observable dependent $\sigma_{int} \propto \Gamma$

C. Degrande

 $\sigma_{int} = 0$

Interference suppression from phase space



C. Degrande

Interference revival: Formalism

C.D., M. Maltoni <u>2012.06595</u>

$$\sigma^{|int|} \equiv \int d\Phi \left| \frac{d\sigma_{int}}{d\Phi} \right| >> \sigma_{int}$$

 $>>\sigma_{int}$ =Phase space Suppression

$$\sigma^{|meas|} \equiv \int d\Phi_{meas} \left| \sum_{\{um\}} \frac{d\sigma}{d\Phi} \right|$$

Experimentally accessible?

$$= \lim_{N \to \infty} \sum_{i=1}^{N} w_i * \operatorname{sign} \left(\sum_{um} ME(\vec{p}_i, um) \right)$$

Fully:
$$\frac{d\sigma_{int}}{d\theta}(pp \to Z\gamma) \propto \cos\theta$$

Not at all:
$$\sigma_{int}(\mu_L) = -\sigma_{int}(\mu_R)$$

neutrino momenta, helicities, jet flavours, initial parton direction,...

gluon operator

Interference revival: 1st example

$$O_G = g_s f_{abc} G_{\nu}^{a,\mu} G_{\rho}^{b,\nu} G_{\mu}^{c,\rho}$$

Interference vanishes in dijet

$$\frac{C_G}{\Lambda^2} < (0.031 \, {\rm TeV})^{-2}$$
 from dijet at $\mathcal{O}\left(1/\Lambda^4\right)$

R. Goldouzian, M. D. Hildreth, Phys. Lett. B 811, 135889 (2020), arXiv:2001.02736

Triple gluon operator

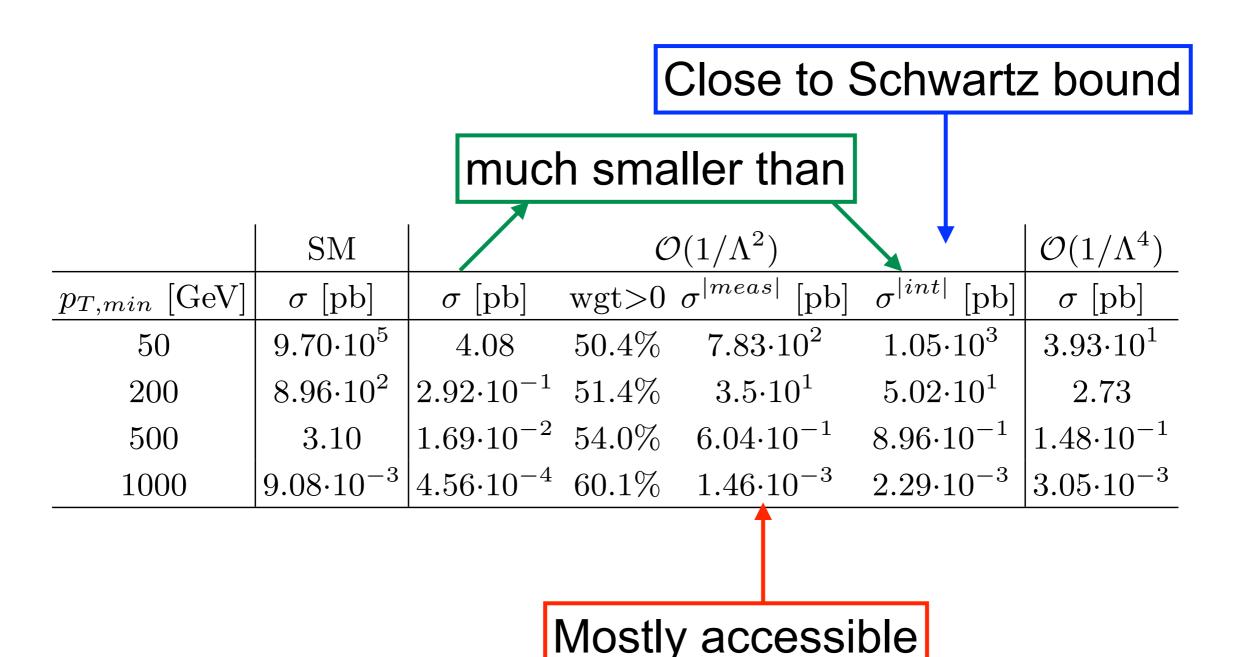
$$\frac{c_G}{\Lambda^2} = 1 \text{TeV}^{-2}$$

