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INTRO

® Ultimate goal is the proposal of a new approach to the Higgs-Hierarchy problem

® The Non-Perturbative Gauge-Higgs Unification (NPGHU) model:

1. An amisotropic, in fifth dimension, lattice with orbifold boundary conditions generating a 4d boundary

2. A pure SU(2) gauge symmetry on the bulk, a U(1) gauge field coupled to a complex scalar survive on the
boundary
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£ N. Irges and F Knechtli, Nucl. Phys. B 719 (2005) 12
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(After a lot of effort as you can see)
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INTRO

® Construction of a 4d continuum effective action for a 5d model originated by the lattice model of NPGHU (What is the motivation?)

® A: The model exhibits, non-perturbatively, spontaneous breaking of its gauge symmetry in infinite fifth dimension ({ero Temperature
effect, dimensional reduction through localization):

N. Irges and I Rnechtli, Nucl. Phys. B 719 (2005) 12

N. Irges and I Rnechtli, Nucl. Phys. B 775 (2007) 283

N. Irges, F£ Rnechtli and K. Yoneyama, Nucl. Phys. B 722 (2013) 378-383
M. Alberti, N. Irges, £ Knechtli and G. Mowr, JHEP 09 (2015) 159

® B: Three crucial characteristics:

1. Even though extra dimensional, no finite-temperature type potential. No compactification, no Kaluza-Klein states
2. Pure bosonic nature of the Higgs mechanism. No need for fermions to trigger the mechanism

3. There are not any polynomual terms (not a Coleman-Weinberg (CW) like model) in the classical (nor in the (quantum) effective) potential

NPGHU model — Exhibits a pure quantum and bosonic spontaneous symmetry breaking




INTRO

® C: 1. A non-perturbative (NP) new class of Higgs-type mechanisms

2. The phase diagram of the lattice model exhibits a Higgs phase separated from two other phases by alst
order and “bulk™ or “zero-temperature” or “quantum™ phase transition.

N. Irges and E Rnechtlr, JHEP 06 (2014) 070; M. Alberts, N. Irges, E Knechtli
and G. Mo, JHEP 09 (2015) 159



INTRO

® C: 1. A non-perturbative (NP) new class of Higgs-type mechanisms

2. The phase diagram of the lattice model exhibits a Higgs phase separated from two other phases by alst

order and “bulk™ or “zero-temperature” or “quantum™ phase transition.
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QUANTIZATION WITHHDO

® What is the action to be quantized? Start from the lattice plaquette action S = §°~1 + §58
: b—h
The boundary action § - . 5, b ) - () V()
st = S S o {1 - U 0} + 85 Y e {1 = U 0)
ny L u<v v _
The bulk action S* - - - !
B 1 n.,=0 n.= N,
o7 = oN 542“{1 Uuu(nu»%)} +552t1"{1 _UM5(nM7n5)} SUR)
Ny ,M5 u<v 7’ |
4a 4 4a;  4ai a 2 2
e T'he parameters of the model g, = — —, fBs = - , Y = —4, gf =5 8_5}/
2 ) 2 252
85 84 asg5  ds&j ds ds  dy
® Expanding w.r.t the lattice spacings and truncate at NLO in the expansion
_ — (1 1 5o : : 2 . )
$0= St 30|30 (R + oA Au ) + D6+ 10,00
m w L ov _
® Consider the naive continuum limit and go to Minkowski space with metric n,, = (+,—, —, —) to get the boundary effective action

Sb_h:/d4$ _1F3 F3,,ul/

4 H

(6) (6)

Cor L C
+ Q—MQ((‘)“Fiy)((‘)MF3’“ ) — ﬁ D"D,¢|?
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QUANTIZATION WITHHDO

AAI} 1s the bulk gauge field. A = 1,2,3 denotes the adjoint index and M = pu,5 the 5d Minkowski index

AJ +iAZ
5 5 . .
\/_ the scalar field. u,v...denote the 4d Minkowski index

2

3 _ 3 A3 3 writh A3 _
F,,=0,A) —d,A; with A the gauge field and ¢ =

c® and 6'2(6) are introduced for the HDO of the gauge and scalar field respectively absorbing the function F(B,, Bs) ot u = F(f,, f5)/a,

Why NLO truncation?

Truncation at LO wn lattice spacing expansion is not
enough. It generates a 2nd order phase transition

el N. Irges and ER., Nucl. Phys. B 937 (2018) 135-195

Set A* = A*(u) as a cut-off for the Effective Field Theory (EFT)

In this case A 1s not an external scale that must be introduced by hand. 1t is rather an internal scale, given by the value
of the regulating scale at the phase transition, ps, where 1t assumes its maximum value. HDO are of quantum origin

N. Irges and ER., Nucl. Phys. B 950 (2020) 114833

One more step, before renormalize diagrammatically at 1-loop order the boundary action and obtain its quantum effective version, is to
deal with the extra pole instability




QUANTIZATION WITHHDO

® Expanding the gauge fixed action b—h __ 4 1 3 3, v 1 312 2
panding the gaug Svh = [ dla| < FLF — (A + 1D
0&6) 3 3 056) 2 3 3_
- o (0 FR) (0 FPHY) — 25 | DEDg [ + 0488,

Py — 650 = ¢y + %DZCbo + %(onﬁbo)ﬁbo

AiO - A=A+, 0 Oﬂdp)Ag’p

® To deal with the Ostrogradsky ghosts (O-ghosts) perform the most general field redefinition

® This introduces the Reparameterization ghosts (R-ghosts) which cancel the O-ghosts pole by pole at classical and quantum level

N. Irges and ER., Phys. Rev. D 100, 065004 (2019)
N. Irges and ER., Nucl. Phys. B 950 (2020) 114833




QUANTIZATION WITHHDO

® Expanding the gauge fixed action

b—h
St T

1 v
/d4zz: ——FSV’OF(‘?’“ +

A

2§

(6)

v 7 & ,0
3 0010, Ay — ¢oO¢o — =5 Fo

2A2 M
(6)

v,0

FS,,LLI/ L

0

(6)

€2,0 2 3

+igoyv/Y045,0 ({%3“% — %3’%0} + Ci’go{ Go0" o — ¢08M¢0}> + 9570(A},,0)°Podo

(6)

(6)
c - ; .
i 9370( 22 {060 + 600 | - %6’“(Ai,o¢o>0u<z4§’“¢o>)
- 3 3/2 (6) 4 9 (6) _ 5
L9070 CZ,O — _ 90706270 B - g
- A2 (A50) Ao (gboc‘?“(bo B %8#%) T A2 (A,?S,O)4¢o¢o , 80 = ay

® To deal with the Ostrogradsky ghosts (O-ghosts) perform the most general field redefinition

3 A3
Aﬂ,o — AM,O =A

3

a
1,0 T F(}/]ﬂﬂ

Py — 650 = ¢y + %DZCbo + %(onﬁbo)ﬁbo

3,
—~0,0)A3"

® This introduces the Reparameterization ghosts (R-ghosts) which cancel the O-ghosts pole by pole at classical and quantum level

N. Irges and ER., Phys. Rev. D 100, 065004 (2019)
N. Irges and ER., Nucl. Phys. B 950 (2020) 114833
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QUANTIZATION WITHHDO

(6) (6)

. 6) 2,0 10 . .
e lixingx, = — co([ X =" and y = 5 gives the bare and redefined boundary action
1w, | s - 0,
Sy = [ |~ FROF e AL 000, AT — GoDin — 135 (Bud)daTidn — DS
oy — 9,0 i i i
+igao{mup — P L AT (G00 b0 — 600" B0 ) + gF0(A50) Bode
9io [ (3 43 0T A 3 ap A3 Au(I 2 Agju(nup — (‘L(‘%)Ag’p 7
- g (A2 043 00 00 g + A3 407 AT 00" (Do) ) — 203, - B
910¢10 5 - - - 93010 . _
’ 21A27 A% 000 (ﬁboauﬁbo — ¢03“¢0) TV (A 0)%(docbo)”
® Now the boundary action is ghost-free and has developed a scalar quartic term ¢¢ []¢¢ (Recall that these HDO are of quantum
nature)
® One coupling 1n the beginning and two couplings, g, and the “quartic coupling” 01(6) at the end. However 1s expected to be connected
(fala GW)
o

The Feynman rules are straightforward but non-trivial due to the HDO. Ready for the 1-loop level, diagrammatic, renormalization

11



QUANTIZATION WITHHDO

® The renormalization procedure suggests

2
g4,0 — (1 + 5g4)g4 or a4’0 — (1 -+ 5@4)a4 Wlth a4 — 1g4 (6) - (1 + 5 (6))C( ) ¢O — 1 + 5¢¢ A/io = 4 /1 + 5AA'3

672

® The countgerterms and the associated p-functions of the boundary action are fixed (the off-shell scheme p? = A% is used)

1 1 g3 o 1 4(c{9)? + 34g]
0, = ——0A, 0g, = or oq, = 2— 5c® = o =0
6= T T e . 1T T Ton2 e »
3 (612 4
Pes = T2 OF P = 204 P