	$p_T > 50$	GeV	$p_T > 200$	GeV	$p_T > 1000$	$\overline{\text{GeV}}$
proc.	$\sigma \text{ [pb]}$	w>0	$\sigma \; [\mathrm{pb}]$	w>0	$\sigma \; [\mathrm{pb}]$	w>0
$\overline{t} ar{t}$	1.384	85%	1.384	85%	1.384	85%
$t ar{t} j$	$5.20 \cdot 10^{-1}$	62%	$1.13 \cdot 10^{-1}$	60%	$1.37 \cdot 10^{-3}$	62%
jjj	$2.98 \cdot 10^{1}$	52%	$5.90 \cdot 10^{-1}$	52%	$4.91 \cdot 10^{-4}$	61%
jjjj	$-2.89 \cdot 10^1$	45%	$-2.50 \cdot 10^{-1}$	44%	$-4.12 \cdot 10^{-6}$	39%

Large SM x-sect & int. cancellation

Part of the phase space with positive interference

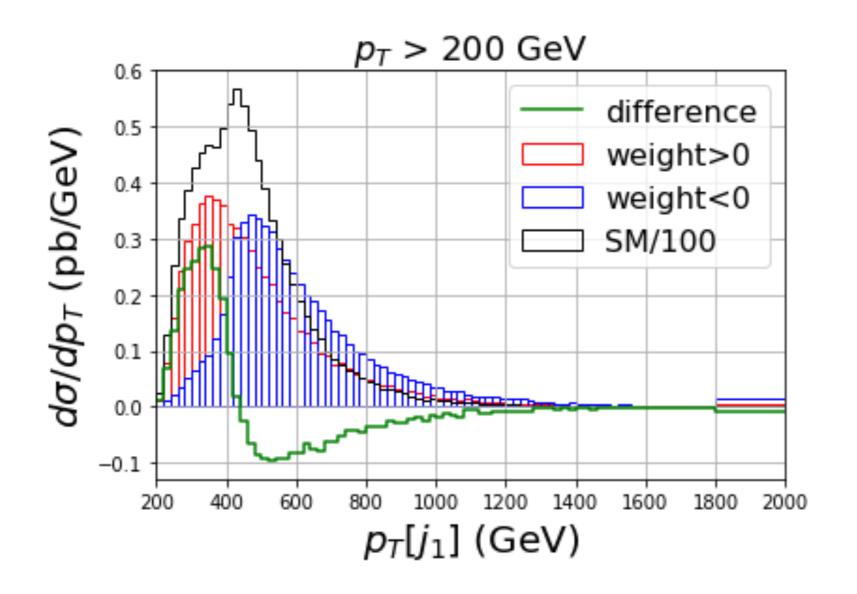
Triple gluon operator



Transverse momentum

Efficiency of an observable to revive:

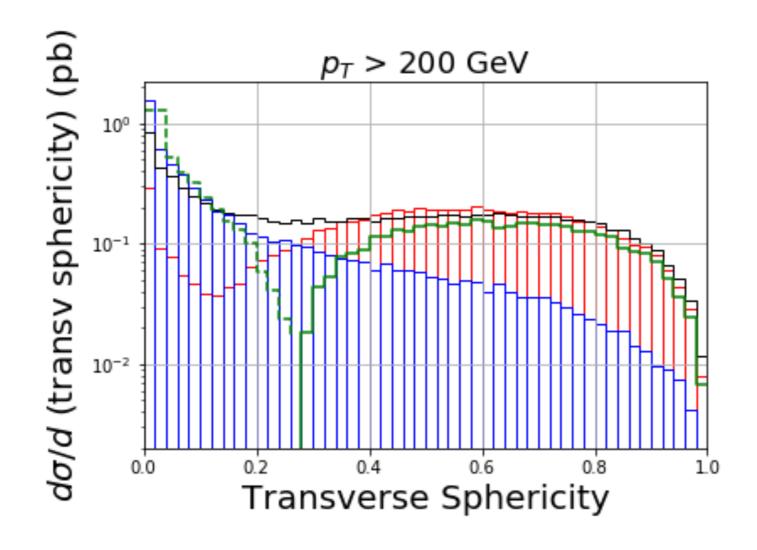
$$\frac{O}{\sigma^{|meas|}}$$



~40% efficiency

Transverse sphericity

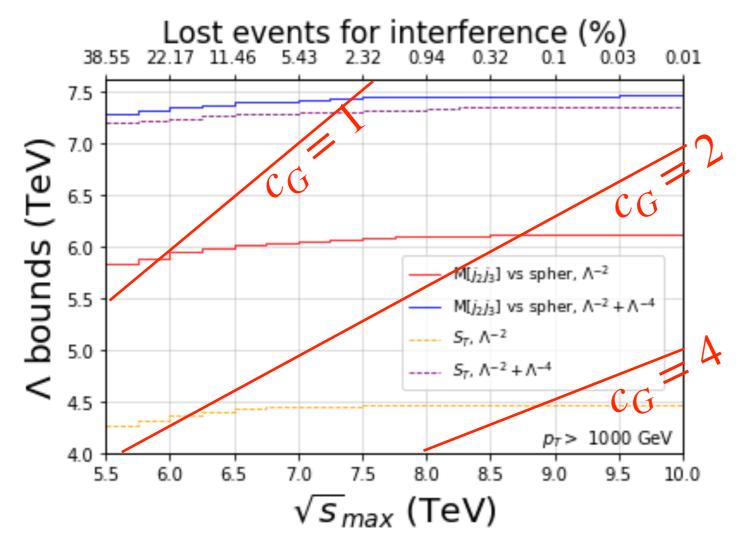
$$M_{xy} = \sum_{i=1}^{N_{jets}} \begin{pmatrix} p_{x,i}^2 & p_{x,i}p_{y,i} \\ p_{y,i}p_{x,i} & p_{y,i}^2 \end{pmatrix}, Sph_T = \frac{2\lambda_2}{\lambda_2 + \lambda_1}$$



~80% efficiency

Better sensitivity

$\overline{p_{T,min} \; [\text{GeV}]}$	Distribution	Sph_T cut	Bins	Upper bound on C_G Lower bound on C_G
50	$p_T[j_3] \text{ vs } Sph_T$	0.23	34	$2.5 \cdot 10^{-1} (1.1 \cdot 10^{-1}) - 2.5 \cdot 10^{-1} (-1.2 \cdot 10^{-1})$
200	$S_T \text{ vs } Sph_T$	0.27	34	$7.5 \cdot 10^{-2} (2.3 \cdot 10^{-2}) - 7.5 \cdot 10^{-2} (-2.4 \cdot 10^{-2})$
500	$M[j_2j_3]$ vs Sph_T	0.31	21	$5.5 \cdot 10^{-2} (5.3 \cdot 10^{-2}) -5.5 \cdot 10^{-2} (-3.5 \cdot 10^{-2})$
1000	$M[j_2j_3]$ vs Sph_T	0.35	7	$2.6 \cdot 10^{-2} (1.9 \cdot 10^{-2}) -2.6 \cdot 10^{-2} (-1.8 \cdot 10^{-2})$
				Λ^{-2} Λ^{-4}



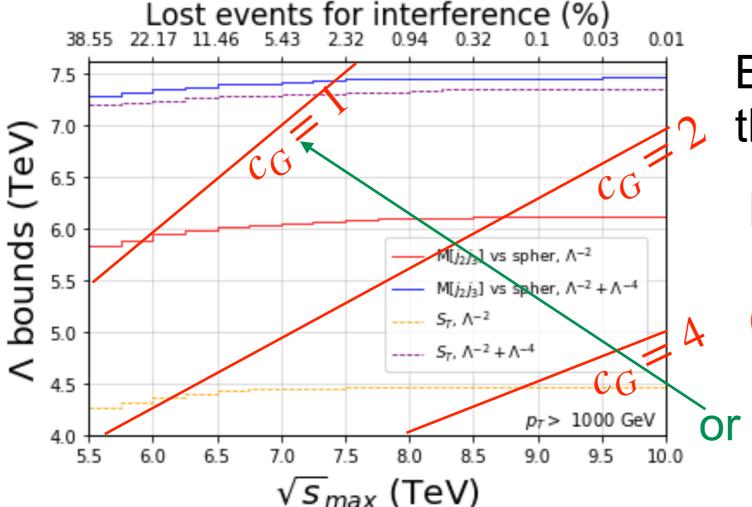
Bounds dominated by the interference

EFT validity & error:

(3TeV/6TeV)^2~0.25

Better sensitivity

$\overline{p_{T,min} \; [\text{GeV}]}$	Distribution	Sph_T cut	Bins	Upper bound on C_G Lower bound on C_G
50	$p_T[j_3] \text{ vs } Sph_T$	0.23	34	$2.5 \cdot 10^{-1} (1.1 \cdot 10^{-1}) - 2.5 \cdot 10^{-1} (-1.2 \cdot 10^{-1})$
200	S_T vs Sph_T	0.27	34	$7.5 \cdot 10^{-2} (2.3 \cdot 10^{-2}) - 7.5 \cdot 10^{-2} (-2.4 \cdot 10^{-2})$
500	$M[j_2j_3]$ vs Sph_T	0.31	21	$5.5 \cdot 10^{-2} (5.3 \cdot 10^{-2}) -5.5 \cdot 10^{-2} (-3.5 \cdot 10^{-2})$
1000	$M[j_2j_3]$ vs Sph_T	0.35	7	$2.6 \cdot 10^{-2} (1.9 \cdot 10^{-2}) - 2.6 \cdot 10^{-2} (-1.8 \cdot 10^{-2})$
				Λ^{-2} Λ^{-4}



Bounds dominated by the interference

EFT validity & error:

(3TeV/6TeV)^2~0.25

or
$$c_G = 2$$
 and $E^2/\Lambda^2 = 1/2$

CPV in EWdiboson

CPV

neglecting CKM phase

$$\sigma_{int}(C - even) = 0$$

$$Int 0 \neq O^{CP-odd} = 0 SM/dim6^2$$

Only visible in distributions

CPV

neglecting CKM phase

$$\sigma_{int}(C - even) = 0$$

 $\operatorname{Int} 0 \neq O^{CP-odd} = 0 \operatorname{SM/dim6^2}$

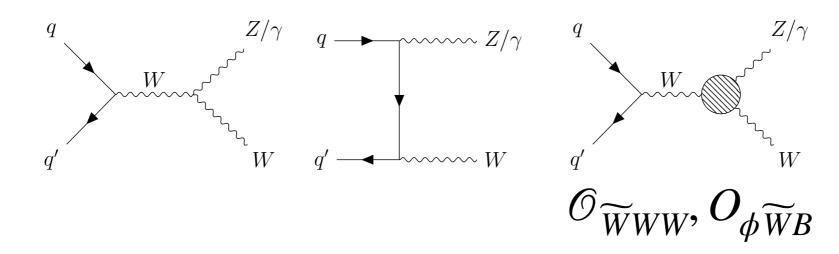
Only visible in distributions

 WZ/γ are not C-even processes but $\sigma_{int} pprox 0$

$$O_{SM}^{CP-odd} \approx 0$$

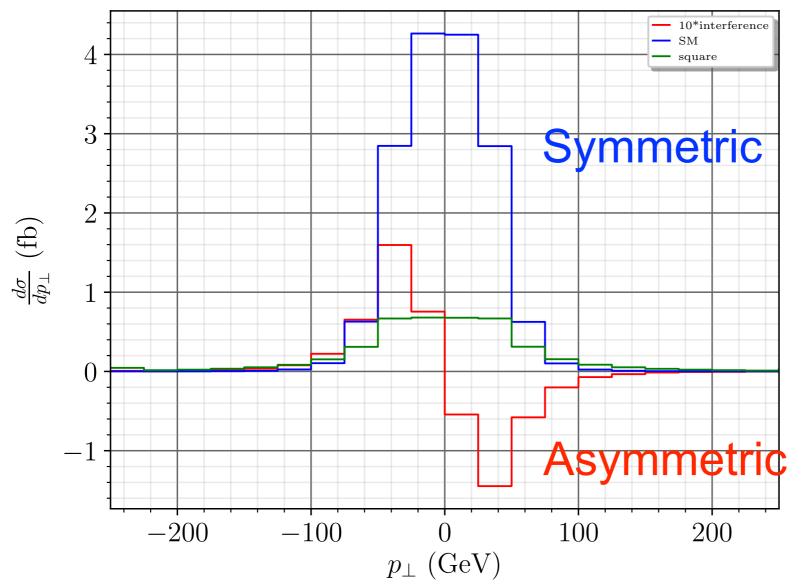
Large enough cross-sections for accurate differential meas.