® For completeness apply all the previous steps in the bulk lattice action to get its continuum version (5d Lee-Wick version)

1

1 v, 1 v 5 '
LP = S FL P o (D) (D P ) — — B fapo P FAES, +  (Du®8)(DFeY) — o (D24 (D)
4 16A 24\ 4\
3,,—3¢&l2
'385/1_8/2 — 5g5,u — 6 16,22 or 'Bas = — E05 — —12 a5
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THE HIGGS PHASE

® The desired Higgs phase is revealed when a CW procedure is followed
® The algorithm:

1. Consider the 4d bare potential in momentum space

2. Construct the renormalized and improved effective potential using the scalar field as the running parameter and minimaze 1t to
find the non-trivial minimum

3. Innd the relation between the couplings g4, c1(6) and then determine the scalar and gauge field masses and from those the scalar-
to-gauge mass ratio

® The improved 1-loop effective potential is of a CW type

® The minimization suggests

13



THE HIGGS PHASE

® The desired Higgs phase is revealed when a CW procedure is followed
® The algorithm:

1. Consider the 4d bare potential in momentum space

2. Construct the renormalized and improved effective potential using the scalar field as the running parameter and minimaze 1t to
find the non-trivial minimum

3. Innd the relation between the couplings g4, c1<6) and then determine the scalar and gauge field masses and from those the scalar-
to-gauge mass ratio

® The improved 1-loop effective potential is of a CW type

A+ A ¢ Oz | 1oa) Bh [ @
or using dp = 2L =2 Vi (60) = Lot + {2(c7)? + 1791} 50 (10 % - 3)
Vi, (61 =102 + 85g4 — 3272l -
0d,  lpr=v 3272 B
® The minimization suggests (6) 8 4
T 3m

14



THE HIGGS PHASE

| 17 4 14 2
® The expected connection between the couplings is achieved — Vimp. (9r) = 1295;; (2 In v_; — ) + O(gy)

The mexican hat potential V,,,, (¢,)

® The non-trivial vev ( < ¢, > = v) triggers the spontaneous breaking of the gauge symmetry ¢, = h+v

0?V (h) 210 y 2.2 _ 2 mi: 210 , /210
2 — — 2 42 M5ys = g~ =m = = 0= — —— g4 ~ 1.64
mp = Z o 302 g v A3 94 Z mQZ Pbh 372 gy Pbh 32 94 ga
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THE HIGGS PHASE

® Comparison with the CW case in the classical level

/3 33 4
PCW = @620.196 and A:@fi

® 'The numerical difference originates from the higher derivative nature of the quartic coupling 01(6), a crucial point for the model

. . d ga( de(p) . e
® At quantum level the solution of the RG equations d,zi ) = By, and m = B with [, = T
9a.R _ 4, R . €R
ga(p) = 7 or aa(p) = = and  e(p) =
g2 5 l —aypln | e, In L2
1 — 55 In ﬂﬁi—% "R 18r2 2

® The IR boundary conditions are mg, My, g4(mg) = g4 p (4(mp) = oy ) and e(My) = ep,.

® The vevis fixed v = v.
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REMARKS BEFORE THE PHASE DIAGRAM

® The effective boundary action is not completely decoupled from the 5d bulk

® The RG flow in the Higgs phase is constrained from the one in the Hybrid phase

g’

1672

e 'The Hybrid phase contains 4d slices with SU(2) gauge group 1n the bulk. 4d coupling g, or a, =

v

1. Dimensional reduction through localization when the Higgs-Hybrid phase transition (1st order, quantum) is approached. ‘I he entire Hybrid phase
15 layered n the fifth dimension

v

2. T he bulk driven Higgs-Hybrid phase transition is approached simultaneously from either side when the system is driven towards the UV (proven NP) due

to common U

v

3. A matching of all physical observables is possible at the scale ps where the running of g(u) and g,(u) stops and 1t never reaches the continuum
limit so the model inhenits a finite cut-off

connected with g, ; and fs

17



THE CONTINUUM PHASE DIAGRAM

®  The needed ingredients:

3. The value of the parameters on the phase transition denoted by *

1. The RG evolution of the couplings in both phases
T'he parameters

Higgs Phase Hybrid Phase
2. The connection of f, and f5 with the running B a4 R c o
gauge couplings of Higgs and Hybrid phase ) = 1 — aypln 22 as(p) = @ with As =e “rmp
u:exp[a4(u) _a4’R}m = easc%u)./\s
2004 (1) a4 r
_ 1 1
54(:“) — 4772054(:“) 64,3(,“) — 47T2()48(,LL)
Bs (1) = v2(10) Balp) B5,s (1) = 75 (1) Bas (1)