Leptonic and mostly visible decays



Towards asymmetries

p p
$$\rightarrow \mu^- \mu^+ e^+ \nu_e$$
 for $C_{WW\widetilde{W}} = 1$ and $\Lambda = 1$ TEV at 13 TEV

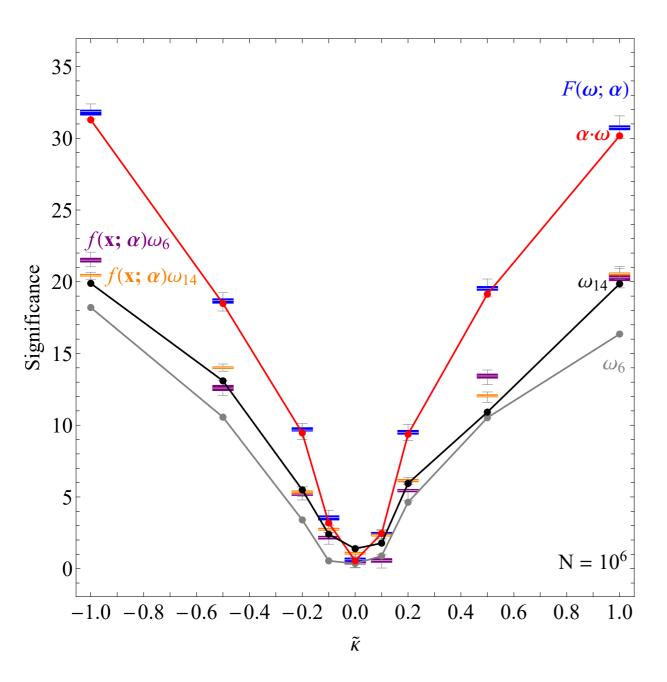


$$\overrightarrow{p}_e \cdot \frac{(\overrightarrow{p}_q \times \overrightarrow{p}_Z)}{\left| (\overrightarrow{p}_q \times \overrightarrow{p}_Z) \right|}$$

See J. Toucheque's talk this afternoon

Observables vs ML trained on model

Faroughy, Bortolato, Kamenik, Kosnik Smolkovic, Symmetry 13 (2021) no.7, 1129



Neural network

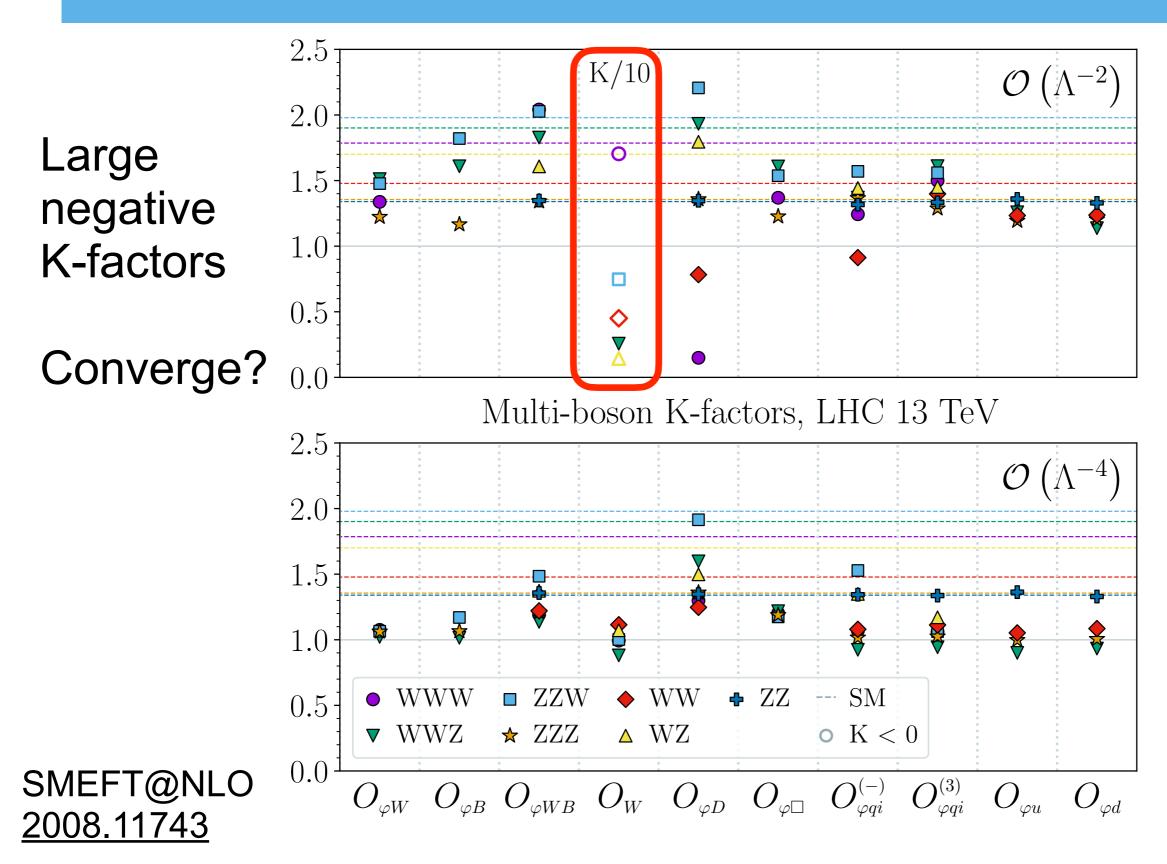
Linear combination

$$\omega_{14} \sim [({m p}_{\ell^-} imes {m p}_{\ell^+}) \cdot ({m p}_b - {m p}_{ar b})][({m p}_b - {m p}_{ar b}) \cdot ({m p}_{\ell^-} - {m p}_{\ell^+})]$$

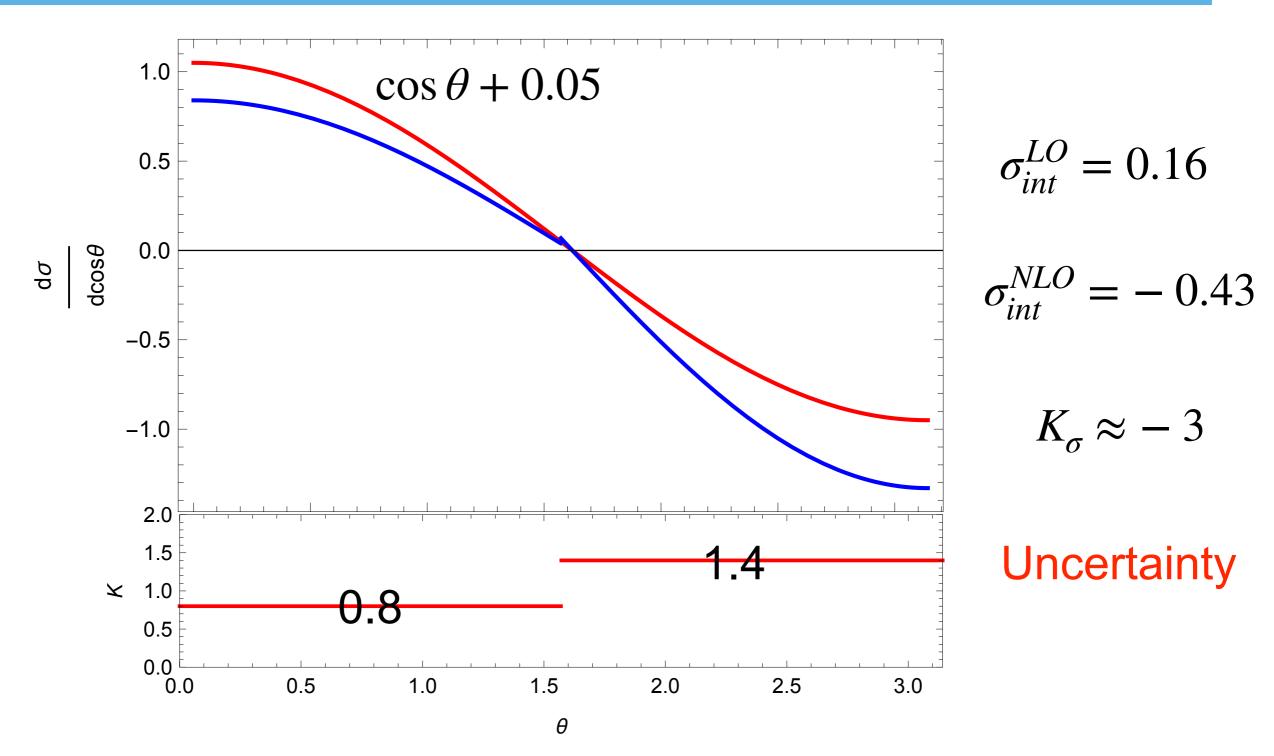
$$\omega_6 \sim [(\pmb{p}_{\ell^-} \times \pmb{p}_{\ell^+}) \cdot (\pmb{p}_b + \pmb{p}_{ar{b}})][(\pmb{p}_{\ell^-} - \pmb{p}_{\ell^+}) \cdot (\pmb{p}_b + \pmb{p}_{ar{b}})]$$