18



THE CONTINUUM PHASE DIAGRAM

On the Higgs-Hybrid phase transition g = . :

OZ4(,LL*) — ozs(lu*) = Ol Ly = 61—|—2cg

~ oyrasr(l+2c) 210 5
G = Qs r + 2¢04 R M = Wl&r Ox s

The above are controlled by four variables: ay g, o , v+, and A (c; = 3/125)
a; g = 0.014 (SM’s strong gauge coupling) and A; = m, = 1000 MeV (proton mass), fixed by physical motivation
The first necessary condition for the validity of the effective action 1s the hierarchy of the scales

mpr < Mpx < s

The second necessary condition 1s to generate a SM-like spectrum

mpsx >~ 125 GeV  and ppp > 1

Standard Model spectrum for a, r = 0.00435 and v. = 108.2 GeV ===, = 5.55GeV, m. ~ 125.1 GeV, p. ~ 209 GeV and py,, ~ 1.373

19



THE CONTINUUM PHASE DIAGRAM

® Keep a,p =0.014, A, = 1000MeV and v. = 108.2GeV. Vary a, , — Varies u. — different pair (S, fs:)

Increasing y and .

ps(u)
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l T T T T I T T T T I T T T T | T T T T l
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THE CONTINUUM PHASE DIAGRAM

min

® 'l'he phase diagram and three RG flows: a, p = (o4

/

(my« = 78 GeV, p. = 5123 GeV)

1.4 —

= 0.0027) , (ay g = 0.00435) , (%"

= 0.00473)
Y G

(my« = 125.1 GeV, p. = 209 GeV)

a4, max (M) E

o, ()

1.2

0.8 -

Higgs-Phase

H-H Transition

a4, min (W) :

~~
Vo I s, max\M.
Q. :
l 0.6
(7))
Increasing pu and - 04r Hybrid-Phase
[ Qs min (M)
0.2
5 6

21




THE CONTINUUM PHASE DIAGRAM

® A zoomed version of the phase diagram
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THE CONTINUUM PHASE DIAGRAM

® Numerical analysis shows that the fine tuning of an RG flow that respects the physical constraints is equal or less than 6(10%)

Case 1: a,g = 0(107") only for a4z = 0.00435 a realistic spectrum, however the 1st order phase transition is below the 2nd order
phase transition

Case 2: a, g = 0(107%) (0.010 < a, x < 0.098), only for a, z = 0.00435 a realistic spectrum

Case 3: a,g < 0(107%) a realistic spectrum for a, x # 0.00435, however the the hierarchy condition is not respected

® The relation a,(u+) < as(p,) is true for Case 2. The system reaches the 1st order phase transition before the 2nd order one

® Same arguments keeping o, = 0.014 and a, , = 0.00435 fixed and varying A and v.
Viable conditions for 0.6 GeV < A, < 16 GeV and v« = 108.2 GeV

® Then the fine tuning in the Higgs mass is very small. The dynamics do not allow a high cut-off for the effective action

23



CONCLUSIONS

The 1-loop eftective action of an SU(2) gauge theory 1n five dimensions with boundary conditions that leave a U(1)-complex scalar
theory on the boundary, located at the origin of a semi-infinite fifth dimension was constructed

At perturbative level, the boundary theory 1s a version of the Coleman-Weinberg model where the quartic term 1s replaced by a
dimension-6 derivative operator. A qualitatively similar to the GW model Higgs mechanism 1s at work but with different coetficients in
the scalar mass and the p-functions that change things towards a more realistic direction

Imposing on the etfective action non-perturbative features known from the lattice, the system becomes highly constrained. The picture
1s that the model possesses a non-trivial phase diagram where the phases are separated by 1st order, quantum phase transitions located

in the UV

In order to use the model as a cartoon ot a possible origin of the Standard Model Higgs sector, then it turns out that we have to sit on,
or near the interface ot the phase transition that separates the Higgs phase and a layered-type of phase, the Hybrid phase. There,
dimensional reduction happens via localization 1n both phases and the etfective action must be constructed with a dynamically
generated finite cut-off but also with RG flows that are correlated below and above the phase transition

Alternative resolution to the Higgs mass hierarchy problem: T'he fine tuning involved 1s about one part in a hundred and 1t 1s related to
the choice of a “physical RG flow” on the phase diagram while the dynamics do not allow a high cut-oft for the eftective action. Once
such a physical RG tlow 1s picked, there 1s very little fine tuning that takes place along 1t

Several features of the model could be tested at Higgs-factories and future colliders
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