Keeping uncertainties under control

EW bosons production



Large/small K-factor



 σ is not the right variable to probe the interference

Interference revival: toy example

$$A = d\sigma(\cos \theta > 0) - d\sigma(\cos \theta < 0)$$

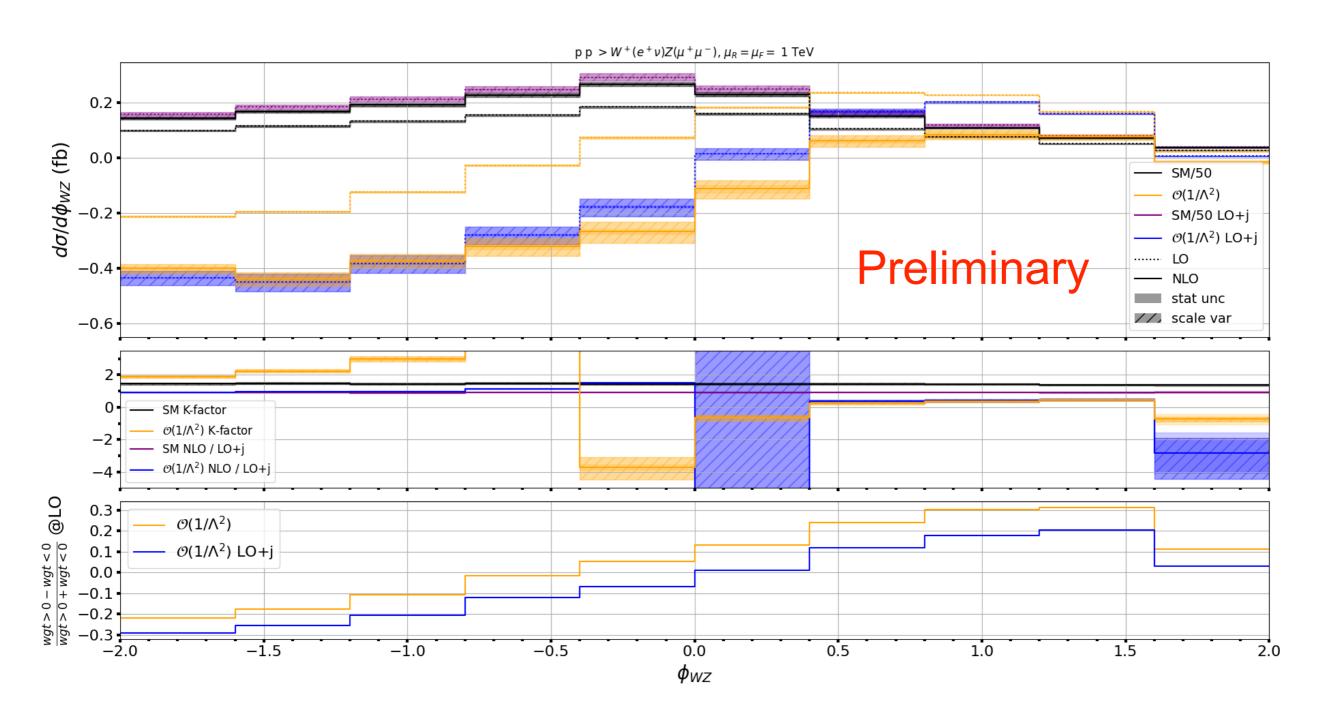
$$A_{int}^{LO} = 2 \qquad > > \sigma_{int}^{LO} = 0.16$$

$$A_{int}^{NLO} = 2.15$$

$$K_A = 1.1$$

No/little cancellation (Much) larger sensitivity Less sensitive to corrections (smaller errors)

Owww



with M. Maltoni

Final comments

Final comments

- SMEFT is good to parametrise any heavy new physics BUT we need to
- · understand the interference
- understand errors
 - from EFT : $1/\Lambda$ (dim8, ...)
 - α_S , α_{EW}
- design specific observables
 - more model independent and intuitive
 - easier to understand/compute errors/uncertainties
 - · learn about the SM
- Reduce uncertainties
 - SM predictions (pert and non-pert)
 - Experimental

